1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/IPO.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/IR/CallSite.h"
26#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/Constant.h"
28#include "llvm/IR/DIBuilder.h"
29#include "llvm/IR/DebugInfo.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/raw_ostream.h"
38#include <map>
39#include <set>
40#include <tuple>
41using namespace llvm;
42
43#define DEBUG_TYPE "deadargelim"
44
45STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
46STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
47STATISTIC(NumArgumentsReplacedWithUndef,
48          "Number of unread args replaced with undef");
49namespace {
50  /// DAE - The dead argument elimination pass.
51  ///
52  class DAE : public ModulePass {
53  public:
54
55    /// Struct that represents (part of) either a return value or a function
56    /// argument.  Used so that arguments and return values can be used
57    /// interchangeably.
58    struct RetOrArg {
59      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
60               IsArg(IsArg) {}
61      const Function *F;
62      unsigned Idx;
63      bool IsArg;
64
65      /// Make RetOrArg comparable, so we can put it into a map.
66      bool operator<(const RetOrArg &O) const {
67        return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
68      }
69
70      /// Make RetOrArg comparable, so we can easily iterate the multimap.
71      bool operator==(const RetOrArg &O) const {
72        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73      }
74
75      std::string getDescription() const {
76        return std::string((IsArg ? "Argument #" : "Return value #"))
77               + utostr(Idx) + " of function " + F->getName().str();
78      }
79    };
80
81    /// Liveness enum - During our initial pass over the program, we determine
82    /// that things are either alive or maybe alive. We don't mark anything
83    /// explicitly dead (even if we know they are), since anything not alive
84    /// with no registered uses (in Uses) will never be marked alive and will
85    /// thus become dead in the end.
86    enum Liveness { Live, MaybeLive };
87
88    /// Convenience wrapper
89    RetOrArg CreateRet(const Function *F, unsigned Idx) {
90      return RetOrArg(F, Idx, false);
91    }
92    /// Convenience wrapper
93    RetOrArg CreateArg(const Function *F, unsigned Idx) {
94      return RetOrArg(F, Idx, true);
95    }
96
97    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98    /// This maps a return value or argument to any MaybeLive return values or
99    /// arguments it uses. This allows the MaybeLive values to be marked live
100    /// when any of its users is marked live.
101    /// For example (indices are left out for clarity):
102    ///  - Uses[ret F] = ret G
103    ///    This means that F calls G, and F returns the value returned by G.
104    ///  - Uses[arg F] = ret G
105    ///    This means that some function calls G and passes its result as an
106    ///    argument to F.
107    ///  - Uses[ret F] = arg F
108    ///    This means that F returns one of its own arguments.
109    ///  - Uses[arg F] = arg G
110    ///    This means that G calls F and passes one of its own (G's) arguments
111    ///    directly to F.
112    UseMap Uses;
113
114    typedef std::set<RetOrArg> LiveSet;
115    typedef std::set<const Function*> LiveFuncSet;
116
117    /// This set contains all values that have been determined to be live.
118    LiveSet LiveValues;
119    /// This set contains all values that are cannot be changed in any way.
120    LiveFuncSet LiveFunctions;
121
122    typedef SmallVector<RetOrArg, 5> UseVector;
123
124    // Map each LLVM function to corresponding metadata with debug info. If
125    // the function is replaced with another one, we should patch the pointer
126    // to LLVM function in metadata.
127    // As the code generation for module is finished (and DIBuilder is
128    // finalized) we assume that subprogram descriptors won't be changed, and
129    // they are stored in map for short duration anyway.
130    DenseMap<const Function *, DISubprogram> FunctionDIs;
131
132  protected:
133    // DAH uses this to specify a different ID.
134    explicit DAE(char &ID) : ModulePass(ID) {}
135
136  public:
137    static char ID; // Pass identification, replacement for typeid
138    DAE() : ModulePass(ID) {
139      initializeDAEPass(*PassRegistry::getPassRegistry());
140    }
141
142    bool runOnModule(Module &M) override;
143
144    virtual bool ShouldHackArguments() const { return false; }
145
146  private:
147    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
148    Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
149                       unsigned RetValNum = 0);
150    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
151
152    void SurveyFunction(const Function &F);
153    void MarkValue(const RetOrArg &RA, Liveness L,
154                   const UseVector &MaybeLiveUses);
155    void MarkLive(const RetOrArg &RA);
156    void MarkLive(const Function &F);
157    void PropagateLiveness(const RetOrArg &RA);
158    bool RemoveDeadStuffFromFunction(Function *F);
159    bool DeleteDeadVarargs(Function &Fn);
160    bool RemoveDeadArgumentsFromCallers(Function &Fn);
161  };
162}
163
164
165char DAE::ID = 0;
166INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
167
168namespace {
169  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
170  /// deletes arguments to functions which are external.  This is only for use
171  /// by bugpoint.
