DeadArgumentElimination.cpp revision 086ea05299f2a6ffc2e283c70ef4ef39897db6a3
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/Compiler.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42
43namespace {
44  /// DAE - The dead argument elimination pass.
45  ///
46  class VISIBILITY_HIDDEN DAE : public ModulePass {
47  public:
48
49    /// Struct that represents (part of) either a return value or a function
50    /// argument.  Used so that arguments and return values can be used
51    /// interchangably.
52    struct RetOrArg {
53      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54               IsArg(IsArg) {}
55      const Function *F;
56      unsigned Idx;
57      bool IsArg;
58
59      /// Make RetOrArg comparable, so we can put it into a map.
60      bool operator<(const RetOrArg &O) const {
61        if (F != O.F)
62          return F < O.F;
63        else if (Idx != O.Idx)
64          return Idx < O.Idx;
65        else
66          return IsArg < O.IsArg;
67      }
68
69      /// Make RetOrArg comparable, so we can easily iterate the multimap.
70      bool operator==(const RetOrArg &O) const {
71        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
72      }
73
74      std::string getDescription() const {
75        return std::string((IsArg ? "Argument #" : "Return value #"))
76               + utostr(Idx) + " of function " + F->getName();
77      }
78    };
79
80    /// Liveness enum - During our initial pass over the program, we determine
81    /// that things are either alive or maybe alive. We don't mark anything
82    /// explicitly dead (even if we know they are), since anything not alive
83    /// with no registered uses (in Uses) will never be marked alive and will
84    /// thus become dead in the end.
85    enum Liveness { Live, MaybeLive };
86
87    /// Convenience wrapper
88    RetOrArg CreateRet(const Function *F, unsigned Idx) {
89      return RetOrArg(F, Idx, false);
90    }
91    /// Convenience wrapper
92    RetOrArg CreateArg(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, true);
94    }
95
96    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97    /// This maps a return value or argument to any MaybeLive return values or
98    /// arguments it uses. This allows the MaybeLive values to be marked live
99    /// when any of its users is marked live.
100    /// For example (indices are left out for clarity):
101    ///  - Uses[ret F] = ret G
102    ///    This means that F calls G, and F returns the value returned by G.
103    ///  - Uses[arg F] = ret G
104    ///    This means that some function calls G and passes its result as an
105    ///    argument to F.
106    ///  - Uses[ret F] = arg F
107    ///    This means that F returns one of its own arguments.
108    ///  - Uses[arg F] = arg G
109    ///    This means that G calls F and passes one of its own (G's) arguments
110    ///    directly to F.
111    UseMap Uses;
112
113    typedef std::set<RetOrArg> LiveSet;
114    typedef std::set<const Function*> LiveFuncSet;
115
116    /// This set contains all values that have been determined to be live.
117    LiveSet LiveValues;
118    /// This set contains all values that are cannot be changed in any way.
119    LiveFuncSet LiveFunctions;
120
121    typedef SmallVector<RetOrArg, 5> UseVector;
122
123  public:
124    static char ID; // Pass identification, replacement for typeid
125    DAE() : ModulePass(&ID) {}
126    bool runOnModule(Module &M);
127
128    virtual bool ShouldHackArguments() const { return false; }
129
130  private:
131    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
132    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
133                       unsigned RetValNum = 0);
134    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
135
136    void SurveyFunction(Function &F);
137    void MarkValue(const RetOrArg &RA, Liveness L,
138                   const UseVector &MaybeLiveUses);
139    void MarkLive(const RetOrArg &RA);
140    void MarkLive(const Function &F);
141    void PropagateLiveness(const RetOrArg &RA);
142    bool RemoveDeadStuffFromFunction(Function *F);
143    bool DeleteDeadVarargs(Function &Fn);
144  };
145}
146
147
148char DAE::ID = 0;
149static RegisterPass<DAE>
150X("deadargelim", "Dead Argument Elimination");
151
152namespace {
153  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
154  /// deletes arguments to functions which are external.  This is only for use
155  /// by bugpoint.
156  struct DAH : public DAE {
157    static char ID;
158    virtual bool ShouldHackArguments() const { return true; }
159  };
160}
161
162char DAH::ID = 0;
163static RegisterPass<DAH>
164Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
165
166/// createDeadArgEliminationPass - This pass removes arguments from functions
167/// which are not used by the body of the function.
