ArgumentPromotion.cpp revision f5afcabff887c2e9023f0c69c44f1de15b5c4347
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If we can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then we can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// we refuse to scalarize aggregates which would require passing in more than
21// three operands to the function, because we don't want to pass thousands of
22// operands for a large array or structure!
23//
24// Note that this transformation could also be done for arguments that are only
25// stored to (returning the value instead), but we do not currently handle that
26// case.  This case would be best handled when and if we start supporting
27// multiple return values from functions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "argpromotion"
32#include "llvm/Transforms/IPO.h"
33#include "llvm/Constants.h"
34#include "llvm/DerivedTypes.h"
35#include "llvm/Module.h"
36#include "llvm/CallGraphSCCPass.h"
37#include "llvm/Instructions.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/CallGraph.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/CFG.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/ADT/DepthFirstIterator.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include <set>
48using namespace llvm;
49
50namespace {
51  Statistic<> NumArgumentsPromoted("argpromotion",
52                                   "Number of pointer arguments promoted");
53  Statistic<> NumAggregatesPromoted("argpromotion",
54                                    "Number of aggregate arguments promoted");
55  Statistic<> NumArgumentsDead("argpromotion",
56                               "Number of dead pointer args eliminated");
57
58  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
59  ///
60  struct ArgPromotion : public CallGraphSCCPass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<AliasAnalysis>();
63      AU.addRequired<TargetData>();
64      CallGraphSCCPass::getAnalysisUsage(AU);
65    }
66
67    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
68  private:
69    bool PromoteArguments(CallGraphNode *CGN);
70    bool isSafeToPromoteArgument(Argument *Arg) const;
71    Function *DoPromotion(Function *F, std::vector<Argument*> &ArgsToPromote);
72  };
73
74  RegisterOpt<ArgPromotion> X("argpromotion",
75                              "Promote 'by reference' arguments to scalars");
76}
77
78Pass *llvm::createArgumentPromotionPass() {
79  return new ArgPromotion();
80}
81
82bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
83  bool Changed = false, LocalChange;
84
85  do {  // Iterate until we stop promoting from this SCC.
86    LocalChange = false;
87    // Attempt to promote arguments from all functions in this SCC.
88    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
89      LocalChange |= PromoteArguments(SCC[i]);
90    Changed |= LocalChange;               // Remember that we changed something.
91  } while (LocalChange);
92
93  return Changed;
94}
95
96/// PromoteArguments - This method checks the specified function to see if there
97/// are any promotable arguments and if it is safe to promote the function (for
98/// example, all callers are direct).  If safe to promote some arguments, it
99/// calls the DoPromotion method.
100///
101bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
102  Function *F = CGN->getFunction();
103
104  // Make sure that it is local to this module.
105  if (!F || !F->hasInternalLinkage()) return false;
106
107  // First check: see if there are any pointer arguments!  If not, quick exit.
108  std::vector<Argument*> PointerArgs;
109  for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
110    if (isa<PointerType>(I->getType()))
111      PointerArgs.push_back(I);
112  if (PointerArgs.empty()) return false;
113
114  // Second check: make sure that all callers are direct callers.  We can't
115  // transform functions that have indirect callers.
116  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
117       UI != E; ++UI) {
118    CallSite CS = CallSite::get(*UI);
119    if (!CS.getInstruction())       // "Taking the address" of the function
120      return false;
121
122    // Ensure that this call site is CALLING the function, not passing it as
123    // an argument.
124    for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
125         AI != E; ++AI)
126      if (*AI == F) return false;   // Passing the function address in!
127  }
128
129  // Check to see which arguments are promotable.  If an argument is not
130  // promotable, remove it from the PointerArgs vector.
131  for (unsigned i = 0; i != PointerArgs.size(); ++i)
132    if (!isSafeToPromoteArgument(PointerArgs[i])) {
133      std::swap(PointerArgs[i--], PointerArgs.back());
134      PointerArgs.pop_back();
135    }
136
137  // No promotable pointer arguments.
138  if (PointerArgs.empty()) return false;
139
140  // Okay, promote all of the arguments are rewrite the callees!
141  Function *NewF = DoPromotion(F, PointerArgs);
142
143  // Update the call graph to know that the old function is gone.
