ArgumentPromotion.cpp revision c160efc28b815dbea73f0243f0729c1f0e1fabdb
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Analysis/AliasAnalysis.h"
38#include "llvm/Analysis/CallGraph.h"
39#include "llvm/Analysis/CallGraphSCCPass.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/LLVMContext.h"
44#include "llvm/IR/Module.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      CallGraphSCCPass::getAnalysisUsage(AU);
64    }
65
66    virtual bool runOnSCC(CallGraphSCC &SCC);
67    static char ID; // Pass identification, replacement for typeid
68    explicit ArgPromotion(unsigned maxElements = 3)
69        : CallGraphSCCPass(ID), maxElements(maxElements) {
70      initializeArgPromotionPass(*PassRegistry::getPassRegistry());
71    }
72
73    /// A vector used to hold the indices of a single GEP instruction
74    typedef std::vector<uint64_t> IndicesVector;
75
76  private:
77    CallGraphNode *PromoteArguments(CallGraphNode *CGN);
78    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
79    CallGraphNode *DoPromotion(Function *F,
80                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
81                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
82    /// The maximum number of elements to expand, or 0 for unlimited.
83    unsigned maxElements;
84  };
85}
86
87char ArgPromotion::ID = 0;
88INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
89                "Promote 'by reference' arguments to scalars", false, false)
90INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
91INITIALIZE_PASS_DEPENDENCY(CallGraph)
92INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
93                "Promote 'by reference' arguments to scalars", false, false)
94
95Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
96  return new ArgPromotion(maxElements);
97}
98
99bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
100  bool Changed = false, LocalChange;
101
102  do {  // Iterate until we stop promoting from this SCC.
103    LocalChange = false;
104    // Attempt to promote arguments from all functions in this SCC.
105    for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
106      if (CallGraphNode *CGN = PromoteArguments(*I)) {
107        LocalChange = true;
108        SCC.ReplaceNode(*I, CGN);
109      }
110    }
111    Changed |= LocalChange;               // Remember that we changed something.
112  } while (LocalChange);
113
114  return Changed;
115}
116
117/// PromoteArguments - This method checks the specified function to see if there
118/// are any promotable arguments and if it is safe to promote the function (for
119/// example, all callers are direct).  If safe to promote some arguments, it
120/// calls the DoPromotion method.
121///
122CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
123  Function *F = CGN->getFunction();
124
125  // Make sure that it is local to this module.
126  if (!F || !F->hasLocalLinkage()) return 0;
127
128  // First check: see if there are any pointer arguments!  If not, quick exit.
129  SmallVector<Argument*, 16> PointerArgs;
130  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
131    if (I->getType()->isPointerTy())
132      PointerArgs.push_back(I);
133  if (PointerArgs.empty()) return 0;
134
135  // Second check: make sure that all callers are direct callers.  We can't
136  // transform functions that have indirect callers.  Also see if the function
137  // is self-recursive.
138  bool isSelfRecursive = false;
139  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
140       UI != E; ++UI) {
141    CallSite CS(*UI);
142    // Must be a direct call.
143    if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
144
145    if (CS.getInstruction()->getParent()->getParent() == F)
146      isSelfRecursive = true;
147  }
148
149  // Check to see which arguments are promotable.  If an argument is promotable,
150  // add it to ArgsToPromote.
151  SmallPtrSet<Argument*, 8> ArgsToPromote;
152  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
153  for (unsigned i = 0, e = PointerArgs.size(); i != e; ++i) {
154    Argument *PtrArg = PointerArgs[i];
155    Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
156
157    // If this is a byval argument, and if the aggregate type is small, just
158    // pass the elements, which is always safe.
159    if (PtrArg->hasByValAttr()) {
160      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
161        if (maxElements > 0 && STy->getNumElements() > maxElements) {
162          DEBUG(dbgs() << "argpromotion disable promoting argument '"
163                << PtrArg->getName() << "' because it would require adding more"
164                << " than " << maxElements << " arguments to the function.\n");
165          continue;
166        }
167
168        // If all the elements are single-value types, we can promote it.
169        bool AllSimple = true;
170        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
171          if (!STy->getElementType(i)->isSingleValueType()) {
172            AllSimple = false;
173            break;
174          }
175        }
176
177        // Safe to transform, don't even bother trying to "promote" it.