168///
169ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
170ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
171
172/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
173/// llvm.vastart is never called, the varargs list is dead for the function.
174bool DAE::DeleteDeadVarargs(Function &Fn) {
175  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
176  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
177
178  // Ensure that the function is only directly called.
179  if (Fn.hasAddressTaken())
180    return false;
181
182  // Okay, we know we can transform this function if safe.  Scan its body
183  // looking for calls to llvm.vastart.
184  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
185    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
186      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
187        if (II->getIntrinsicID() == Intrinsic::vastart)
188          return false;
189      }
190    }
191  }
192
193  // If we get here, there are no calls to llvm.vastart in the function body,
194  // remove the "..." and adjust all the calls.
195
196  // Start by computing a new prototype for the function, which is the same as
197  // the old function, but doesn't have isVarArg set.
198  const FunctionType *FTy = Fn.getFunctionType();
199  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
200  FunctionType *NFTy = Context->getFunctionType(FTy->getReturnType(),
201                                                Params, false);
202  unsigned NumArgs = Params.size();
203
204  // Create the new function body and insert it into the module...
205  Function *NF = Function::Create(NFTy, Fn.getLinkage());
206  NF->copyAttributesFrom(&Fn);
207  Fn.getParent()->getFunctionList().insert(&Fn, NF);
208  NF->takeName(&Fn);
209
210  // Loop over all of the callers of the function, transforming the call sites
211  // to pass in a smaller number of arguments into the new function.
212  //
213  std::vector<Value*> Args;
214  while (!Fn.use_empty()) {
215    CallSite CS = CallSite::get(Fn.use_back());
216    Instruction *Call = CS.getInstruction();
217
218    // Pass all the same arguments.
219    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
220
221    // Drop any attributes that were on the vararg arguments.
222    AttrListPtr PAL = CS.getAttributes();
223    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
224      SmallVector<AttributeWithIndex, 8> AttributesVec;
225      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
226        AttributesVec.push_back(PAL.getSlot(i));
227      if (Attributes FnAttrs = PAL.getFnAttributes())
228        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
229      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
230    }
231
232    Instruction *New;
233    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
234      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
235                               Args.begin(), Args.end(), "", Call);
236      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
237      cast<InvokeInst>(New)->setAttributes(PAL);
238    } else {
239      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
240      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
241      cast<CallInst>(New)->setAttributes(PAL);
242      if (cast<CallInst>(Call)->isTailCall())
243        cast<CallInst>(New)->setTailCall();
244    }
245    Args.clear();
246
247    if (!Call->use_empty())
248      Call->replaceAllUsesWith(New);
249
250    New->takeName(Call);
251
252    // Finally, remove the old call from the program, reducing the use-count of
253    // F.
254    Call->eraseFromParent();
255  }
256
257  // Since we have now created the new function, splice the body of the old
258  // function right into the new function, leaving the old rotting hulk of the
259  // function empty.
260  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
261
262  // Loop over the argument list, transfering uses of the old arguments over to
263  // the new arguments, also transfering over the names as well.  While we're at
264  // it, remove the dead arguments from the DeadArguments list.
265  //
266  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
267       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
268    // Move the name and users over to the new version.
269    I->replaceAllUsesWith(I2);
270    I2->takeName(I);
271  }
272
273  // Finally, nuke the old function.
274  Fn.eraseFromParent();
275  return true;
276}
277
278/// Convenience function that returns the number of return values. It returns 0
279/// for void functions and 1 for functions not returning a struct. It returns
280/// the number of struct elements for functions returning a struct.
281static unsigned NumRetVals(const Function *F) {
282  if (F->getReturnType() == Type::VoidTy)
283    return 0;
284  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
285    return STy->getNumElements();
286  else
287    return 1;
288}
289
290/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
291/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
292/// liveness of Use.
293DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
294  // We're live if our use or its Function is already marked as live.
295  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
296    return Live;
297
298  // We're maybe live otherwise, but remember that we must become live if
299  // Use becomes live.
300  MaybeLiveUses.push_back(Use);
301  return MaybeLive;
302}
303
304
305/// SurveyUse - This looks at a single use of an argument or return value
306/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
307/// if it causes the used value to become MaybeAlive.
308///
309/// RetValNum is the return value number to use when this use is used in a
310/// return instruction. This is used in the recursion, you should always leave
311/// it at 0.
312DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
313                             unsigned RetValNum) {
314    Value *V = *U;
315    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
316      // The value is returned from a function. It's only live when the
317      // function's return value is live. We use RetValNum here, for the case
318      // that U is really a use of an insertvalue instruction that uses the
319      // orginal Use.
320      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
321      // We might be live, depending on the liveness of Use.
322      return MarkIfNotLive(Use, MaybeLiveUses);
323    }
324    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
325      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
326          && IV->hasIndices())
327        // The use we are examining is inserted into an aggregate. Our liveness
328        // depends on all uses of that aggregate, but if it is used as a return
329        // value, only index at which we were inserted counts.
330        RetValNum = *IV->idx_begin();
331
332      // Note that if we are used as the aggregate operand to the insertvalue,
333      // we don't change RetValNum, but do survey all our uses.
334
335      Liveness Result = MaybeLive;
336      for (Value::use_iterator I = IV->use_begin(),
337           E = V->use_end(); I != E; ++I) {
338        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
339        if (Result == Live)
340          break;
341      }
342      return Result;
343    }
344    CallSite CS = CallSite::get(V);
345    if (CS.getInstruction()) {
346      Function *F = CS.getCalledFunction();
347      if (F) {
348        // Used in a direct call.
349
350        // Find the argument number. We know for sure that this use is an
351        // argument, since if it was the function argument this would be an
352        // indirect call and the we know can't be looking at a value of the
353        // label type (for the invoke instruction).
354        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
355
356        if (ArgNo >= F->getFunctionType()->getNumParams())
357          // The value is passed in through a vararg! Must be live.
358          return Live;
359
360        assert(CS.getArgument(ArgNo)
361               == CS.getInstruction()->getOperand(U.getOperandNo())
362               && "Argument is not where we expected it");
363
364        // Value passed to a normal call. It's only live when the corresponding
365        // argument to the called function turns out live.
366        RetOrArg Use = CreateArg(F, ArgNo);
367        return MarkIfNotLive(Use, MaybeLiveUses);
368      }
369    }
370    // Used in any other way? Value must be live.
371    return Live;
372}
373
374/// SurveyUses - This looks at all the uses of the given value
375/// Returns the Liveness deduced from the uses of this value.
376///
377/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
378/// the result is Live, MaybeLiveUses might be modified but its content should
379/// be ignored (since it might not be complete).
380DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
381  // Assume it's dead (which will only hold if there are no uses at all..).
382  Liveness Result = MaybeLive;
383  // Check each use.
384  for (Value::use_iterator I = V->use_begin(),
385       E = V->use_end(); I != E; ++I) {
386    Result = SurveyUse(I, MaybeLiveUses);
387    if (Result == Live)
388      break;
389  }
390  return Result;
391}
392
393// SurveyFunction - This performs the initial survey of the specified function,
394// checking out whether or not it uses any of its incoming arguments or whether
395// any callers use the return value.  This fills in the LiveValues set and Uses
396// map.
397//
398// We consider arguments of non-internal functions to be intrinsically alive as
399// well as arguments to functions which have their "address taken".
400//
401void DAE::SurveyFunction(Function &F) {
402  unsigned RetCount = NumRetVals(&F);
403  // Assume all return values are dead
404  typedef SmallVector<Liveness, 5> RetVals;
405  RetVals RetValLiveness(RetCount, MaybeLive);
406
407  typedef SmallVector<UseVector, 5> RetUses;
408  // These vectors map each return value to the uses that make it MaybeLive, so
409  // we can add those to the Uses map if the return value really turns out to be
410  // MaybeLive. Initialized to a list of RetCount empty lists.
411  RetUses MaybeLiveRetUses(RetCount);
412
413  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
414    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
415      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
416          != F.getFunctionType()->getReturnType()) {
417        // We don't support old style multiple return values.
418        MarkLive(F);
419        return;
420      }
421
422  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
423    MarkLive(F);
424    return;
425  }
426
427  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
428  // Keep track of the number of live retvals, so we can skip checks once all
429  // of them turn out to be live.
430  unsigned NumLiveRetVals = 0;
431  const Type *STy = dyn_cast<StructType>(F.getReturnType());
432  // Loop all uses of the function.
433  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
434    // If the function is PASSED IN as an argument, its address has been
435    // taken.