144  getAnalysis<CallGraph>().changeFunction(F, NewF);
145  return true;
146}
147
148
149/// isSafeToPromoteArgument - As you might guess from the name of this method,
150/// it checks to see if it is both safe and useful to promote the argument.
151/// This method limits promotion of aggregates to only promote up to three
152/// elements of the aggregate in order to avoid exploding the number of
153/// arguments passed in.
154bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const {
155  // We can only promote this argument if all of the uses are loads, or are GEP
156  // instructions (with constant indices) that are subsequently loaded.
157  std::vector<LoadInst*> Loads;
158  std::vector<std::vector<ConstantInt*> > GEPIndices;
159  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
160       UI != E; ++UI)
161    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
162      if (LI->isVolatile()) return false;  // Don't hack volatile loads
163      Loads.push_back(LI);
164    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
165      if (GEP->use_empty()) {
166        // Dead GEP's cause trouble later.  Just remove them if we run into
167        // them.
168        getAnalysis<AliasAnalysis>().deleteValue(GEP);
169        GEP->getParent()->getInstList().erase(GEP);
170        return isSafeToPromoteArgument(Arg);
171      }
172      // Ensure that all of the indices are constants.
173      std::vector<ConstantInt*> Operands;
174      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
175        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
176          Operands.push_back(C);
177        else
178          return false;  // Not a constant operand GEP!
179
180      // Ensure that the only users of the GEP are load instructions.
181      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
182           UI != E; ++UI)
183        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
184          if (LI->isVolatile()) return false;  // Don't hack volatile loads
185          Loads.push_back(LI);
186        } else {
187          return false;
188        }
189
190      // See if there is already a GEP with these indices.  If not, check to
191      // make sure that we aren't promoting too many elements.  If so, nothing
192      // to do.
193      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
194          GEPIndices.end()) {
195        if (GEPIndices.size() == 3) {
196          DEBUG(std::cerr << "argpromotion disable promoting argument '"
197                << Arg->getName() << "' because it would require adding more "
198                << "than 3 arguments to the function.\n");
199          // We limit aggregate promotion to only promoting up to three elements
200          // of the aggregate.
201          return false;
202        }
203        GEPIndices.push_back(Operands);
204      }
205    } else {
206      return false;  // Not a load or a GEP.
207    }
208
209  if (Loads.empty()) return true;  // No users, this is a dead argument.
210
211  // Okay, now we know that the argument is only used by load instructions.  Use
212  // alias analysis to check to see if the pointer is guaranteed to not be
213  // modified from entry of the function to each of the load instructions.
214  Function &F = *Arg->getParent();
215
216  // Because there could be several/many load instructions, remember which
217  // blocks we know to be transparent to the load.
218  std::set<BasicBlock*> TranspBlocks;
219
220  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
221  TargetData &TD = getAnalysis<TargetData>();
222
223  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
224    // Check to see if the load is invalidated from the start of the block to
225    // the load itself.
226    LoadInst *Load = Loads[i];
227    BasicBlock *BB = Load->getParent();
228
229    const PointerType *LoadTy =
230      cast<PointerType>(Load->getOperand(0)->getType());
231    unsigned LoadSize = TD.getTypeSize(LoadTy->getElementType());
232
233    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
234      return false;  // Pointer is invalidated!
235
236    // Now check every path from the entry block to the load for transparency.
237    // To do this, we perform a depth first search on the inverse CFG from the
238    // loading block.
239    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
240      for (idf_ext_iterator<BasicBlock*> I = idf_ext_begin(*PI, TranspBlocks),
241             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
242        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
243          return false;
244  }
245
246  // If the path from the entry of the function to each load is free of
247  // instructions that potentially invalidate the load, we can make the
248  // transformation!
249  return true;
250}
251
252namespace {
253  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
254  /// elements are instances of ConstantInt.
255  ///
256  struct GEPIdxComparator {
257    bool operator()(const std::vector<Value*> &LHS,
258                    const std::vector<Value*> &RHS) const {
259      unsigned idx = 0;
260      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
261        if (LHS[idx] != RHS[idx]) {
262          return cast<ConstantInt>(LHS[idx])->getRawValue() <
263                 cast<ConstantInt>(RHS[idx])->getRawValue();
264        }
265      }
266
267      // Return less than if we ran out of stuff in LHS and we didn't run out of
268      // stuff in RHS.