178        // Passing the elements as a scalar will allow scalarrepl to hack on
179        // the new alloca we introduce.
180        if (AllSimple) {
181          ByValArgsToTransform.insert(PtrArg);
182          continue;
183        }
184      }
185    }
186
187    // If the argument is a recursive type and we're in a recursive
188    // function, we could end up infinitely peeling the function argument.
189    if (isSelfRecursive) {
190      if (StructType *STy = dyn_cast<StructType>(AgTy)) {
191        bool RecursiveType = false;
192        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
193          if (STy->getElementType(i) == PtrArg->getType()) {
194            RecursiveType = true;
195            break;
196          }
197        }
198        if (RecursiveType)
199          continue;
200      }
201    }
202
203    // Otherwise, see if we can promote the pointer to its value.
204    if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValAttr()))
205      ArgsToPromote.insert(PtrArg);
206  }
207
208  // No promotable pointer arguments.
209  if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
210    return 0;
211
212  return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
213}
214
215/// AllCallersPassInValidPointerForArgument - Return true if we can prove that
216/// all callees pass in a valid pointer for the specified function argument.
217static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
218  Function *Callee = Arg->getParent();
219
220  unsigned ArgNo = Arg->getArgNo();
221
222  // Look at all call sites of the function.  At this pointer we know we only
223  // have direct callees.
224  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
225       UI != E; ++UI) {
226    CallSite CS(*UI);
227    assert(CS && "Should only have direct calls!");
228
229    if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
230      return false;
231  }
232  return true;
233}
234
235/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
236/// that is greater than or equal to the size of prefix, and each of the
237/// elements in Prefix is the same as the corresponding elements in Longer.
238///
239/// This means it also returns true when Prefix and Longer are equal!
240static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
241                     const ArgPromotion::IndicesVector &Longer) {
242  if (Prefix.size() > Longer.size())
243    return false;
244  return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
245}
246
247
248/// Checks if Indices, or a prefix of Indices, is in Set.
249static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
250                     std::set<ArgPromotion::IndicesVector> &Set) {
251    std::set<ArgPromotion::IndicesVector>::iterator Low;
252    Low = Set.upper_bound(Indices);
253    if (Low != Set.begin())
254      Low--;
255    // Low is now the last element smaller than or equal to Indices. This means
256    // it points to a prefix of Indices (possibly Indices itself), if such
257    // prefix exists.
258    //
259    // This load is safe if any prefix of its operands is safe to load.
260    return Low != Set.end() && IsPrefix(*Low, Indices);
261}
262
263/// Mark the given indices (ToMark) as safe in the given set of indices
264/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
265/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
266/// already. Furthermore, any indices that Indices is itself a prefix of, are
267/// removed from Safe (since they are implicitely safe because of Indices now).
268static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
269                            std::set<ArgPromotion::IndicesVector> &Safe) {
270  std::set<ArgPromotion::IndicesVector>::iterator Low;
271  Low = Safe.upper_bound(ToMark);
272  // Guard against the case where Safe is empty
273  if (Low != Safe.begin())
274    Low--;
275  // Low is now the last element smaller than or equal to Indices. This
276  // means it points to a prefix of Indices (possibly Indices itself), if
277  // such prefix exists.
278  if (Low != Safe.end()) {
279    if (IsPrefix(*Low, ToMark))
280      // If there is already a prefix of these indices (or exactly these
281      // indices) marked a safe, don't bother adding these indices
282      return;
283
284    // Increment Low, so we can use it as a "insert before" hint
285    ++Low;
286  }
287  // Insert
288  Low = Safe.insert(Low, ToMark);
289  ++Low;
290  // If there we're a prefix of longer index list(s), remove those
291  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
292  while (Low != End && IsPrefix(ToMark, *Low)) {
293    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
294    ++Low;
295    Safe.erase(Remove);
296  }
297}
298
299/// isSafeToPromoteArgument - As you might guess from the name of this method,
300/// it checks to see if it is both safe and useful to promote the argument.
301/// This method limits promotion of aggregates to only promote up to three
302/// elements of the aggregate in order to avoid exploding the number of
303/// arguments passed in.
304bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
305  typedef std::set<IndicesVector> GEPIndicesSet;
306
307  // Quick exit for unused arguments
308  if (Arg->use_empty())
309    return true;
310
311  // We can only promote this argument if all of the uses are loads, or are GEP
312  // instructions (with constant indices) that are subsequently loaded.
313  //
314  // Promoting the argument causes it to be loaded in the caller
315  // unconditionally. This is only safe if we can prove that either the load
316  // would have happened in the callee anyway (ie, there is a load in the entry
317  // block) or the pointer passed in at every call site is guaranteed to be
318  // valid.
319  // In the former case, invalid loads can happen, but would have happened
320  // anyway, in the latter case, invalid loads won't happen. This prevents us
321  // from introducing an invalid load that wouldn't have happened in the
322  // original code.
323  //
324  // This set will contain all sets of indices that are loaded in the entry
325  // block, and thus are safe to unconditionally load in the caller.
326  GEPIndicesSet SafeToUnconditionallyLoad;
327
328  // This set contains all the sets of indices that we are planning to promote.
329  // This makes it possible to limit the number of arguments added.
330  GEPIndicesSet ToPromote;
331
332  // If the pointer is always valid, any load with first index 0 is valid.
333  if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
334    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
335
336  // First, iterate the entry block and mark loads of (geps of) arguments as
337  // safe.
338  BasicBlock *EntryBlock = Arg->getParent()->begin();
339  // Declare this here so we can reuse it
340  IndicesVector Indices;
341  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
342       I != E; ++I)
343    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
344      Value *V = LI->getPointerOperand();
345      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
346        V = GEP->getPointerOperand();
347        if (V == Arg) {
348          // This load actually loads (part of) Arg? Check the indices then.
349          Indices.reserve(GEP->getNumIndices());
350          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
351               II != IE; ++II)
352            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
353              Indices.push_back(CI->getSExtValue());
354            else
355              // We found a non-constant GEP index for this argument? Bail out
356              // right away, can't promote this argument at all.
357              return false;
358
359          // Indices checked out, mark them as safe
360          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
361          Indices.clear();
362        }
363      } else if (V == Arg) {
364        // Direct loads are equivalent to a GEP with a single 0 index.
365        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
366      }
367    }
368
369  // Now, iterate all uses of the argument to see if there are any uses that are
370  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
371  SmallVector<LoadInst*, 16> Loads;
372  IndicesVector Operands;
373  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
374       UI != E; ++UI) {
375    User *U = *UI;
376    Operands.clear();
377    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
378      // Don't hack volatile/atomic loads
379      if (!LI->isSimple()) return false;
380      Loads.push_back(LI);
381      // Direct loads are equivalent to a GEP with a zero index and then a load.
382      Operands.push_back(0);
383    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
384      if (GEP->use_empty()) {
385        // Dead GEP's cause trouble later.  Just remove them if we run into
386        // them.
387        getAnalysis<AliasAnalysis>().deleteValue(GEP);
388        GEP->eraseFromParent();
389        // TODO: This runs the above loop over and over again for dead GEPs
390        // Couldn't we just do increment the UI iterator earlier and erase the
391        // use?
392        return isSafeToPromoteArgument(Arg, isByVal);
393      }
394
395      // Ensure that all of the indices are constants.
396      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
397        i != e; ++i)
398        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
399          Operands.push_back(C->getSExtValue());
400        else
401          return false;  // Not a constant operand GEP!
402
403      // Ensure that the only users of the GEP are load instructions.
404      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
405           UI != E; ++UI)
406        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
407          // Don't hack volatile/atomic loads
408          if (!LI->isSimple()) return false;
409          Loads.push_back(LI);
410        } else {
411          // Other uses than load?
412          return false;
413        }
414    } else {
415      return false;  // Not a load or a GEP.
416    }
417
418    // Now, see if it is safe to promote this load / loads of this GEP. Loading
419    // is safe if Operands, or a prefix of Operands, is marked as safe.
420    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
421      return false;
422
423    // See if we are already promoting a load with these indices. If not, check
424    // to make sure that we aren't promoting too many elements.  If so, nothing
425    // to do.