172  struct DAH : public DAE {
173    static char ID;
174    DAH() : DAE(ID) {}
175
176    bool ShouldHackArguments() const override { return true; }
177  };
178}
179
180char DAH::ID = 0;
181INITIALIZE_PASS(DAH, "deadarghaX0r",
182                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
183                false, false)
184
185/// createDeadArgEliminationPass - This pass removes arguments from functions
186/// which are not used by the body of the function.
187///
188ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
189ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
190
191/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
192/// llvm.vastart is never called, the varargs list is dead for the function.
193bool DAE::DeleteDeadVarargs(Function &Fn) {
194  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
195  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
196
197  // Ensure that the function is only directly called.
198  if (Fn.hasAddressTaken())
199    return false;
200
201  // Okay, we know we can transform this function if safe.  Scan its body
202  // looking for calls to llvm.vastart.
203  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
204    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
205      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
206        if (II->getIntrinsicID() == Intrinsic::vastart)
207          return false;
208      }
209    }
210  }
211
212  // If we get here, there are no calls to llvm.vastart in the function body,
213  // remove the "..." and adjust all the calls.
214
215  // Start by computing a new prototype for the function, which is the same as
216  // the old function, but doesn't have isVarArg set.
217  FunctionType *FTy = Fn.getFunctionType();
218
219  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
220  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
221                                                Params, false);
222  unsigned NumArgs = Params.size();
223
224  // Create the new function body and insert it into the module...
225  Function *NF = Function::Create(NFTy, Fn.getLinkage());
226  NF->copyAttributesFrom(&Fn);
227  Fn.getParent()->getFunctionList().insert(&Fn, NF);
228  NF->takeName(&Fn);
229
230  // Loop over all of the callers of the function, transforming the call sites
231  // to pass in a smaller number of arguments into the new function.
232  //
233  std::vector<Value*> Args;
234  for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
235    CallSite CS(*I++);
236    if (!CS)
237      continue;
238    Instruction *Call = CS.getInstruction();
239
240    // Pass all the same arguments.
241    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
242
243    // Drop any attributes that were on the vararg arguments.
244    AttributeSet PAL = CS.getAttributes();
245    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
246      SmallVector<AttributeSet, 8> AttributesVec;
247      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
248        AttributesVec.push_back(PAL.getSlotAttributes(i));
249      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
250        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
251                                                  PAL.getFnAttributes()));
252      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
253    }
254
255    Instruction *New;
256    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
257      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
258                               Args, "", Call);
259      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
260      cast<InvokeInst>(New)->setAttributes(PAL);
261    } else {
262      New = CallInst::Create(NF, Args, "", Call);
263      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
264      cast<CallInst>(New)->setAttributes(PAL);
265      if (cast<CallInst>(Call)->isTailCall())
266        cast<CallInst>(New)->setTailCall();
267    }
268    New->setDebugLoc(Call->getDebugLoc());
269
270    Args.clear();
271
272    if (!Call->use_empty())
273      Call->replaceAllUsesWith(New);
274
275    New->takeName(Call);
276
277    // Finally, remove the old call from the program, reducing the use-count of
278    // F.
279    Call->eraseFromParent();
280  }
281
282  // Since we have now created the new function, splice the body of the old
283  // function right into the new function, leaving the old rotting hulk of the
284  // function empty.
285  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
286
287  // Loop over the argument list, transferring uses of the old arguments over to
288  // the new arguments, also transferring over the names as well.  While we're at
289  // it, remove the dead arguments from the DeadArguments list.
290  //
291  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
292       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
293    // Move the name and users over to the new version.
294    I->replaceAllUsesWith(I2);
295    I2->takeName(I);
296  }
297
298  // Patch the pointer to LLVM function in debug info descriptor.
299  auto DI = FunctionDIs.find(&Fn);
300  if (DI != FunctionDIs.end())
301    DI->second.replaceFunction(NF);
302
303  // Fix up any BlockAddresses that refer to the function.
304  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
305  // Delete the bitcast that we just created, so that NF does not
306  // appear to be address-taken.
307  NF->removeDeadConstantUsers();
308  // Finally, nuke the old function.