436    CallSite CS = CallSite::get(*I);
437    if (!CS.getInstruction() || !CS.isCallee(I)) {
438      MarkLive(F);
439      return;
440    }
441
442    // If this use is anything other than a call site, the function is alive.
443    Instruction *TheCall = CS.getInstruction();
444    if (!TheCall) {   // Not a direct call site?
445      MarkLive(F);
446      return;
447    }
448
449    // If we end up here, we are looking at a direct call to our function.
450
451    // Now, check how our return value(s) is/are used in this caller. Don't
452    // bother checking return values if all of them are live already.
453    if (NumLiveRetVals != RetCount) {
454      if (STy) {
455        // Check all uses of the return value.
456        for (Value::use_iterator I = TheCall->use_begin(),
457             E = TheCall->use_end(); I != E; ++I) {
458          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
459          if (Ext && Ext->hasIndices()) {
460            // This use uses a part of our return value, survey the uses of
461            // that part and store the results for this index only.
462            unsigned Idx = *Ext->idx_begin();
463            if (RetValLiveness[Idx] != Live) {
464              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
465              if (RetValLiveness[Idx] == Live)
466                NumLiveRetVals++;
467            }
468          } else {
469            // Used by something else than extractvalue. Mark all return
470            // values as live.
471            for (unsigned i = 0; i != RetCount; ++i )
472              RetValLiveness[i] = Live;
473            NumLiveRetVals = RetCount;
474            break;
475          }
476        }
477      } else {
478        // Single return value
479        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
480        if (RetValLiveness[0] == Live)
481          NumLiveRetVals = RetCount;
482      }
483    }
484  }
485
486  // Now we've inspected all callers, record the liveness of our return values.
487  for (unsigned i = 0; i != RetCount; ++i)
488    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
489
490  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
491
492  // Now, check all of our arguments.
493  unsigned i = 0;
494  UseVector MaybeLiveArgUses;
495  for (Function::arg_iterator AI = F.arg_begin(),
496       E = F.arg_end(); AI != E; ++AI, ++i) {
497    // See what the effect of this use is (recording any uses that cause
498    // MaybeLive in MaybeLiveArgUses).
499    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
500    // Mark the result.
501    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
502    // Clear the vector again for the next iteration.
503    MaybeLiveArgUses.clear();
504  }
505}
506
507/// MarkValue - This function marks the liveness of RA depending on L. If L is
508/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
509/// such that RA will be marked live if any use in MaybeLiveUses gets marked
510/// live later on.
511void DAE::MarkValue(const RetOrArg &RA, Liveness L,
512                    const UseVector &MaybeLiveUses) {
513  switch (L) {
514    case Live: MarkLive(RA); break;
515    case MaybeLive:
516    {
517      // Note any uses of this value, so this return value can be
518      // marked live whenever one of the uses becomes live.
519      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
520           UE = MaybeLiveUses.end(); UI != UE; ++UI)
521        Uses.insert(std::make_pair(*UI, RA));
522      break;
523    }
524  }
525}
526
527/// MarkLive - Mark the given Function as alive, meaning that it cannot be
528/// changed in any way. Additionally,
529/// mark any values that are used as this function's parameters or by its return
530/// values (according to Uses) live as well.
531void DAE::MarkLive(const Function &F) {
532    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
533    // Mark the function as live.
534    LiveFunctions.insert(&F);
535    // Mark all arguments as live.
536    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
537      PropagateLiveness(CreateArg(&F, i));
538    // Mark all return values as live.
539    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
540      PropagateLiveness(CreateRet(&F, i));
541}
542
543/// MarkLive - Mark the given return value or argument as live. Additionally,
544/// mark any values that are used by this value (according to Uses) live as
545/// well.
546void DAE::MarkLive(const RetOrArg &RA) {
547  if (LiveFunctions.count(RA.F))
548    return; // Function was already marked Live.
549
550  if (!LiveValues.insert(RA).second)
551    return; // We were already marked Live.
552
553  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
554  PropagateLiveness(RA);
555}
556
557/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
558/// to any other values it uses (according to Uses).
559void DAE::PropagateLiveness(const RetOrArg &RA) {
560  // We don't use upper_bound (or equal_range) here, because our recursive call
561  // to ourselves is likely to cause the upper_bound (which is the first value
562  // not belonging to RA) to become erased and the iterator invalidated.