426    if (ToPromote.find(Operands) == ToPromote.end()) {
427      if (maxElements > 0 && ToPromote.size() == maxElements) {
428        DEBUG(dbgs() << "argpromotion not promoting argument '"
429              << Arg->getName() << "' because it would require adding more "
430              << "than " << maxElements << " arguments to the function.\n");
431        // We limit aggregate promotion to only promoting up to a fixed number
432        // of elements of the aggregate.
433        return false;
434      }
435      ToPromote.insert(Operands);
436    }
437  }
438
439  if (Loads.empty()) return true;  // No users, this is a dead argument.
440
441  // Okay, now we know that the argument is only used by load instructions and
442  // it is safe to unconditionally perform all of them. Use alias analysis to
443  // check to see if the pointer is guaranteed to not be modified from entry of
444  // the function to each of the load instructions.
445
446  // Because there could be several/many load instructions, remember which
447  // blocks we know to be transparent to the load.
448  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
449
450  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
451
452  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
453    // Check to see if the load is invalidated from the start of the block to
454    // the load itself.
455    LoadInst *Load = Loads[i];
456    BasicBlock *BB = Load->getParent();
457
458    AliasAnalysis::Location Loc = AA.getLocation(Load);
459    if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
460      return false;  // Pointer is invalidated!
461
462    // Now check every path from the entry block to the load for transparency.
463    // To do this, we perform a depth first search on the inverse CFG from the
464    // loading block.
465    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
466      BasicBlock *P = *PI;
467      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
468             I = idf_ext_begin(P, TranspBlocks),
469             E = idf_ext_end(P, TranspBlocks); I != E; ++I)
470        if (AA.canBasicBlockModify(**I, Loc))
471          return false;
472    }
473  }
474
475  // If the path from the entry of the function to each load is free of
476  // instructions that potentially invalidate the load, we can make the
477  // transformation!
478  return true;
479}
480
481/// DoPromotion - This method actually performs the promotion of the specified
482/// arguments, and returns the new function.  At this point, we know that it's
483/// safe to do so.
484CallGraphNode *ArgPromotion::DoPromotion(Function *F,
485                               SmallPtrSet<Argument*, 8> &ArgsToPromote,
486                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
487
488  // Start by computing a new prototype for the function, which is the same as
489  // the old function, but has modified arguments.
490  FunctionType *FTy = F->getFunctionType();
491  std::vector<Type*> Params;
492
493  typedef std::set<IndicesVector> ScalarizeTable;
494
495  // ScalarizedElements - If we are promoting a pointer that has elements
496  // accessed out of it, keep track of which elements are accessed so that we
497  // can add one argument for each.
498  //
499  // Arguments that are directly loaded will have a zero element value here, to
500  // handle cases where there are both a direct load and GEP accesses.
501  //
502  std::map<Argument*, ScalarizeTable> ScalarizedElements;
503
504  // OriginalLoads - Keep track of a representative load instruction from the
505  // original function so that we can tell the alias analysis implementation
506  // what the new GEP/Load instructions we are inserting look like.
507  // We need to keep the original loads for each argument and the elements
508  // of the argument that are accessed.
509  std::map<std::pair<Argument*, IndicesVector>, LoadInst*> OriginalLoads;
510
511  // Attribute - Keep track of the parameter attributes for the arguments
512  // that we are *not* promoting. For the ones that we do promote, the parameter
513  // attributes are lost
514  SmallVector<AttributeSet, 8> AttributesVec;
515  const AttributeSet &PAL = F->getAttributes();
516
517  // Add any return attributes.
518  if (PAL.hasAttributes(AttributeSet::ReturnIndex))
519    AttributesVec.push_back(AttributeSet::get(F->getContext(),
520                                              PAL.getRetAttributes()));
521
522  // First, determine the new argument list
523  unsigned ArgIndex = 1;
524  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
525       ++I, ++ArgIndex) {
526    if (ByValArgsToTransform.count(I)) {
527      // Simple byval argument? Just add all the struct element types.
