ArgumentPromotion.cpp revision e3a8830c1d263b41ee114d7cb3fd50d240ec32b3
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// it refuses to scalarize aggregates which would require passing in more than
21// three operands to the function, because passing thousands of operands for a
22// large array or structure is unprofitable!
23//
24// Note that this transformation could also be done for arguments that are only
25// stored to (returning the value instead), but does not currently.  This case
26// would be best handled when and if LLVM begins supporting multiple return
27// values from functions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "argpromotion"
32#include "llvm/Transforms/IPO.h"
33#include "llvm/Constants.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/Module.h"
36#include "llvm/CallGraphSCCPass.h"
37#include "llvm/Instructions.h"
38#include "llvm/ParameterAttributes.h"
39#include "llvm/Analysis/AliasAnalysis.h"
40#include "llvm/Analysis/CallGraph.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/CFG.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/ADT/DepthFirstIterator.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/Support/Compiler.h"
49#include <set>
50using namespace llvm;
51
52STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
53STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
54STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
55STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
56
57namespace {
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      AU.addRequired<TargetData>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68    static char ID; // Pass identification, replacement for typeid
69    ArgPromotion() : CallGraphSCCPass((intptr_t)&ID) {}
70
71  private:
72    bool PromoteArguments(CallGraphNode *CGN);
73    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
74    Function *DoPromotion(Function *F,
75                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
76                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
77  };
78
79  char ArgPromotion::ID = 0;
80  RegisterPass<ArgPromotion> X("argpromotion",
81                               "Promote 'by reference' arguments to scalars");
82}
83
84Pass *llvm::createArgumentPromotionPass() {
85  return new ArgPromotion();
86}
87
88bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
89  bool Changed = false, LocalChange;
90
91  do {  // Iterate until we stop promoting from this SCC.
92    LocalChange = false;
93    // Attempt to promote arguments from all functions in this SCC.
94    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
95      LocalChange |= PromoteArguments(SCC[i]);
96    Changed |= LocalChange;               // Remember that we changed something.
97  } while (LocalChange);
98
99  return Changed;
100}
101
102/// PromoteArguments - This method checks the specified function to see if there
103/// are any promotable arguments and if it is safe to promote the function (for
104/// example, all callers are direct).  If safe to promote some arguments, it
105/// calls the DoPromotion method.
106///
107bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
108  Function *F = CGN->getFunction();
109
110  // Make sure that it is local to this module.
111  if (!F || !F->hasInternalLinkage()) return false;
112
113  // First check: see if there are any pointer arguments!  If not, quick exit.
114  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
115  unsigned ArgNo = 0;
116  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
117       I != E; ++I, ++ArgNo)
118    if (isa<PointerType>(I->getType()))
119      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
120  if (PointerArgs.empty()) return false;
121
122  // Second check: make sure that all callers are direct callers.  We can't
123  // transform functions that have indirect callers.
124  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
125       UI != E; ++UI) {
126    CallSite CS = CallSite::get(*UI);
127    if (!CS.getInstruction())       // "Taking the address" of the function
128      return false;
129
130    // Ensure that this call site is CALLING the function, not passing it as
131    // an argument.
132    if (UI.getOperandNo() != 0)
133      return false;
134  }
135
136  // Check to see which arguments are promotable.  If an argument is promotable,
137  // add it to ArgsToPromote.
138  SmallPtrSet<Argument*, 8> ArgsToPromote;
139  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
140  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
141    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, ParamAttr::ByVal);
142
143    // If this is a byval argument, and if the aggregate type is small, just
144    // pass the elements, which is always safe.
145    Argument *PtrArg = PointerArgs[i].first;
146    if (isByVal) {
147      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
148      if (const StructType *STy = dyn_cast<StructType>(AgTy))
149        if (STy->getNumElements() <= 3) {
150          // If all the elements are first class types, we can promote it.
151          bool AllSimple = true;
152          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
153            if (!STy->getElementType(i)->isFirstClassType()) {
154              AllSimple = false;
155              break;
156            }
157
158          // Safe to transform, don't even bother trying to "promote" it.
159          // Passing the elements as a scalar will allow scalarrepl to hack on
160          // the new alloca we introduce.
161          if (AllSimple) {
162            ByValArgsToTransform.insert(PtrArg);
163            continue;
164          }
165        }
166    }
167
168    // Otherwise, see if we can promote the pointer to its value.