563  UseMap::iterator Begin = Uses.lower_bound(RA);
564  UseMap::iterator E = Uses.end();
565  UseMap::iterator I;
566  for (I = Begin; I != E && I->first == RA; ++I)
567    MarkLive(I->second);
568
569  // Erase RA from the Uses map (from the lower bound to wherever we ended up
570  // after the loop).
571  Uses.erase(Begin, I);
572}
573
574// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
575// that are not in LiveValues. Transform the function and all of the callees of
576// the function to not have these arguments and return values.
577//
578bool DAE::RemoveDeadStuffFromFunction(Function *F) {
579  // Don't modify fully live functions
580  if (LiveFunctions.count(F))
581    return false;
582
583  // Start by computing a new prototype for the function, which is the same as
584  // the old function, but has fewer arguments and a different return type.
585  const FunctionType *FTy = F->getFunctionType();
586  std::vector<const Type*> Params;
587
588  // Set up to build a new list of parameter attributes.
589  SmallVector<AttributeWithIndex, 8> AttributesVec;
590  const AttrListPtr &PAL = F->getAttributes();
591
592  // The existing function return attributes.
593  Attributes RAttrs = PAL.getRetAttributes();
594  Attributes FnAttrs = PAL.getFnAttributes();
595
596  // Find out the new return value.
597
598  const Type *RetTy = FTy->getReturnType();
599  const Type *NRetTy = NULL;
600  unsigned RetCount = NumRetVals(F);
601  // -1 means unused, other numbers are the new index
602  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
603  std::vector<const Type*> RetTypes;
604  if (RetTy == Type::VoidTy) {
605    NRetTy = Type::VoidTy;
606  } else {
607    const StructType *STy = dyn_cast<StructType>(RetTy);
608    if (STy)
609      // Look at each of the original return values individually.
610      for (unsigned i = 0; i != RetCount; ++i) {
611        RetOrArg Ret = CreateRet(F, i);
612        if (LiveValues.erase(Ret)) {
613          RetTypes.push_back(STy->getElementType(i));
614          NewRetIdxs[i] = RetTypes.size() - 1;
615        } else {
616          ++NumRetValsEliminated;
617          DOUT << "DAE - Removing return value " << i << " from "
618               << F->getNameStart() << "\n";
619        }
620      }
621    else
622      // We used to return a single value.
623      if (LiveValues.erase(CreateRet(F, 0))) {
624        RetTypes.push_back(RetTy);
625        NewRetIdxs[0] = 0;
626      } else {
627        DOUT << "DAE - Removing return value from " << F->getNameStart()
628             << "\n";
629        ++NumRetValsEliminated;
630      }
631    if (RetTypes.size() > 1)
632      // More than one return type? Return a struct with them. Also, if we used
633      // to return a struct and didn't change the number of return values,
634      // return a struct again. This prevents changing {something} into
635      // something and {} into void.
636      // Make the new struct packed if we used to return a packed struct
637      // already.
638      NRetTy = Context->getStructType(RetTypes, STy->isPacked());
639    else if (RetTypes.size() == 1)
640      // One return type? Just a simple value then, but only if we didn't use to
641      // return a struct with that simple value before.
642      NRetTy = RetTypes.front();
643    else if (RetTypes.size() == 0)
644      // No return types? Make it void, but only if we didn't use to return {}.
645      NRetTy = Type::VoidTy;
646  }
647
648  assert(NRetTy && "No new return type found?");
649
650  // Remove any incompatible attributes, but only if we removed all return
651  // values. Otherwise, ensure that we don't have any conflicting attributes
652  // here. Currently, this should not be possible, but special handling might be
653  // required when new return value attributes are added.
654  if (NRetTy == Type::VoidTy)
655    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
656  else
657    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
658           && "Return attributes no longer compatible?");
659
660  if (RAttrs)
661    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
662
663  // Remember which arguments are still alive.
664  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
665  // Construct the new parameter list from non-dead arguments. Also construct
666  // a new set of parameter attributes to correspond. Skip the first parameter
667  // attribute, since that belongs to the return value.
668  unsigned i = 0;
669  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
670       I != E; ++I, ++i) {
671    RetOrArg Arg = CreateArg(F, i);
672    if (LiveValues.erase(Arg)) {
673      Params.push_back(I->getType());
674      ArgAlive[i] = true;
675
676      // Get the original parameter attributes (skipping the first one, that is
677      // for the return value.