309  Fn.eraseFromParent();
310  return true;
311}
312
313/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
314/// arguments that are unused, and changes the caller parameters to be undefined
315/// instead.
316bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
317{
318  if (Fn.isDeclaration() || Fn.mayBeOverridden())
319    return false;
320
321  // Functions with local linkage should already have been handled, except the
322  // fragile (variadic) ones which we can improve here.
323  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
324    return false;
325
326  // If a function seen at compile time is not necessarily the one linked to
327  // the binary being built, it is illegal to change the actual arguments
328  // passed to it. These functions can be captured by isWeakForLinker().
329  // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
330  // doesn't include linkage types like AvailableExternallyLinkage and
331  // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
332  // *EQUIVALENT* globals that can be merged at link-time. However, the
333  // semantic of *EQUIVALENT*-functions includes parameters. Changing
334  // parameters breaks this assumption.
335  //
336  if (Fn.isWeakForLinker())
337    return false;
338
339  if (Fn.use_empty())
340    return false;
341
342  SmallVector<unsigned, 8> UnusedArgs;
343  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
344       I != E; ++I) {
345    Argument *Arg = I;
346
347    if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
348      UnusedArgs.push_back(Arg->getArgNo());
349  }
350
351  if (UnusedArgs.empty())
352    return false;
353
354  bool Changed = false;
355
356  for (Use &U : Fn.uses()) {
357    CallSite CS(U.getUser());
358    if (!CS || !CS.isCallee(&U))
359      continue;
360
361    // Now go through all unused args and replace them with "undef".
362    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
363      unsigned ArgNo = UnusedArgs[I];
364
365      Value *Arg = CS.getArgument(ArgNo);
366      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
367      ++NumArgumentsReplacedWithUndef;
368      Changed = true;
369    }
370  }
371
372  return Changed;
373}
374
375/// Convenience function that returns the number of return values. It returns 0
376/// for void functions and 1 for functions not returning a struct. It returns
377/// the number of struct elements for functions returning a struct.
378static unsigned NumRetVals(const Function *F) {
379  if (F->getReturnType()->isVoidTy())
380    return 0;
381  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
382    return STy->getNumElements();
383  else
384    return 1;
385}
386
387/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
388/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
389/// liveness of Use.
390DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
391  // We're live if our use or its Function is already marked as live.
392  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
393    return Live;
394
395  // We're maybe live otherwise, but remember that we must become live if
396  // Use becomes live.
397  MaybeLiveUses.push_back(Use);
398  return MaybeLive;
399}
400
401
402/// SurveyUse - This looks at a single use of an argument or return value
403/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
404/// if it causes the used value to become MaybeLive.
405///
406/// RetValNum is the return value number to use when this use is used in a
407/// return instruction. This is used in the recursion, you should always leave
408/// it at 0.
409DAE::Liveness DAE::SurveyUse(const Use *U,
410                             UseVector &MaybeLiveUses, unsigned RetValNum) {
411    const User *V = U->getUser();
412    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
413      // The value is returned from a function. It's only live when the
414      // function's return value is live. We use RetValNum here, for the case
415      // that U is really a use of an insertvalue instruction that uses the
416      // original Use.
417      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
418      // We might be live, depending on the liveness of Use.
419      return MarkIfNotLive(Use, MaybeLiveUses);
420    }
421    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
422      if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
423          && IV->hasIndices())
424        // The use we are examining is inserted into an aggregate. Our liveness
425        // depends on all uses of that aggregate, but if it is used as a return
426        // value, only index at which we were inserted counts.
427        RetValNum = *IV->idx_begin();
428
429      // Note that if we are used as the aggregate operand to the insertvalue,
430      // we don't change RetValNum, but do survey all our uses.
431
432      Liveness Result = MaybeLive;
433      for (const Use &UU : IV->uses()) {
434        Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
435        if (Result == Live)
436          break;
437      }
438      return Result;
439    }
440
441    if (ImmutableCallSite CS = V) {
442      const Function *F = CS.getCalledFunction();
443      if (F) {
444        // Used in a direct call.
445
446        // Find the argument number. We know for sure that this use is an
447        // argument, since if it was the function argument this would be an
448        // indirect call and the we know can't be looking at a value of the
449        // label type (for the invoke instruction).
450        unsigned ArgNo = CS.getArgumentNo(U);
451
452        if (ArgNo >= F->getFunctionType()->getNumParams())
453          // The value is passed in through a vararg! Must be live.
454          return Live;
455
456        assert(CS.getArgument(ArgNo)
457               == CS->getOperand(U->getOperandNo())
458               && "Argument is not where we expected it");
459
460        // Value passed to a normal call. It's only live when the corresponding
461        // argument to the called function turns out live.