528      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
529      StructType *STy = cast<StructType>(AgTy);
530      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
531        Params.push_back(STy->getElementType(i));
532      ++NumByValArgsPromoted;
533    } else if (!ArgsToPromote.count(I)) {
534      // Unchanged argument
535      Params.push_back(I->getType());
536      AttributeSet attrs = PAL.getParamAttributes(ArgIndex);
537      if (attrs.hasAttributes(ArgIndex)) {
538        AttrBuilder B(attrs, ArgIndex);
539        AttributesVec.
540          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
541      }
542    } else if (I->use_empty()) {
543      // Dead argument (which are always marked as promotable)
544      ++NumArgumentsDead;
545    } else {
546      // Okay, this is being promoted. This means that the only uses are loads
547      // or GEPs which are only used by loads
548
549      // In this table, we will track which indices are loaded from the argument
550      // (where direct loads are tracked as no indices).
551      ScalarizeTable &ArgIndices = ScalarizedElements[I];
552      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
553           ++UI) {
554        Instruction *User = cast<Instruction>(*UI);
555        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
556        IndicesVector Indices;
557        Indices.reserve(User->getNumOperands() - 1);
558        // Since loads will only have a single operand, and GEPs only a single
559        // non-index operand, this will record direct loads without any indices,
560        // and gep+loads with the GEP indices.
561        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
562             II != IE; ++II)
563          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
564        // GEPs with a single 0 index can be merged with direct loads
565        if (Indices.size() == 1 && Indices.front() == 0)
566          Indices.clear();
567        ArgIndices.insert(Indices);
568        LoadInst *OrigLoad;
569        if (LoadInst *L = dyn_cast<LoadInst>(User))
570          OrigLoad = L;
571        else
572          // Take any load, we will use it only to update Alias Analysis
573          OrigLoad = cast<LoadInst>(User->use_back());
574        OriginalLoads[std::make_pair(I, Indices)] = OrigLoad;
575      }
576
577      // Add a parameter to the function for each element passed in.
578      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
579             E = ArgIndices.end(); SI != E; ++SI) {
580        // not allowed to dereference ->begin() if size() is 0
581        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
582        assert(Params.back());
583      }
584
585      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
586        ++NumArgumentsPromoted;
587      else
588        ++NumAggregatesPromoted;
589    }
590  }
591
592  // Add any function attributes.
593  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
594    AttributesVec.push_back(AttributeSet::get(FTy->getContext(),
595                                              PAL.getFnAttributes()));
596
597  Type *RetTy = FTy->getReturnType();
598
599  // Construct the new function type using the new arguments.
600  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
601
602  // Create the new function body and insert it into the module.
603  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
604  NF->copyAttributesFrom(F);
605
606
607  DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
608        << "From: " << *F);
609
610  // Recompute the parameter attributes list based on the new arguments for
611  // the function.
612  NF->setAttributes(AttributeSet::get(F->getContext(), AttributesVec));
613  AttributesVec.clear();
614
615  F->getParent()->getFunctionList().insert(F, NF);
616  NF->takeName(F);
617
618  // Get the alias analysis information that we need to update to reflect our
619  // changes.
620  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
621
622  // Get the callgraph information that we need to update to reflect our
623  // changes.
624  CallGraph &CG = getAnalysis<CallGraph>();
625
626  // Get a new callgraph node for NF.
627  CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
628
629  // Loop over all of the callers of the function, transforming the call sites
630  // to pass in the loaded pointers.
631  //
632  SmallVector<Value*, 16> Args;
633  while (!F->use_empty()) {
634    CallSite CS(F->use_back());
635    assert(CS.getCalledFunction() == F);
636    Instruction *Call = CS.getInstruction();
637    const AttributeSet &CallPAL = CS.getAttributes();
638
639    // Add any return attributes.
640    if (CallPAL.hasAttributes(AttributeSet::ReturnIndex))
641      AttributesVec.push_back(AttributeSet::get(F->getContext(),
642                                                CallPAL.getRetAttributes()));
643
644    // Loop over the operands, inserting GEP and loads in the caller as
645    // appropriate.
646    CallSite::arg_iterator AI = CS.arg_begin();
647    ArgIndex = 1;
648    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
649         I != E; ++I, ++AI, ++ArgIndex)
650      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
651        Args.push_back(*AI);          // Unmodified argument
652
653        if (CallPAL.hasAttributes(ArgIndex)) {
654          AttrBuilder B(CallPAL, ArgIndex);
655          AttributesVec.
656            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
657        }
658      } else if (ByValArgsToTransform.count(I)) {
659        // Emit a GEP and load for each element of the struct.