169    if (isSafeToPromoteArgument(PtrArg, isByVal))
170      ArgsToPromote.insert(PtrArg);
171  }
172
173  // No promotable pointer arguments.
174  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
175
176  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
177
178  // Update the call graph to know that the function has been transformed.
179  getAnalysis<CallGraph>().changeFunction(F, NewF);
180  return true;
181}
182
183/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
184/// to load.
185static bool IsAlwaysValidPointer(Value *V) {
186  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
187  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
188    return IsAlwaysValidPointer(GEP->getOperand(0));
189  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
190    if (CE->getOpcode() == Instruction::GetElementPtr)
191      return IsAlwaysValidPointer(CE->getOperand(0));
192
193  return false;
194}
195
196/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
197/// all callees pass in a valid pointer for the specified function argument.
198static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
199  Function *Callee = Arg->getParent();
200
201  unsigned ArgNo = std::distance(Callee->arg_begin(),
202                                 Function::arg_iterator(Arg));
203
204  // Look at all call sites of the function.  At this pointer we know we only
205  // have direct callees.
206  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
207       UI != E; ++UI) {
208    CallSite CS = CallSite::get(*UI);
209    assert(CS.getInstruction() && "Should only have direct calls!");
210
211    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
212      return false;
213  }
214  return true;
215}
216
217
218/// isSafeToPromoteArgument - As you might guess from the name of this method,
219/// it checks to see if it is both safe and useful to promote the argument.
220/// This method limits promotion of aggregates to only promote up to three
221/// elements of the aggregate in order to avoid exploding the number of
222/// arguments passed in.
223bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
224  // We can only promote this argument if all of the uses are loads, or are GEP
225  // instructions (with constant indices) that are subsequently loaded.
226
227  // We can also only promote the load if we can guarantee that it will happen.
228  // Promoting a load causes the load to be unconditionally executed in the
229  // caller, so we can't turn a conditional load into an unconditional load in
230  // general.
231  bool SafeToUnconditionallyLoad = false;
232  if (isByVal)   // ByVal arguments are always safe to load from.
233    SafeToUnconditionallyLoad = true;
234
235  BasicBlock *EntryBlock = Arg->getParent()->begin();
236  SmallVector<LoadInst*, 16> Loads;
237  std::vector<SmallVector<ConstantInt*, 8> > GEPIndices;
238  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
239       UI != E; ++UI)
240    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
241      if (LI->isVolatile()) return false;  // Don't hack volatile loads
242      Loads.push_back(LI);
243
244      // If this load occurs in the entry block, then the pointer is
245      // unconditionally loaded.
246      SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
247    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
248      if (GEP->use_empty()) {
249        // Dead GEP's cause trouble later.  Just remove them if we run into
250        // them.
251        getAnalysis<AliasAnalysis>().deleteValue(GEP);
252        GEP->eraseFromParent();
253        return isSafeToPromoteArgument(Arg, isByVal);
254      }
255      // Ensure that all of the indices are constants.
256      SmallVector<ConstantInt*, 8> Operands;
257      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
258        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
259          Operands.push_back(C);
260        else
261          return false;  // Not a constant operand GEP!
262
263      // Ensure that the only users of the GEP are load instructions.
264      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
265           UI != E; ++UI)
266        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
267          if (LI->isVolatile()) return false;  // Don't hack volatile loads
268          Loads.push_back(LI);
269
270          // If this load occurs in the entry block, then the pointer is
271          // unconditionally loaded.
272          SafeToUnconditionallyLoad |= LI->getParent() == EntryBlock;
273        } else {
274          return false;
275        }
276
277      // See if there is already a GEP with these indices.  If not, check to
278      // make sure that we aren't promoting too many elements.  If so, nothing
279      // to do.
280      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
281          GEPIndices.end()) {
282        if (GEPIndices.size() == 3) {
283          DOUT << "argpromotion disable promoting argument '"
284               << Arg->getName() << "' because it would require adding more "
285               << "than 3 arguments to the function.\n";
286          // We limit aggregate promotion to only promoting up to three elements
287          // of the aggregate.
288          return false;
289        }
290        GEPIndices.push_back(Operands);
291      }
292    } else {
293      return false;  // Not a load or a GEP.
294    }
295
296  if (Loads.empty()) return true;  // No users, this is a dead argument.