462        RetOrArg Use = CreateArg(F, ArgNo);
463        return MarkIfNotLive(Use, MaybeLiveUses);
464      }
465    }
466    // Used in any other way? Value must be live.
467    return Live;
468}
469
470/// SurveyUses - This looks at all the uses of the given value
471/// Returns the Liveness deduced from the uses of this value.
472///
473/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
474/// the result is Live, MaybeLiveUses might be modified but its content should
475/// be ignored (since it might not be complete).
476DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
477  // Assume it's dead (which will only hold if there are no uses at all..).
478  Liveness Result = MaybeLive;
479  // Check each use.
480  for (const Use &U : V->uses()) {
481    Result = SurveyUse(&U, MaybeLiveUses);
482    if (Result == Live)
483      break;
484  }
485  return Result;
486}
487
488// SurveyFunction - This performs the initial survey of the specified function,
489// checking out whether or not it uses any of its incoming arguments or whether
490// any callers use the return value.  This fills in the LiveValues set and Uses
491// map.
492//
493// We consider arguments of non-internal functions to be intrinsically alive as
494// well as arguments to functions which have their "address taken".
495//
496void DAE::SurveyFunction(const Function &F) {
497  // Functions with inalloca parameters are expecting args in a particular
498  // register and memory layout.
499  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
500    MarkLive(F);
501    return;
502  }
503
504  unsigned RetCount = NumRetVals(&F);
505  // Assume all return values are dead
506  typedef SmallVector<Liveness, 5> RetVals;
507  RetVals RetValLiveness(RetCount, MaybeLive);
508
509  typedef SmallVector<UseVector, 5> RetUses;
510  // These vectors map each return value to the uses that make it MaybeLive, so
511  // we can add those to the Uses map if the return value really turns out to be
512  // MaybeLive. Initialized to a list of RetCount empty lists.
513  RetUses MaybeLiveRetUses(RetCount);
514
515  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
516    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
517      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
518          != F.getFunctionType()->getReturnType()) {
519        // We don't support old style multiple return values.
520        MarkLive(F);
521        return;
522      }
523
524  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
525    MarkLive(F);
526    return;
527  }
528
529  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
530  // Keep track of the number of live retvals, so we can skip checks once all
531  // of them turn out to be live.
532  unsigned NumLiveRetVals = 0;
533  Type *STy = dyn_cast<StructType>(F.getReturnType());
534  // Loop all uses of the function.
535  for (const Use &U : F.uses()) {
536    // If the function is PASSED IN as an argument, its address has been
537    // taken.
538    ImmutableCallSite CS(U.getUser());
539    if (!CS || !CS.isCallee(&U)) {
540      MarkLive(F);
541      return;
542    }
543
544    // If this use is anything other than a call site, the function is alive.
545    const Instruction *TheCall = CS.getInstruction();
546    if (!TheCall) {   // Not a direct call site?
547      MarkLive(F);
548      return;
549    }
550
551    // If we end up here, we are looking at a direct call to our function.
552
553    // Now, check how our return value(s) is/are used in this caller. Don't
554    // bother checking return values if all of them are live already.
555    if (NumLiveRetVals != RetCount) {
556      if (STy) {
557        // Check all uses of the return value.
558        for (const User *U : TheCall->users()) {
559          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U);
560          if (Ext && Ext->hasIndices()) {
561            // This use uses a part of our return value, survey the uses of
562            // that part and store the results for this index only.
563            unsigned Idx = *Ext->idx_begin();
564            if (RetValLiveness[Idx] != Live) {
565              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
566              if (RetValLiveness[Idx] == Live)
567                NumLiveRetVals++;
568            }
569          } else {
570            // Used by something else than extractvalue. Mark all return
571            // values as live.
572            for (unsigned i = 0; i != RetCount; ++i )
573              RetValLiveness[i] = Live;
574            NumLiveRetVals = RetCount;
575            break;
576          }
577        }
578      } else {
579        // Single return value
580        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
581        if (RetValLiveness[0] == Live)
582          NumLiveRetVals = RetCount;
583      }
584    }
585  }
586
587  // Now we've inspected all callers, record the liveness of our return values.
588  for (unsigned i = 0; i != RetCount; ++i)
589    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
590
591  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
592
593  // Now, check all of our arguments.
