DeadArgumentElimination.cpp revision 13f98053ce7b58546ba027ea3dfe18bf09d803f6
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/Compiler.h"
35#include <map>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
41
42namespace {
43  /// DAE - The dead argument elimination pass.
44  ///
45  class VISIBILITY_HIDDEN DAE : public ModulePass {
46  public:
47
48    /// Struct that represents (part of) either a return value or a function
49    /// argument.  Used so that arguments and return values can be used
50    /// interchangably.
51    struct RetOrArg {
52      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
53               IsArg(IsArg) {}
54      const Function *F;
55      unsigned Idx;
56      bool IsArg;
57
58      /// Make RetOrArg comparable, so we can put it into a map.
59      bool operator<(const RetOrArg &O) const {
60        if (F != O.F)
61          return F < O.F;
62        else if (Idx != O.Idx)
63          return Idx < O.Idx;
64        else
65          return IsArg < O.IsArg;
66      }
67
68      /// Make RetOrArg comparable, so we can easily iterate the multimap.
69      bool operator==(const RetOrArg &O) const {
70        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
71      }
72
73      std::string getDescription() const {
74        return std::string((IsArg ? "Argument #" : "Return value #"))
75               + utostr(Idx) + " of function " + F->getName();
76      }
77    };
78
79    /// Liveness enum - During our initial pass over the program, we determine
80    /// that things are either alive or maybe alive. We don't mark anything
81    /// explicitly dead (even if we know they are), since anything not alive
82    /// with no registered uses (in Uses) will never be marked alive and will
83    /// thus become dead in the end.
84    enum Liveness { Live, MaybeLive };
85
86    /// Convenience wrapper
87    RetOrArg CreateRet(const Function *F, unsigned Idx) {
88      return RetOrArg(F, Idx, false);
89    }
90    /// Convenience wrapper
91    RetOrArg CreateArg(const Function *F, unsigned Idx) {
92      return RetOrArg(F, Idx, true);
93    }
94
95    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96    /// This maps a return value or argument to any MaybeLive return values or
97    /// arguments it uses. This allows the MaybeLive values to be marked live
98    /// when any of its users is marked live.
99    /// For example (indices are left out for clarity):
100    ///  - Uses[ret F] = ret G
101    ///    This means that F calls G, and F returns the value returned by G.
102    ///  - Uses[arg F] = ret G
103    ///    This means that some function calls G and passes its result as an
104    ///    argument to F.
105    ///  - Uses[ret F] = arg F
106    ///    This means that F returns one of its own arguments.
107    ///  - Uses[arg F] = arg G
108    ///    This means that G calls F and passes one of its own (G's) arguments
109    ///    directly to F.
110    UseMap Uses;
111
112    typedef std::set<RetOrArg> LiveSet;
113    typedef std::set<const Function*> LiveFuncSet;
114
115    /// This set contains all values that have been determined to be live.
116    LiveSet LiveValues;
117    /// This set contains all values that are cannot be changed in any way.
118    LiveFuncSet LiveFunctions;
119
120    typedef SmallVector<RetOrArg, 5> UseVector;
121
122  public:
123    static char ID; // Pass identification, replacement for typeid
124    DAE() : ModulePass((intptr_t)&ID) {}
125    bool runOnModule(Module &M);
126
127    virtual bool ShouldHackArguments() const { return false; }
128
129  private:
130    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
131    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
132                       unsigned RetValNum = 0);
133    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
134
135    void SurveyFunction(Function &F);
136    void MarkValue(const RetOrArg &RA, Liveness L,
137                   const UseVector &MaybeLiveUses);
138    void MarkLive(const RetOrArg &RA);
139    void MarkLive(const Function &F);
140    void PropagateLiveness(const RetOrArg &RA);
141    bool RemoveDeadStuffFromFunction(Function *F);
142    bool DeleteDeadVarargs(Function &Fn);
143  };
144}
145
146
147char DAE::ID = 0;
148static RegisterPass<DAE>
149X("deadargelim", "Dead Argument Elimination");
150
151namespace {
152  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
153  /// deletes arguments to functions which are external.  This is only for use
154  /// by bugpoint.
155  struct DAH : public DAE {
156    static char ID;
157    virtual bool ShouldHackArguments() const { return true; }
158  };
159}
160
161char DAH::ID = 0;
162static RegisterPass<DAH>
163Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
164
165/// createDeadArgEliminationPass - This pass removes arguments from functions
166/// which are not used by the body of the function.
167///
168ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
169ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
170
171/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
172/// llvm.vastart is never called, the varargs list is dead for the function.
173bool DAE::DeleteDeadVarargs(Function &Fn) {
174  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
175  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
176
177  // Ensure that the function is only directly called.