660        Type *AgTy = cast<PointerType>(I->getType())->getElementType();
661        StructType *STy = cast<StructType>(AgTy);
662        Value *Idxs[2] = {
663              ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
664        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
665          Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
666          Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
667                                                 (*AI)->getName()+"."+utostr(i),
668                                                 Call);
669          // TODO: Tell AA about the new values?
670          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
671        }
672      } else if (!I->use_empty()) {
673        // Non-dead argument: insert GEPs and loads as appropriate.
674        ScalarizeTable &ArgIndices = ScalarizedElements[I];
675        // Store the Value* version of the indices in here, but declare it now
676        // for reuse.
677        std::vector<Value*> Ops;
678        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
679               E = ArgIndices.end(); SI != E; ++SI) {
680          Value *V = *AI;
681          LoadInst *OrigLoad = OriginalLoads[std::make_pair(I, *SI)];
682          if (!SI->empty()) {
683            Ops.reserve(SI->size());
684            Type *ElTy = V->getType();
685            for (IndicesVector::const_iterator II = SI->begin(),
686                 IE = SI->end(); II != IE; ++II) {
687              // Use i32 to index structs, and i64 for others (pointers/arrays).
688              // This satisfies GEP constraints.
689              Type *IdxTy = (ElTy->isStructTy() ?
690                    Type::getInt32Ty(F->getContext()) :
691                    Type::getInt64Ty(F->getContext()));
692              Ops.push_back(ConstantInt::get(IdxTy, *II));
693              // Keep track of the type we're currently indexing.
694              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
695            }
696            // And create a GEP to extract those indices.
697            V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
698            Ops.clear();
699            AA.copyValue(OrigLoad->getOperand(0), V);
700          }
701          // Since we're replacing a load make sure we take the alignment
702          // of the previous load.
703          LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
704          newLoad->setAlignment(OrigLoad->getAlignment());
705          // Transfer the TBAA info too.
706          newLoad->setMetadata(LLVMContext::MD_tbaa,
707                               OrigLoad->getMetadata(LLVMContext::MD_tbaa));
708          Args.push_back(newLoad);
709          AA.copyValue(OrigLoad, Args.back());
710        }
711      }
712
713    // Push any varargs arguments on the list.
714    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
715      Args.push_back(*AI);
716      if (CallPAL.hasAttributes(ArgIndex)) {
717        AttrBuilder B(CallPAL, ArgIndex);
718        AttributesVec.
719          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
720      }
721    }
722
723    // Add any function attributes.
724    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
725      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
726                                                CallPAL.getFnAttributes()));
727
728    Instruction *New;
729    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
730      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
731                               Args, "", Call);
732      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
733      cast<InvokeInst>(New)->setAttributes(AttributeSet::get(II->getContext(),
734                                                            AttributesVec));
735    } else {
736      New = CallInst::Create(NF, Args, "", Call);
737      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
738      cast<CallInst>(New)->setAttributes(AttributeSet::get(New->getContext(),
739                                                          AttributesVec));
740      if (cast<CallInst>(Call)->isTailCall())
741        cast<CallInst>(New)->setTailCall();
742    }
743    Args.clear();
744    AttributesVec.clear();
745
746    // Update the alias analysis implementation to know that we are replacing
747    // the old call with a new one.
748    AA.replaceWithNewValue(Call, New);
749
750    // Update the callgraph to know that the callsite has been transformed.
751    CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
752    CalleeNode->replaceCallEdge(Call, New, NF_CGN);
753
754    if (!Call->use_empty()) {
755      Call->replaceAllUsesWith(New);
756      New->takeName(Call);
757    }
758
759    // Finally, remove the old call from the program, reducing the use-count of
760    // F.
761    Call->eraseFromParent();
762  }
763
764  // Since we have now created the new function, splice the body of the old
765  // function right into the new function, leaving the old rotting hulk of the
766  // function empty.
767  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
768
769  // Loop over the argument list, transferring uses of the old arguments over to
770  // the new arguments, also transferring over the names as well.