594  unsigned i = 0;
595  UseVector MaybeLiveArgUses;
596  for (Function::const_arg_iterator AI = F.arg_begin(),
597       E = F.arg_end(); AI != E; ++AI, ++i) {
598    Liveness Result;
599    if (F.getFunctionType()->isVarArg()) {
600      // Variadic functions will already have a va_arg function expanded inside
601      // them, making them potentially very sensitive to ABI changes resulting
602      // from removing arguments entirely, so don't. For example AArch64 handles
603      // register and stack HFAs very differently, and this is reflected in the
604      // IR which has already been generated.
605      Result = Live;
606    } else {
607      // See what the effect of this use is (recording any uses that cause
608      // MaybeLive in MaybeLiveArgUses).
609      Result = SurveyUses(AI, MaybeLiveArgUses);
610    }
611
612    // Mark the result.
613    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
614    // Clear the vector again for the next iteration.
615    MaybeLiveArgUses.clear();
616  }
617}
618
619/// MarkValue - This function marks the liveness of RA depending on L. If L is
620/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
621/// such that RA will be marked live if any use in MaybeLiveUses gets marked
622/// live later on.
623void DAE::MarkValue(const RetOrArg &RA, Liveness L,
624                    const UseVector &MaybeLiveUses) {
625  switch (L) {
626    case Live: MarkLive(RA); break;
627    case MaybeLive:
628    {
629      // Note any uses of this value, so this return value can be
630      // marked live whenever one of the uses becomes live.
631      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
632           UE = MaybeLiveUses.end(); UI != UE; ++UI)
633        Uses.insert(std::make_pair(*UI, RA));
634      break;
635    }
636  }
637}
638
639/// MarkLive - Mark the given Function as alive, meaning that it cannot be
640/// changed in any way. Additionally,
641/// mark any values that are used as this function's parameters or by its return
642/// values (according to Uses) live as well.
643void DAE::MarkLive(const Function &F) {
644  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
645  // Mark the function as live.
646  LiveFunctions.insert(&F);
647  // Mark all arguments as live.
648  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
649    PropagateLiveness(CreateArg(&F, i));
650  // Mark all return values as live.
651  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
652    PropagateLiveness(CreateRet(&F, i));
653}
654
655/// MarkLive - Mark the given return value or argument as live. Additionally,
656/// mark any values that are used by this value (according to Uses) live as
657/// well.
658void DAE::MarkLive(const RetOrArg &RA) {
659  if (LiveFunctions.count(RA.F))
660    return; // Function was already marked Live.
661
662  if (!LiveValues.insert(RA).second)
663    return; // We were already marked Live.
664
665  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
666  PropagateLiveness(RA);
667}
668
669/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
670/// to any other values it uses (according to Uses).
671void DAE::PropagateLiveness(const RetOrArg &RA) {
672  // We don't use upper_bound (or equal_range) here, because our recursive call
673  // to ourselves is likely to cause the upper_bound (which is the first value
674  // not belonging to RA) to become erased and the iterator invalidated.
675  UseMap::iterator Begin = Uses.lower_bound(RA);
676  UseMap::iterator E = Uses.end();
677  UseMap::iterator I;
678  for (I = Begin; I != E && I->first == RA; ++I)
679    MarkLive(I->second);
680
681  // Erase RA from the Uses map (from the lower bound to wherever we ended up
682  // after the loop).
683  Uses.erase(Begin, I);
684}
685
686// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
687// that are not in LiveValues. Transform the function and all of the callees of
688// the function to not have these arguments and return values.
689//
690bool DAE::RemoveDeadStuffFromFunction(Function *F) {
691  // Don't modify fully live functions
692  if (LiveFunctions.count(F))
693    return false;
694
695  // Start by computing a new prototype for the function, which is the same as
696  // the old function, but has fewer arguments and a different return type.
697  FunctionType *FTy = F->getFunctionType();
698  std::vector<Type*> Params;
699
700  // Keep track of if we have a live 'returned' argument
701  bool HasLiveReturnedArg = false;
702
703  // Set up to build a new list of parameter attributes.
704  SmallVector<AttributeSet, 8> AttributesVec;
705  const AttributeSet &PAL = F->getAttributes();
706
707  // Remember which arguments are still alive.
708  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
709  // Construct the new parameter list from non-dead arguments. Also construct
710  // a new set of parameter attributes to correspond. Skip the first parameter
711  // attribute, since that belongs to the return value.
712  unsigned i = 0;
713  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
714       I != E; ++I, ++i) {
715    RetOrArg Arg = CreateArg(F, i);
716    if (LiveValues.erase(Arg)) {
717      Params.push_back(I->getType());
718      ArgAlive[i] = true;
719
720      // Get the original parameter attributes (skipping the first one, that is
721      // for the return value.