178  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
179    // If this use is anything other than a call site, give up.
180    CallSite CS = CallSite::get(*I);
181    Instruction *TheCall = CS.getInstruction();
182    if (!TheCall) return false;   // Not a direct call site?
183
184    // The addr of this function is passed to the call.
185    if (I.getOperandNo() != 0) return false;
186  }
187
188  // Okay, we know we can transform this function if safe.  Scan its body
189  // looking for calls to llvm.vastart.
190  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
191    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
192      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
193        if (II->getIntrinsicID() == Intrinsic::vastart)
194          return false;
195      }
196    }
197  }
198
199  // If we get here, there are no calls to llvm.vastart in the function body,
200  // remove the "..." and adjust all the calls.
201
202  // Start by computing a new prototype for the function, which is the same as
203  // the old function, but doesn't have isVarArg set.
204  const FunctionType *FTy = Fn.getFunctionType();
205  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
206  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
207  unsigned NumArgs = Params.size();
208
209  // Create the new function body and insert it into the module...
210  Function *NF = Function::Create(NFTy, Fn.getLinkage());
211  NF->copyAttributesFrom(&Fn);
212  Fn.getParent()->getFunctionList().insert(&Fn, NF);
213  NF->takeName(&Fn);
214
215  // Loop over all of the callers of the function, transforming the call sites
216  // to pass in a smaller number of arguments into the new function.
217  //
218  std::vector<Value*> Args;
219  while (!Fn.use_empty()) {
220    CallSite CS = CallSite::get(Fn.use_back());
221    Instruction *Call = CS.getInstruction();
222
223    // Pass all the same arguments.
224    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
225
226    // Drop any attributes that were on the vararg arguments.
227    PAListPtr PAL = CS.getParamAttrs();
228    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
229      SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
230      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
231        ParamAttrsVec.push_back(PAL.getSlot(i));
232      PAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
233    }
234
235    Instruction *New;
236    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
237      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
238                               Args.begin(), Args.end(), "", Call);
239      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
240      cast<InvokeInst>(New)->setParamAttrs(PAL);
241    } else {
242      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
243      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
244      cast<CallInst>(New)->setParamAttrs(PAL);
245      if (cast<CallInst>(Call)->isTailCall())
246        cast<CallInst>(New)->setTailCall();
247    }
248    Args.clear();
249
250    if (!Call->use_empty())
251      Call->replaceAllUsesWith(New);
252
253    New->takeName(Call);
254
255    // Finally, remove the old call from the program, reducing the use-count of
256    // F.
257    Call->eraseFromParent();
258  }
259
260  // Since we have now created the new function, splice the body of the old
261  // function right into the new function, leaving the old rotting hulk of the
262  // function empty.
263  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
264
265  // Loop over the argument list, transfering uses of the old arguments over to
266  // the new arguments, also transfering over the names as well.  While we're at
267  // it, remove the dead arguments from the DeadArguments list.
268  //
269  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
270       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
271    // Move the name and users over to the new version.
272    I->replaceAllUsesWith(I2);
273    I2->takeName(I);
274  }
275
276  // Finally, nuke the old function.
277  Fn.eraseFromParent();
278  return true;
279}
280
281/// Convenience function that returns the number of return values. It returns 0
282/// for void functions and 1 for functions not returning a struct. It returns
283/// the number of struct elements for functions returning a struct.
284static unsigned NumRetVals(const Function *F) {
285  if (F->getReturnType() == Type::VoidTy)
286    return 0;
287  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
288    return STy->getNumElements();
289  else
290    return 1;
291}
292
293/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
294/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
295/// liveness of Use.
296DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
297  // We're live if our use or its Function is already marked as live.
298  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
299    return Live;
300
301  // We're maybe live otherwise, but remember that we must become live if
302  // Use becomes live.
303  MaybeLiveUses.push_back(Use);
304  return MaybeLive;
305}
306
307
308/// SurveyUse - This looks at a single use of an argument or return value
309/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
310/// if it causes the used value to become MaybeAlive.
311///
312/// RetValNum is the return value number to use when this use is used in a
313/// return instruction. This is used in the recursion, you should always leave
314/// it at 0.
315DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
316                             unsigned RetValNum) {
317    Value *V = *U;
318    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
319      // The value is returned from a function. It's only live when the
320      // function's return value is live. We use RetValNum here, for the case
321      // that U is really a use of an insertvalue instruction that uses the
322      // orginal Use.
323      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
324      // We might be live, depending on the liveness of Use.
325      return MarkIfNotLive(Use, MaybeLiveUses);
326    }
327    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
328      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
329          && IV->hasIndices())
330        // The use we are examining is inserted into an aggregate. Our liveness
331        // depends on all uses of that aggregate, but if it is used as a return
332        // value, only index at which we were inserted counts.