269      return idx == LHS.size() && idx != RHS.size();
270    }
271  };
272}
273
274
275/// DoPromotion - This method actually performs the promotion of the specified
276/// arguments, and returns the new function.  At this point, we know that it's
277/// safe to do so.
278Function *ArgPromotion::DoPromotion(Function *F,
279                                    std::vector<Argument*> &Args2Prom) {
280  std::set<Argument*> ArgsToPromote(Args2Prom.begin(), Args2Prom.end());
281
282  // Start by computing a new prototype for the function, which is the same as
283  // the old function, but has modified arguments.
284  const FunctionType *FTy = F->getFunctionType();
285  std::vector<const Type*> Params;
286
287  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
288
289  // ScalarizedElements - If we are promoting a pointer that has elements
290  // accessed out of it, keep track of which elements are accessed so that we
291  // can add one argument for each.
292  //
293  // Arguments that are directly loaded will have a zero element value here, to
294  // handle cases where there are both a direct load and GEP accesses.
295  //
296  std::map<Argument*, ScalarizeTable> ScalarizedElements;
297
298  // OriginalLoads - Keep track of a representative load instruction from the
299  // original function so that we can tell the alias analysis implementation
300  // what the new GEP/Load instructions we are inserting look like.
301  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
302
303  for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
304    if (!ArgsToPromote.count(I)) {
305      Params.push_back(I->getType());
306    } else if (I->use_empty()) {
307      ++NumArgumentsDead;
308    } else {
309      // Okay, this is being promoted.  Check to see if there are any GEP uses
310      // of the argument.
311      ScalarizeTable &ArgIndices = ScalarizedElements[I];
312      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
313           ++UI) {
314        Instruction *User = cast<Instruction>(*UI);
315        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
316        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
317        ArgIndices.insert(Indices);
318        LoadInst *OrigLoad;
319        if (LoadInst *L = dyn_cast<LoadInst>(User))
320          OrigLoad = L;
321        else
322          OrigLoad = cast<LoadInst>(User->use_back());
323        OriginalLoads[Indices] = OrigLoad;
324      }
325
326      // Add a parameter to the function for each element passed in.
327      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
328             E = ArgIndices.end(); SI != E; ++SI)
329        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
330
331      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
332        ++NumArgumentsPromoted;
333      else
334        ++NumAggregatesPromoted;
335    }
336
337  const Type *RetTy = FTy->getReturnType();
338
339  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
340  // have zero fixed arguments.
341  bool ExtraArgHack = false;
342  if (Params.empty() && FTy->isVarArg()) {
343    ExtraArgHack = true;
344    Params.push_back(Type::IntTy);
345  }
346  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
347
348   // Create the new function body and insert it into the module...
349  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
350  F->getParent()->getFunctionList().insert(F, NF);
351
352  // Get the alias analysis information that we need to update to reflect our
353  // changes.
354  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
355
356  // Loop over all of the callers of the function, transforming the call sites
357  // to pass in the loaded pointers.
358  //
359  std::vector<Value*> Args;
360  while (!F->use_empty()) {
361    CallSite CS = CallSite::get(F->use_back());
362    Instruction *Call = CS.getInstruction();
363
364    // Loop over the operands, inserting GEP and loads in the caller as
365    // appropriate.
366    CallSite::arg_iterator AI = CS.arg_begin();
367    for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++AI)
368      if (!ArgsToPromote.count(I))
369        Args.push_back(*AI);          // Unmodified argument
370      else if (!I->use_empty()) {
371        // Non-dead argument: insert GEPs and loads as appropriate.
372        ScalarizeTable &ArgIndices = ScalarizedElements[I];
373        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
374               E = ArgIndices.end(); SI != E; ++SI) {
375          Value *V = *AI;
376          LoadInst *OrigLoad = OriginalLoads[*SI];
377          if (!SI->empty()) {
378            V = new GetElementPtrInst(V, *SI, V->getName()+".idx", Call);
379            AA.copyValue(OrigLoad->getOperand(0), V);
380          }
381          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
382          AA.copyValue(OrigLoad, Args.back());
383        }
384      }
385
386    if (ExtraArgHack)
387      Args.push_back(Constant::getNullValue(Type::IntTy));
388
389    // Push any varargs arguments on the list
390    for (; AI != CS.arg_end(); ++AI)
391      Args.push_back(*AI);
392
393    Instruction *New;
394    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
395      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
396                           Args, "", Call);
397    } else {
398      New = new CallInst(NF, Args, "", Call);
399    }
400    Args.clear();
401
402    // Update the alias analysis implementation to know that we are replacing
403    // the old call with a new one.