297
298  // If we decide that we want to promote this argument, the value is going to
299  // be unconditionally loaded in all callees.  This is only safe to do if the
300  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
301  // of the pointer in the entry block of the function) or if we can prove that
302  // all pointers passed in are always to legal locations (for example, no null
303  // pointers are passed in, no pointers to free'd memory, etc).
304  if (!SafeToUnconditionallyLoad &&
305      !AllCalleesPassInValidPointerForArgument(Arg))
306    return false;   // Cannot prove that this is safe!!
307
308  // Okay, now we know that the argument is only used by load instructions and
309  // it is safe to unconditionally load the pointer.  Use alias analysis to
310  // check to see if the pointer is guaranteed to not be modified from entry of
311  // the function to each of the load instructions.
312
313  // Because there could be several/many load instructions, remember which
314  // blocks we know to be transparent to the load.
315  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
316
317  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
318  TargetData &TD = getAnalysis<TargetData>();
319
320  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
321    // Check to see if the load is invalidated from the start of the block to
322    // the load itself.
323    LoadInst *Load = Loads[i];
324    BasicBlock *BB = Load->getParent();
325
326    const PointerType *LoadTy =
327      cast<PointerType>(Load->getOperand(0)->getType());
328    unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
329
330    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
331      return false;  // Pointer is invalidated!
332
333    // Now check every path from the entry block to the load for transparency.
334    // To do this, we perform a depth first search on the inverse CFG from the
335    // loading block.
336    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
337      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
338             I = idf_ext_begin(*PI, TranspBlocks),
339             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
340        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
341          return false;
342  }
343
344  // If the path from the entry of the function to each load is free of
345  // instructions that potentially invalidate the load, we can make the
346  // transformation!
347  return true;
348}
349
350namespace {
351  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
352  /// elements are instances of ConstantInt.
353  ///
354  struct GEPIdxComparator {
355    bool operator()(const std::vector<Value*> &LHS,
356                    const std::vector<Value*> &RHS) const {
357      unsigned idx = 0;
358      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
359        if (LHS[idx] != RHS[idx]) {
360          return cast<ConstantInt>(LHS[idx])->getZExtValue() <
361                 cast<ConstantInt>(RHS[idx])->getZExtValue();
362        }
363      }
364
365      // Return less than if we ran out of stuff in LHS and we didn't run out of
366      // stuff in RHS.
367      return idx == LHS.size() && idx != RHS.size();
368    }
369  };
370}
371
372
373/// DoPromotion - This method actually performs the promotion of the specified
374/// arguments, and returns the new function.  At this point, we know that it's
375/// safe to do so.
376Function *ArgPromotion::DoPromotion(Function *F,
377                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
378                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
379
380  // Start by computing a new prototype for the function, which is the same as
381  // the old function, but has modified arguments.
382  const FunctionType *FTy = F->getFunctionType();
383  std::vector<const Type*> Params;
384
385  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
386
387  // ScalarizedElements - If we are promoting a pointer that has elements
388  // accessed out of it, keep track of which elements are accessed so that we
389  // can add one argument for each.
390  //
391  // Arguments that are directly loaded will have a zero element value here, to
392  // handle cases where there are both a direct load and GEP accesses.
393  //
394  std::map<Argument*, ScalarizeTable> ScalarizedElements;
395
396  // OriginalLoads - Keep track of a representative load instruction from the
397  // original function so that we can tell the alias analysis implementation
398  // what the new GEP/Load instructions we are inserting look like.
399  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
400
401  // ParamAttrs - Keep track of the parameter attributes for the arguments
402  // that we are *not* promoting. For the ones that we do promote, the parameter
403  // attributes are lost
404  ParamAttrsVector ParamAttrsVec;
405  const ParamAttrsList *PAL = F->getParamAttrs();
406
407  unsigned index = 1;
408  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
409       ++I, ++index) {
410    if (ByValArgsToTransform.count(I)) {
411      // Just add all the struct element types.
412      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
413      const StructType *STy = cast<StructType>(AgTy);
414      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
415        Params.push_back(STy->getElementType(i));
416      ++NumByValArgsPromoted;
417    } else if (!ArgsToPromote.count(I)) {
418      Params.push_back(I->getType());
419      if (unsigned attrs = PAL ? PAL->getParamAttrs(index) : 0)
420        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), attrs));
421    } else if (I->use_empty()) {
422      ++NumArgumentsDead;
423    } else {
424      // Okay, this is being promoted.  Check to see if there are any GEP uses
425      // of the argument.