333        RetValNum = *IV->idx_begin();
334
335      // Note that if we are used as the aggregate operand to the insertvalue,
336      // we don't change RetValNum, but do survey all our uses.
337
338      Liveness Result = MaybeLive;
339      for (Value::use_iterator I = IV->use_begin(),
340           E = V->use_end(); I != E; ++I) {
341        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
342        if (Result == Live)
343          break;
344      }
345      return Result;
346    }
347    CallSite CS = CallSite::get(V);
348    if (CS.getInstruction()) {
349      Function *F = CS.getCalledFunction();
350      if (F) {
351        // Used in a direct call.
352
353        // Find the argument number. We know for sure that this use is an
354        // argument, since if it was the function argument this would be an
355        // indirect call and the we know can't be looking at a value of the
356        // label type (for the invoke instruction).
357        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
358
359        if (ArgNo >= F->getFunctionType()->getNumParams())
360          // The value is passed in through a vararg! Must be live.
361          return Live;
362
363        assert(CS.getArgument(ArgNo)
364               == CS.getInstruction()->getOperand(U.getOperandNo())
365               && "Argument is not where we expected it");
366
367        // Value passed to a normal call. It's only live when the corresponding
368        // argument to the called function turns out live.
369        RetOrArg Use = CreateArg(F, ArgNo);
370        return MarkIfNotLive(Use, MaybeLiveUses);
371      }
372    }
373    // Used in any other way? Value must be live.
374    return Live;
375}
376
377/// SurveyUses - This looks at all the uses of the given value
378/// Returns the Liveness deduced from the uses of this value.
379///
380/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
381/// the result is Live, MaybeLiveUses might be modified but its content should
382/// be ignored (since it might not be complete).
383DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
384  // Assume it's dead (which will only hold if there are no uses at all..).
385  Liveness Result = MaybeLive;
386  // Check each use.
387  for (Value::use_iterator I = V->use_begin(),
388       E = V->use_end(); I != E; ++I) {
389    Result = SurveyUse(I, MaybeLiveUses);
390    if (Result == Live)
391      break;
392  }
393  return Result;
394}
395
396// SurveyFunction - This performs the initial survey of the specified function,
397// checking out whether or not it uses any of its incoming arguments or whether
398// any callers use the return value.  This fills in the LiveValues set and Uses
399// map.
400//
401// We consider arguments of non-internal functions to be intrinsically alive as
402// well as arguments to functions which have their "address taken".
403//
404void DAE::SurveyFunction(Function &F) {
405  unsigned RetCount = NumRetVals(&F);
406  // Assume all return values are dead
407  typedef SmallVector<Liveness, 5> RetVals;
408  RetVals RetValLiveness(RetCount, MaybeLive);
409
410  typedef SmallVector<UseVector, 5> RetUses;
411  // These vectors map each return value to the uses that make it MaybeLive, so
412  // we can add those to the Uses map if the return value really turns out to be
413  // MaybeLive. Initialized to a list of RetCount empty lists.
414  RetUses MaybeLiveRetUses(RetCount);
415
416  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
417    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
418      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
419          != F.getFunctionType()->getReturnType()) {
420        // We don't support old style multiple return values.
421        MarkLive(F);
422        return;
423      }
424
425  if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
426    MarkLive(F);
427    return;
428  }
429
430  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
431  // Keep track of the number of live retvals, so we can skip checks once all
432  // of them turn out to be live.
433  unsigned NumLiveRetVals = 0;
434  const Type *STy = dyn_cast<StructType>(F.getReturnType());
435  // Loop all uses of the function.
436  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
437    // If the function is PASSED IN as an argument, its address has been
438    // taken.
439    if (I.getOperandNo() != 0) {
440      MarkLive(F);
441      return;
442    }
443
444    // If this use is anything other than a call site, the function is alive.
445    CallSite CS = CallSite::get(*I);
446    Instruction *TheCall = CS.getInstruction();
447    if (!TheCall) {   // Not a direct call site?
448      MarkLive(F);
449      return;
450    }
451
452    // If we end up here, we are looking at a direct call to our function.
453
454    // Now, check how our return value(s) is/are used in this caller. Don't
455    // bother checking return values if all of them are live already.
456    if (NumLiveRetVals != RetCount) {
457      if (STy) {
458        // Check all uses of the return value.
459        for (Value::use_iterator I = TheCall->use_begin(),
460             E = TheCall->use_end(); I != E; ++I) {
461          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
462          if (Ext && Ext->hasIndices()) {
463            // This use uses a part of our return value, survey the uses of
464            // that part and store the results for this index only.