722      if (PAL.hasAttributes(i + 1)) {
723        AttrBuilder B(PAL, i + 1);
724        if (B.contains(Attribute::Returned))
725          HasLiveReturnedArg = true;
726        AttributesVec.
727          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
728      }
729    } else {
730      ++NumArgumentsEliminated;
731      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
732            << ") from " << F->getName() << "\n");
733    }
734  }
735
736  // Find out the new return value.
737  Type *RetTy = FTy->getReturnType();
738  Type *NRetTy = nullptr;
739  unsigned RetCount = NumRetVals(F);
740
741  // -1 means unused, other numbers are the new index
742  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
743  std::vector<Type*> RetTypes;
744
745  // If there is a function with a live 'returned' argument but a dead return
746  // value, then there are two possible actions:
747  // 1) Eliminate the return value and take off the 'returned' attribute on the
748  //    argument.
749  // 2) Retain the 'returned' attribute and treat the return value (but not the
750  //    entire function) as live so that it is not eliminated.
751  //
752  // It's not clear in the general case which option is more profitable because,
753  // even in the absence of explicit uses of the return value, code generation
754  // is free to use the 'returned' attribute to do things like eliding
755  // save/restores of registers across calls. Whether or not this happens is
756  // target and ABI-specific as well as depending on the amount of register
757  // pressure, so there's no good way for an IR-level pass to figure this out.
758  //
759  // Fortunately, the only places where 'returned' is currently generated by
760  // the FE are places where 'returned' is basically free and almost always a
761  // performance win, so the second option can just be used always for now.
762  //
763  // This should be revisited if 'returned' is ever applied more liberally.
764  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
765    NRetTy = RetTy;
766  } else {
767    StructType *STy = dyn_cast<StructType>(RetTy);
768    if (STy)
769      // Look at each of the original return values individually.
770      for (unsigned i = 0; i != RetCount; ++i) {
771        RetOrArg Ret = CreateRet(F, i);
772        if (LiveValues.erase(Ret)) {
773          RetTypes.push_back(STy->getElementType(i));
774          NewRetIdxs[i] = RetTypes.size() - 1;
775        } else {
776          ++NumRetValsEliminated;
777          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
778                << F->getName() << "\n");
779        }
780      }
781    else
782      // We used to return a single value.
783      if (LiveValues.erase(CreateRet(F, 0))) {
784        RetTypes.push_back(RetTy);
785        NewRetIdxs[0] = 0;
786      } else {
787        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
788              << "\n");
789        ++NumRetValsEliminated;
790      }
791    if (RetTypes.size() > 1)
792      // More than one return type? Return a struct with them. Also, if we used
793      // to return a struct and didn't change the number of return values,
794      // return a struct again. This prevents changing {something} into
795      // something and {} into void.
796      // Make the new struct packed if we used to return a packed struct
797      // already.
798      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
799    else if (RetTypes.size() == 1)
800      // One return type? Just a simple value then, but only if we didn't use to
801      // return a struct with that simple value before.
802      NRetTy = RetTypes.front();
803    else if (RetTypes.size() == 0)
804      // No return types? Make it void, but only if we didn't use to return {}.
805      NRetTy = Type::getVoidTy(F->getContext());
806  }
807
808  assert(NRetTy && "No new return type found?");
809
810  // The existing function return attributes.
811  AttributeSet RAttrs = PAL.getRetAttributes();
812
813  // Remove any incompatible attributes, but only if we removed all return
814  // values. Otherwise, ensure that we don't have any conflicting attributes
815  // here. Currently, this should not be possible, but special handling might be
816  // required when new return value attributes are added.
817  if (NRetTy->isVoidTy())
818    RAttrs =
819      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
820                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
821         removeAttributes(AttributeFuncs::
822                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
823                          AttributeSet::ReturnIndex));
824  else
825    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
826             hasAttributes(AttributeFuncs::
827                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
828                           AttributeSet::ReturnIndex) &&
829           "Return attributes no longer compatible?");
830
831  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
832    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
833
834  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
835    AttributesVec.push_back(AttributeSet::get(F->getContext(),
836                                              PAL.getFnAttributes()));
837
838  // Reconstruct the AttributesList based on the vector we constructed.
839  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
840
841  // Create the new function type based on the recomputed parameters.
842  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
843
844  // No change?
845  if (NFTy == FTy)
846    return false;
847
848  // Create the new function body and insert it into the module...