426      ScalarizeTable &ArgIndices = ScalarizedElements[I];
427      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
428           ++UI) {
429        Instruction *User = cast<Instruction>(*UI);
430        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
431        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
432        ArgIndices.insert(Indices);
433        LoadInst *OrigLoad;
434        if (LoadInst *L = dyn_cast<LoadInst>(User))
435          OrigLoad = L;
436        else
437          OrigLoad = cast<LoadInst>(User->use_back());
438        OriginalLoads[Indices] = OrigLoad;
439      }
440
441      // Add a parameter to the function for each element passed in.
442      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
443             E = ArgIndices.end(); SI != E; ++SI)
444        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
445                                                           SI->begin(),
446                                                           SI->end()));
447
448      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
449        ++NumArgumentsPromoted;
450      else
451        ++NumAggregatesPromoted;
452    }
453  }
454
455  const Type *RetTy = FTy->getReturnType();
456
457  // Recompute the parameter attributes list based on the new arguments for
458  // the function.
459  PAL = ParamAttrsList::get(ParamAttrsVec);
460
461  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
462  // have zero fixed arguments.
463  bool ExtraArgHack = false;
464  if (Params.empty() && FTy->isVarArg()) {
465    ExtraArgHack = true;
466    Params.push_back(Type::Int32Ty);
467  }
468
469  // Construct the new function type using the new arguments.
470  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
471
472  // Create the new function body and insert it into the module...
473  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
474  NF->setCallingConv(F->getCallingConv());
475  NF->setParamAttrs(PAL);
476  if (F->hasCollector())
477    NF->setCollector(F->getCollector());
478  F->getParent()->getFunctionList().insert(F, NF);
479
480  // Get the alias analysis information that we need to update to reflect our
481  // changes.
482  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
483
484  // Loop over all of the callers of the function, transforming the call sites
485  // to pass in the loaded pointers.
486  //
487  std::vector<Value*> Args;
488  while (!F->use_empty()) {
489    CallSite CS = CallSite::get(F->use_back());
490    Instruction *Call = CS.getInstruction();
491
492    // Loop over the operands, inserting GEP and loads in the caller as
493    // appropriate.
494    CallSite::arg_iterator AI = CS.arg_begin();
495    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
496         I != E; ++I, ++AI)
497      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
498        Args.push_back(*AI);          // Unmodified argument
499      } else if (ByValArgsToTransform.count(I)) {
500        // Emit a GEP and load for each element of the struct.
501        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
502        const StructType *STy = cast<StructType>(AgTy);
503        Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
504        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
505          Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
506          Value *Idx = new GetElementPtrInst(*AI, Idxs, Idxs+2,
507                                             (*AI)->getName()+"."+utostr(i),
508                                             Call);
509          // TODO: Tell AA about the new values?
510          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
511        }
512      } else if (!I->use_empty()) {
513        // Non-dead argument: insert GEPs and loads as appropriate.
514        ScalarizeTable &ArgIndices = ScalarizedElements[I];
515        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
516               E = ArgIndices.end(); SI != E; ++SI) {
517          Value *V = *AI;
518          LoadInst *OrigLoad = OriginalLoads[*SI];
519          if (!SI->empty()) {
520            V = new GetElementPtrInst(V, SI->begin(), SI->end(),
521                                      V->getName()+".idx", Call);
522            AA.copyValue(OrigLoad->getOperand(0), V);
523          }
524          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
525          AA.copyValue(OrigLoad, Args.back());
526        }
527      }
528
529    if (ExtraArgHack)
530      Args.push_back(Constant::getNullValue(Type::Int32Ty));
531
532    // Push any varargs arguments on the list
533    for (; AI != CS.arg_end(); ++AI)
534      Args.push_back(*AI);
535
536    Instruction *New;
537    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
538      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
539                           Args.begin(), Args.end(), "", Call);
540      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
541      cast<InvokeInst>(New)->setParamAttrs(PAL);
542    } else {
543      New = new CallInst(NF, Args.begin(), Args.end(), "", Call);
544      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
545      cast<CallInst>(New)->setParamAttrs(PAL);
546      if (cast<CallInst>(Call)->isTailCall())
547        cast<CallInst>(New)->setTailCall();
548    }
549    Args.clear();
550
551    // Update the alias analysis implementation to know that we are replacing
552    // the old call with a new one.