678      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
679        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
680    } else {
681      ++NumArgumentsEliminated;
682      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
683           << ") from " << F->getNameStart() << "\n";
684    }
685  }
686
687  if (FnAttrs != Attribute::None)
688    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
689
690  // Reconstruct the AttributesList based on the vector we constructed.
691  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
692
693  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
694  // have zero fixed arguments.
695  //
696  // Note that we apply this hack for a vararg fuction that does not have any
697  // arguments anymore, but did have them before (so don't bother fixing
698  // functions that were already broken wrt CWriter).
699  bool ExtraArgHack = false;
700  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
701    ExtraArgHack = true;
702    Params.push_back(Type::Int32Ty);
703  }
704
705  // Create the new function type based on the recomputed parameters.
706  FunctionType *NFTy = Context->getFunctionType(NRetTy, Params,
707                                                FTy->isVarArg());
708
709  // No change?
710  if (NFTy == FTy)
711    return false;
712
713  // Create the new function body and insert it into the module...
714  Function *NF = Function::Create(NFTy, F->getLinkage());
715  NF->copyAttributesFrom(F);
716  NF->setAttributes(NewPAL);
717  // Insert the new function before the old function, so we won't be processing
718  // it again.
719  F->getParent()->getFunctionList().insert(F, NF);
720  NF->takeName(F);
721
722  // Loop over all of the callers of the function, transforming the call sites
723  // to pass in a smaller number of arguments into the new function.
724  //
725  std::vector<Value*> Args;
726  while (!F->use_empty()) {
727    CallSite CS = CallSite::get(F->use_back());
728    Instruction *Call = CS.getInstruction();
729
730    AttributesVec.clear();
731    const AttrListPtr &CallPAL = CS.getAttributes();
732
733    // The call return attributes.
734    Attributes RAttrs = CallPAL.getRetAttributes();
735    Attributes FnAttrs = CallPAL.getFnAttributes();
736    // Adjust in case the function was changed to return void.
737    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
738    if (RAttrs)
739      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
740
741    // Declare these outside of the loops, so we can reuse them for the second
742    // loop, which loops the varargs.
743    CallSite::arg_iterator I = CS.arg_begin();
744    unsigned i = 0;
745    // Loop over those operands, corresponding to the normal arguments to the
746    // original function, and add those that are still alive.
747    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
748      if (ArgAlive[i]) {
749        Args.push_back(*I);
750        // Get original parameter attributes, but skip return attributes.
751        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
752          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
753      }
754
755    if (ExtraArgHack)
756      Args.push_back(Context->getUndef(Type::Int32Ty));
757
758    // Push any varargs arguments on the list. Don't forget their attributes.
759    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
760      Args.push_back(*I);
761      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
762        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
763    }
764
765    if (FnAttrs != Attribute::None)
766      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
767
768    // Reconstruct the AttributesList based on the vector we constructed.
769    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
770                                              AttributesVec.end());
771
772    Instruction *New;
773    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
774      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
775                               Args.begin(), Args.end(), "", Call);
776      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
777      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
778    } else {
779      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
780      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
781      cast<CallInst>(New)->setAttributes(NewCallPAL);
782      if (cast<CallInst>(Call)->isTailCall())
783        cast<CallInst>(New)->setTailCall();
784    }
785    Args.clear();
786
787    if (!Call->use_empty()) {
788      if (New->getType() == Call->getType()) {
789        // Return type not changed? Just replace users then.
790        Call->replaceAllUsesWith(New);
791        New->takeName(Call);
792      } else if (New->getType() == Type::VoidTy) {
793        // Our return value has uses, but they will get removed later on.
794        // Replace by null for now.
795        Call->replaceAllUsesWith(Context->getNullValue(Call->getType()));
796      } else {
797        assert(isa<StructType>(RetTy) &&
798               "Return type changed, but not into a void. The old return type"
799               " must have been a struct!");
800        Instruction *InsertPt = Call;
801        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
802          BasicBlock::iterator IP = II->getNormalDest()->begin();
803          while (isa<PHINode>(IP)) ++IP;
804          InsertPt = IP;
805        }
806
807        // We used to return a struct. Instead of doing smart stuff with all the
808        // uses of this struct, we will just rebuild it using
809        // extract/insertvalue chaining and let instcombine clean that up.