404    AA.replaceWithNewValue(Call, New);
405
406    if (!Call->use_empty()) {
407      Call->replaceAllUsesWith(New);
408      std::string Name = Call->getName();
409      Call->setName("");
410      New->setName(Name);
411    }
412
413    // Finally, remove the old call from the program, reducing the use-count of
414    // F.
415    Call->getParent()->getInstList().erase(Call);
416  }
417
418  // Since we have now created the new function, splice the body of the old
419  // function right into the new function, leaving the old rotting hulk of the
420  // function empty.
421  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
422
423  // Loop over the argument list, transfering uses of the old arguments over to
424  // the new arguments, also transfering over the names as well.
425  //
426  for (Function::aiterator I = F->abegin(), E = F->aend(), I2 = NF->abegin();
427       I != E; ++I)
428    if (!ArgsToPromote.count(I)) {
429      // If this is an unmodified argument, move the name and users over to the
430      // new version.
431      I->replaceAllUsesWith(I2);
432      I2->setName(I->getName());
433      AA.replaceWithNewValue(I, I2);
434      ++I2;
435    } else if (I->use_empty()) {
436      AA.deleteValue(I);
437    } else {
438      // Otherwise, if we promoted this argument, then all users are load
439      // instructions, and all loads should be using the new argument that we
440      // added.
441      ScalarizeTable &ArgIndices = ScalarizedElements[I];
442
443      while (!I->use_empty()) {
444        if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
445          assert(ArgIndices.begin()->empty() &&
446                 "Load element should sort to front!");
447          I2->setName(I->getName()+".val");
448          LI->replaceAllUsesWith(I2);
449          AA.replaceWithNewValue(LI, I2);
450          LI->getParent()->getInstList().erase(LI);
451          DEBUG(std::cerr << "*** Promoted load of argument '" << I->getName()
452                          << "' in function '" << F->getName() << "'\n");
453        } else {
454          GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
455          std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
456
457          unsigned ArgNo = 0;
458          Function::aiterator TheArg = I2;
459          for (ScalarizeTable::iterator It = ArgIndices.begin();
460               *It != Operands; ++It, ++TheArg) {
461            assert(It != ArgIndices.end() && "GEP not handled??");
462          }
463
464          std::string NewName = I->getName();
465          for (unsigned i = 0, e = Operands.size(); i != e; ++i)
466            if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
467              NewName += "."+itostr((int64_t)CI->getRawValue());
468            else
469              NewName += ".x";
470          TheArg->setName(NewName+".val");
471
472          DEBUG(std::cerr << "*** Promoted agg argument '" << TheArg->getName()
473                          << "' of function '" << F->getName() << "'\n");
474
475          // All of the uses must be load instructions.  Replace them all with
476          // the argument specified by ArgNo.
477          while (!GEP->use_empty()) {
478            LoadInst *L = cast<LoadInst>(GEP->use_back());
479            L->replaceAllUsesWith(TheArg);
480            AA.replaceWithNewValue(L, TheArg);
481            L->getParent()->getInstList().erase(L);
482          }
483          AA.deleteValue(GEP);
484          GEP->getParent()->getInstList().erase(GEP);
485        }
486      }
487
488      // Increment I2 past all of the arguments added for this promoted pointer.
489      for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
490        ++I2;
491    }
492
493  // Notify the alias analysis implementation that we inserted a new argument.
494  if (ExtraArgHack)
495    AA.copyValue(Constant::getNullValue(Type::IntTy), NF->abegin());
496
497
498  // Tell the alias analysis that the old function is about to disappear.
499  AA.replaceWithNewValue(F, NF);
500
501  // Now that the old function is dead, delete it.
502  F->getParent()->getFunctionList().erase(F);
503  return NF;
504}
505