553    AA.replaceWithNewValue(Call, New);
554
555    if (!Call->use_empty()) {
556      Call->replaceAllUsesWith(New);
557      New->takeName(Call);
558    }
559
560    // Finally, remove the old call from the program, reducing the use-count of
561    // F.
562    Call->eraseFromParent();
563  }
564
565  // Since we have now created the new function, splice the body of the old
566  // function right into the new function, leaving the old rotting hulk of the
567  // function empty.
568  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
569
570  // Loop over the argument list, transfering uses of the old arguments over to
571  // the new arguments, also transfering over the names as well.
572  //
573  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
574       I2 = NF->arg_begin(); I != E; ++I) {
575    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
576      // If this is an unmodified argument, move the name and users over to the
577      // new version.
578      I->replaceAllUsesWith(I2);
579      I2->takeName(I);
580      AA.replaceWithNewValue(I, I2);
581      ++I2;
582      continue;
583    }
584
585    if (ByValArgsToTransform.count(I)) {
586      // In the callee, we create an alloca, and store each of the new incoming
587      // arguments into the alloca.
588      Instruction *InsertPt = NF->begin()->begin();
589
590      // Just add all the struct element types.
591      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
592      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
593      const StructType *STy = cast<StructType>(AgTy);
594      Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
595
596      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
597        Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
598        Value *Idx = new GetElementPtrInst(TheAlloca, Idxs, Idxs+2,
599                                           TheAlloca->getName()+"."+utostr(i),
600                                           InsertPt);
601        I2->setName(I->getName()+"."+utostr(i));
602        new StoreInst(I2++, Idx, InsertPt);
603      }
604
605      // Anything that used the arg should now use the alloca.
606      I->replaceAllUsesWith(TheAlloca);
607      TheAlloca->takeName(I);
608      AA.replaceWithNewValue(I, TheAlloca);
609      continue;
610    }
611
612    if (I->use_empty()) {
613      AA.deleteValue(I);
614      continue;
615    }
616
617    // Otherwise, if we promoted this argument, then all users are load
618    // instructions, and all loads should be using the new argument that we
619    // added.
620    ScalarizeTable &ArgIndices = ScalarizedElements[I];
621
622    while (!I->use_empty()) {
623      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
624        assert(ArgIndices.begin()->empty() &&
625               "Load element should sort to front!");
626        I2->setName(I->getName()+".val");
627        LI->replaceAllUsesWith(I2);
628        AA.replaceWithNewValue(LI, I2);
629        LI->eraseFromParent();
630        DOUT << "*** Promoted load of argument '" << I->getName()
631             << "' in function '" << F->getName() << "'\n";
632      } else {
633        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
634        std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
635
636        Function::arg_iterator TheArg = I2;
637        for (ScalarizeTable::iterator It = ArgIndices.begin();
638             *It != Operands; ++It, ++TheArg) {
639          assert(It != ArgIndices.end() && "GEP not handled??");
640        }
641
642        std::string NewName = I->getName();
643        for (unsigned i = 0, e = Operands.size(); i != e; ++i)
644          if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
645            NewName += "." + CI->getValue().toStringUnsigned(10);
646          else
647            NewName += ".x";
648        TheArg->setName(NewName+".val");
649
650        DOUT << "*** Promoted agg argument '" << TheArg->getName()
651             << "' of function '" << F->getName() << "'\n";
652
653        // All of the uses must be load instructions.  Replace them all with
654        // the argument specified by ArgNo.
655        while (!GEP->use_empty()) {
656          LoadInst *L = cast<LoadInst>(GEP->use_back());
657          L->replaceAllUsesWith(TheArg);
658          AA.replaceWithNewValue(L, TheArg);
659          L->eraseFromParent();
660        }
661        AA.deleteValue(GEP);
662        GEP->eraseFromParent();
663      }
664    }
665
666    // Increment I2 past all of the arguments added for this promoted pointer.
667    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
668      ++I2;
669  }
670
671  // Notify the alias analysis implementation that we inserted a new argument.
672  if (ExtraArgHack)
673    AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
674
675
676  // Tell the alias analysis that the old function is about to disappear.
677  AA.replaceWithNewValue(F, NF);
678
679  // Now that the old function is dead, delete it.
680  F->eraseFromParent();
681  return NF;
682}
683