849  Function *NF = Function::Create(NFTy, F->getLinkage());
850  NF->copyAttributesFrom(F);
851  NF->setAttributes(NewPAL);
852  // Insert the new function before the old function, so we won't be processing
853  // it again.
854  F->getParent()->getFunctionList().insert(F, NF);
855  NF->takeName(F);
856
857  // Loop over all of the callers of the function, transforming the call sites
858  // to pass in a smaller number of arguments into the new function.
859  //
860  std::vector<Value*> Args;
861  while (!F->use_empty()) {
862    CallSite CS(F->user_back());
863    Instruction *Call = CS.getInstruction();
864
865    AttributesVec.clear();
866    const AttributeSet &CallPAL = CS.getAttributes();
867
868    // The call return attributes.
869    AttributeSet RAttrs = CallPAL.getRetAttributes();
870
871    // Adjust in case the function was changed to return void.
872    RAttrs =
873      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
874                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
875        removeAttributes(AttributeFuncs::
876                         typeIncompatible(NF->getReturnType(),
877                                          AttributeSet::ReturnIndex),
878                         AttributeSet::ReturnIndex));
879    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
880      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
881
882    // Declare these outside of the loops, so we can reuse them for the second
883    // loop, which loops the varargs.
884    CallSite::arg_iterator I = CS.arg_begin();
885    unsigned i = 0;
886    // Loop over those operands, corresponding to the normal arguments to the
887    // original function, and add those that are still alive.
888    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
889      if (ArgAlive[i]) {
890        Args.push_back(*I);
891        // Get original parameter attributes, but skip return attributes.
892        if (CallPAL.hasAttributes(i + 1)) {
893          AttrBuilder B(CallPAL, i + 1);
894          // If the return type has changed, then get rid of 'returned' on the
895          // call site. The alternative is to make all 'returned' attributes on
896          // call sites keep the return value alive just like 'returned'
897          // attributes on function declaration but it's less clearly a win
898          // and this is not an expected case anyway
899          if (NRetTy != RetTy && B.contains(Attribute::Returned))
900            B.removeAttribute(Attribute::Returned);
901          AttributesVec.
902            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
903        }
904      }
905
906    // Push any varargs arguments on the list. Don't forget their attributes.
907    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
908      Args.push_back(*I);
909      if (CallPAL.hasAttributes(i + 1)) {
910        AttrBuilder B(CallPAL, i + 1);
911        AttributesVec.
912          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
913      }
914    }
915
916    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
917      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
918                                                CallPAL.getFnAttributes()));
919
920    // Reconstruct the AttributesList based on the vector we constructed.
921    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
922
923    Instruction *New;
924    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
925      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
926                               Args, "", Call);
927      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
928      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
929    } else {
930      New = CallInst::Create(NF, Args, "", Call);
931      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
932      cast<CallInst>(New)->setAttributes(NewCallPAL);
933      if (cast<CallInst>(Call)->isTailCall())
934        cast<CallInst>(New)->setTailCall();
935    }
936    New->setDebugLoc(Call->getDebugLoc());
937
938    Args.clear();
939
940    if (!Call->use_empty()) {
941      if (New->getType() == Call->getType()) {
942        // Return type not changed? Just replace users then.
943        Call->replaceAllUsesWith(New);
944        New->takeName(Call);
945      } else if (New->getType()->isVoidTy()) {
946        // Our return value has uses, but they will get removed later on.
947        // Replace by null for now.
948        if (!Call->getType()->isX86_MMXTy())
949          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
950      } else {
951        assert(RetTy->isStructTy() &&
952               "Return type changed, but not into a void. The old return type"
953               " must have been a struct!");
954        Instruction *InsertPt = Call;
955        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
956          BasicBlock::iterator IP = II->getNormalDest()->begin();
957          while (isa<PHINode>(IP)) ++IP;
958          InsertPt = IP;
959        }
960
961        // We used to return a struct. Instead of doing smart stuff with all the
962        // uses of this struct, we will just rebuild it using
963        // extract/insertvalue chaining and let instcombine clean that up.
964        //
965        // Start out building up our return value from undef
966        Value *RetVal = UndefValue::get(RetTy);
967        for (unsigned i = 0; i != RetCount; ++i)
968          if (NewRetIdxs[i] != -1) {
969            Value *V;
970            if (RetTypes.size() > 1)
971              // We are still returning a struct, so extract the value from our
972              // return value
973              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
974                                           InsertPt);
975            else
976              // We are now returning a single element, so just insert that
977              V = New;
978            // Insert the value at the old position
979            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
980          }
981        // Now, replace all uses of the old call instruction with the return
982        // struct we built
983        Call->replaceAllUsesWith(RetVal);
984        New->takeName(Call);
985      }
986    }
987
988    // Finally, remove the old call from the program, reducing the use-count of
989    // F.