810        //
811        // Start out building up our return value from undef
812        Value *RetVal = Context->getUndef(RetTy);
813        for (unsigned i = 0; i != RetCount; ++i)
814          if (NewRetIdxs[i] != -1) {
815            Value *V;
816            if (RetTypes.size() > 1)
817              // We are still returning a struct, so extract the value from our
818              // return value
819              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
820                                           InsertPt);
821            else
822              // We are now returning a single element, so just insert that
823              V = New;
824            // Insert the value at the old position
825            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
826          }
827        // Now, replace all uses of the old call instruction with the return
828        // struct we built
829        Call->replaceAllUsesWith(RetVal);
830        New->takeName(Call);
831      }
832    }
833
834    // Finally, remove the old call from the program, reducing the use-count of
835    // F.
836    Call->eraseFromParent();
837  }
838
839  // Since we have now created the new function, splice the body of the old
840  // function right into the new function, leaving the old rotting hulk of the
841  // function empty.
842  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
843
844  // Loop over the argument list, transfering uses of the old arguments over to
845  // the new arguments, also transfering over the names as well.
846  i = 0;
847  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
848       I2 = NF->arg_begin(); I != E; ++I, ++i)
849    if (ArgAlive[i]) {
850      // If this is a live argument, move the name and users over to the new
851      // version.
852      I->replaceAllUsesWith(I2);
853      I2->takeName(I);
854      ++I2;
855    } else {
856      // If this argument is dead, replace any uses of it with null constants
857      // (these are guaranteed to become unused later on).
858      I->replaceAllUsesWith(Context->getNullValue(I->getType()));
859    }
860
861  // If we change the return value of the function we must rewrite any return
862  // instructions.  Check this now.
863  if (F->getReturnType() != NF->getReturnType())
864    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
865      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
866        Value *RetVal;
867
868        if (NFTy->getReturnType() == Type::VoidTy) {
869          RetVal = 0;
870        } else {
871          assert (isa<StructType>(RetTy));
872          // The original return value was a struct, insert
873          // extractvalue/insertvalue chains to extract only the values we need
874          // to return and insert them into our new result.
875          // This does generate messy code, but we'll let it to instcombine to
876          // clean that up.
877          Value *OldRet = RI->getOperand(0);
878          // Start out building up our return value from undef
879          RetVal = Context->getUndef(NRetTy);
880          for (unsigned i = 0; i != RetCount; ++i)
881            if (NewRetIdxs[i] != -1) {
882              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
883                                                              "oldret", RI);
884              if (RetTypes.size() > 1) {
885                // We're still returning a struct, so reinsert the value into
886                // our new return value at the new index
887
888                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
889                                                 "newret", RI);
890              } else {
891                // We are now only returning a simple value, so just return the
892                // extracted value.
893                RetVal = EV;
894              }
895            }
896        }
897        // Replace the return instruction with one returning the new return
898        // value (possibly 0 if we became void).
899        ReturnInst::Create(RetVal, RI);
900        BB->getInstList().erase(RI);
901      }
902
903  // Now that the old function is dead, delete it.
904  F->eraseFromParent();
905
906  return true;
907}
908
909bool DAE::runOnModule(Module &M) {
910  bool Changed = false;
911
912  // First pass: Do a simple check to see if any functions can have their "..."
913  // removed.  We can do this if they never call va_start.  This loop cannot be
914  // fused with the next loop, because deleting a function invalidates
915  // information computed while surveying other functions.
916  DOUT << "DAE - Deleting dead varargs\n";
917  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
918    Function &F = *I++;
919    if (F.getFunctionType()->isVarArg())
920      Changed |= DeleteDeadVarargs(F);
921  }
922
923  // Second phase:loop through the module, determining which arguments are live.
924  // We assume all arguments are dead unless proven otherwise (allowing us to
925  // determine that dead arguments passed into recursive functions are dead).
926  //
927  DOUT << "DAE - Determining liveness\n";
928  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
929    SurveyFunction(*I);
930
931  // Now, remove all dead arguments and return values from each function in
932  // turn
933  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
934    // Increment now, because the function will probably get removed (ie
935    // replaced by a new one).
936    Function *F = I++;
937    Changed |= RemoveDeadStuffFromFunction(F);
938  }
939  return Changed;
940}
941