771  //
772  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
773       I2 = NF->arg_begin(); I != E; ++I) {
774    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
775      // If this is an unmodified argument, move the name and users over to the
776      // new version.
777      I->replaceAllUsesWith(I2);
778      I2->takeName(I);
779      AA.replaceWithNewValue(I, I2);
780      ++I2;
781      continue;
782    }
783
784    if (ByValArgsToTransform.count(I)) {
785      // In the callee, we create an alloca, and store each of the new incoming
786      // arguments into the alloca.
787      Instruction *InsertPt = NF->begin()->begin();
788
789      // Just add all the struct element types.
790      Type *AgTy = cast<PointerType>(I->getType())->getElementType();
791      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
792      StructType *STy = cast<StructType>(AgTy);
793      Value *Idxs[2] = {
794            ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
795
796      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
797        Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
798        Value *Idx =
799          GetElementPtrInst::Create(TheAlloca, Idxs,
800                                    TheAlloca->getName()+"."+Twine(i),
801                                    InsertPt);
802        I2->setName(I->getName()+"."+Twine(i));
803        new StoreInst(I2++, Idx, InsertPt);
804      }
805
806      // Anything that used the arg should now use the alloca.
807      I->replaceAllUsesWith(TheAlloca);
808      TheAlloca->takeName(I);
809      AA.replaceWithNewValue(I, TheAlloca);
810      continue;
811    }
812
813    if (I->use_empty()) {
814      AA.deleteValue(I);
815      continue;
816    }
817
818    // Otherwise, if we promoted this argument, then all users are load
819    // instructions (or GEPs with only load users), and all loads should be
820    // using the new argument that we added.
821    ScalarizeTable &ArgIndices = ScalarizedElements[I];
822
823    while (!I->use_empty()) {
824      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
825        assert(ArgIndices.begin()->empty() &&
826               "Load element should sort to front!");
827        I2->setName(I->getName()+".val");
828        LI->replaceAllUsesWith(I2);
829        AA.replaceWithNewValue(LI, I2);
830        LI->eraseFromParent();
831        DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
832              << "' in function '" << F->getName() << "'\n");
833      } else {
834        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
835        IndicesVector Operands;
836        Operands.reserve(GEP->getNumIndices());
837        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
838             II != IE; ++II)
839          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
840
841        // GEPs with a single 0 index can be merged with direct loads
842        if (Operands.size() == 1 && Operands.front() == 0)
843          Operands.clear();
844
845        Function::arg_iterator TheArg = I2;
846        for (ScalarizeTable::iterator It = ArgIndices.begin();
847             *It != Operands; ++It, ++TheArg) {
848          assert(It != ArgIndices.end() && "GEP not handled??");
849        }
850
851        std::string NewName = I->getName();
852        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
853            NewName += "." + utostr(Operands[i]);
854        }
855        NewName += ".val";
856        TheArg->setName(NewName);
857
858        DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
859              << "' of function '" << NF->getName() << "'\n");
860
861        // All of the uses must be load instructions.  Replace them all with
862        // the argument specified by ArgNo.
863        while (!GEP->use_empty()) {
864          LoadInst *L = cast<LoadInst>(GEP->use_back());
865          L->replaceAllUsesWith(TheArg);
866          AA.replaceWithNewValue(L, TheArg);
867          L->eraseFromParent();
868        }
869        AA.deleteValue(GEP);
870        GEP->eraseFromParent();
871      }
872    }
873
874    // Increment I2 past all of the arguments added for this promoted pointer.
875    std::advance(I2, ArgIndices.size());
876  }
877
878  // Tell the alias analysis that the old function is about to disappear.
879  AA.replaceWithNewValue(F, NF);
880
881
882  NF_CGN->stealCalledFunctionsFrom(CG[F]);
883
884  // Now that the old function is dead, delete it.  If there is a dangling
885  // reference to the CallgraphNode, just leave the dead function around for
886  // someone else to nuke.
887  CallGraphNode *CGN = CG[F];
888  if (CGN->getNumReferences() == 0)
889    delete CG.removeFunctionFromModule(CGN);
890  else
891    F->setLinkage(Function::ExternalLinkage);
892
893  return NF_CGN;
894}
895