990    Call->eraseFromParent();
991  }
992
993  // Since we have now created the new function, splice the body of the old
994  // function right into the new function, leaving the old rotting hulk of the
995  // function empty.
996  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
997
998  // Loop over the argument list, transferring uses of the old arguments over to
999  // the new arguments, also transferring over the names as well.
1000  i = 0;
1001  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1002       I2 = NF->arg_begin(); I != E; ++I, ++i)
1003    if (ArgAlive[i]) {
1004      // If this is a live argument, move the name and users over to the new
1005      // version.
1006      I->replaceAllUsesWith(I2);
1007      I2->takeName(I);
1008      ++I2;
1009    } else {
1010      // If this argument is dead, replace any uses of it with null constants
1011      // (these are guaranteed to become unused later on).
1012      if (!I->getType()->isX86_MMXTy())
1013        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1014    }
1015
1016  // If we change the return value of the function we must rewrite any return
1017  // instructions.  Check this now.
1018  if (F->getReturnType() != NF->getReturnType())
1019    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1020      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1021        Value *RetVal;
1022
1023        if (NFTy->getReturnType()->isVoidTy()) {
1024          RetVal = nullptr;
1025        } else {
1026          assert (RetTy->isStructTy());
1027          // The original return value was a struct, insert
1028          // extractvalue/insertvalue chains to extract only the values we need
1029          // to return and insert them into our new result.
1030          // This does generate messy code, but we'll let it to instcombine to
1031          // clean that up.
1032          Value *OldRet = RI->getOperand(0);
1033          // Start out building up our return value from undef
1034          RetVal = UndefValue::get(NRetTy);
1035          for (unsigned i = 0; i != RetCount; ++i)
1036            if (NewRetIdxs[i] != -1) {
1037              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1038                                                              "oldret", RI);
1039              if (RetTypes.size() > 1) {
1040                // We're still returning a struct, so reinsert the value into
1041                // our new return value at the new index
1042
1043                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1044                                                 "newret", RI);
1045              } else {
1046                // We are now only returning a simple value, so just return the
1047                // extracted value.
1048                RetVal = EV;
1049              }
1050            }
1051        }
1052        // Replace the return instruction with one returning the new return
1053        // value (possibly 0 if we became void).
1054        ReturnInst::Create(F->getContext(), RetVal, RI);
1055        BB->getInstList().erase(RI);
1056      }
1057
1058  // Patch the pointer to LLVM function in debug info descriptor.
1059  auto DI = FunctionDIs.find(F);
1060  if (DI != FunctionDIs.end())
1061    DI->second.replaceFunction(NF);
1062
1063  // Now that the old function is dead, delete it.
1064  F->eraseFromParent();
1065
1066  return true;
1067}
1068
1069bool DAE::runOnModule(Module &M) {
1070  bool Changed = false;
1071
1072  // Collect debug info descriptors for functions.
1073  FunctionDIs = makeSubprogramMap(M);
1074
1075  // First pass: Do a simple check to see if any functions can have their "..."
1076  // removed.  We can do this if they never call va_start.  This loop cannot be
1077  // fused with the next loop, because deleting a function invalidates
1078  // information computed while surveying other functions.
1079  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1080  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1081    Function &F = *I++;
1082    if (F.getFunctionType()->isVarArg())
1083      Changed |= DeleteDeadVarargs(F);
1084  }
1085
1086  // Second phase:loop through the module, determining which arguments are live.
1087  // We assume all arguments are dead unless proven otherwise (allowing us to
1088  // determine that dead arguments passed into recursive functions are dead).
1089  //
1090  DEBUG(dbgs() << "DAE - Determining liveness\n");
1091  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
1092    SurveyFunction(*I);
1093
1094  // Now, remove all dead arguments and return values from each function in
1095  // turn.
1096  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1097    // Increment now, because the function will probably get removed (ie.
1098    // replaced by a new one).
1099    Function *F = I++;
1100    Changed |= RemoveDeadStuffFromFunction(F);
1101  }
1102
1103  // Finally, look for any unused parameters in functions with non-local
1104  // linkage and replace the passed in parameters with undef.
1105  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1106    Function& F = *I;
1107
1108    Changed |= RemoveDeadArgumentsFromCallers(F);
1109  }
1110
1111  return Changed;
1112}
1113