465            unsigned Idx = *Ext->idx_begin();
466            if (RetValLiveness[Idx] != Live) {
467              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
468              if (RetValLiveness[Idx] == Live)
469                NumLiveRetVals++;
470            }
471          } else {
472            // Used by something else than extractvalue. Mark all return
473            // values as live.
474            for (unsigned i = 0; i != RetCount; ++i )
475              RetValLiveness[i] = Live;
476            NumLiveRetVals = RetCount;
477            break;
478          }
479        }
480      } else {
481        // Single return value
482        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
483        if (RetValLiveness[0] == Live)
484          NumLiveRetVals = RetCount;
485      }
486    }
487  }
488
489  // Now we've inspected all callers, record the liveness of our return values.
490  for (unsigned i = 0; i != RetCount; ++i)
491    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
492
493  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
494
495  // Now, check all of our arguments.
496  unsigned i = 0;
497  UseVector MaybeLiveArgUses;
498  for (Function::arg_iterator AI = F.arg_begin(),
499       E = F.arg_end(); AI != E; ++AI, ++i) {
500    // See what the effect of this use is (recording any uses that cause
501    // MaybeLive in MaybeLiveArgUses).
502    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
503    // Mark the result.
504    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
505    // Clear the vector again for the next iteration.
506    MaybeLiveArgUses.clear();
507  }
508}
509
510/// MarkValue - This function marks the liveness of RA depending on L. If L is
511/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
512/// such that RA will be marked live if any use in MaybeLiveUses gets marked
513/// live later on.
514void DAE::MarkValue(const RetOrArg &RA, Liveness L,
515                    const UseVector &MaybeLiveUses) {
516  switch (L) {
517    case Live: MarkLive(RA); break;
518    case MaybeLive:
519    {
520      // Note any uses of this value, so this return value can be
521      // marked live whenever one of the uses becomes live.
522      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
523           UE = MaybeLiveUses.end(); UI != UE; ++UI)
524        Uses.insert(std::make_pair(*UI, RA));
525      break;
526    }
527  }
528}
529
530/// MarkLive - Mark the given Function as alive, meaning that it cannot be
531/// changed in any way. Additionally,
532/// mark any values that are used as this function's parameters or by its return
533/// values (according to Uses) live as well.
534void DAE::MarkLive(const Function &F) {
535    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
536    // Mark the function as live.
537    LiveFunctions.insert(&F);
538    // Mark all arguments as live.
539    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
540      PropagateLiveness(CreateArg(&F, i));
541    // Mark all return values as live.
542    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
543      PropagateLiveness(CreateRet(&F, i));
544}
545
546/// MarkLive - Mark the given return value or argument as live. Additionally,
547/// mark any values that are used by this value (according to Uses) live as
548/// well.
549void DAE::MarkLive(const RetOrArg &RA) {
550  if (LiveFunctions.count(RA.F))
551    return; // Function was already marked Live.
552
553  if (!LiveValues.insert(RA).second)
554    return; // We were already marked Live.
555
556  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
557  PropagateLiveness(RA);
558}
559
560/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
561/// to any other values it uses (according to Uses).
562void DAE::PropagateLiveness(const RetOrArg &RA) {
563  // We don't use upper_bound (or equal_range) here, because our recursive call
564  // to ourselves is likely to cause the upper_bound (which is the first value
565  // not belonging to RA) to become erased and the iterator invalidated.
566  UseMap::iterator Begin = Uses.lower_bound(RA);
567  UseMap::iterator E = Uses.end();
568  UseMap::iterator I;
569  for (I = Begin; I != E && I->first == RA; ++I)
570    MarkLive(I->second);
571
572  // Erase RA from the Uses map (from the lower bound to wherever we ended up
573  // after the loop).
574  Uses.erase(Begin, I);
575}
576
577// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
578// that are not in LiveValues. Transform the function and all of the callees of
579// the function to not have these arguments and return values.
580//
581bool DAE::RemoveDeadStuffFromFunction(Function *F) {
582  // Don't modify fully live functions
583  if (LiveFunctions.count(F))
584    return false;
585
586  // Start by computing a new prototype for the function, which is the same as
587  // the old function, but has fewer arguments and a different return type.
588  const FunctionType *FTy = F->getFunctionType();
589  std::vector<const Type*> Params;
590
591  // Set up to build a new list of parameter attributes.
592  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
593  const PAListPtr &PAL = F->getParamAttrs();
594
595  // The existing function return attributes.
596  ParameterAttributes RAttrs = PAL.getParamAttrs(0);
597
598
599  // Find out the new return value.
600
601  const Type *RetTy = FTy->getReturnType();
602  const Type *NRetTy = NULL;
603  unsigned RetCount = NumRetVals(F);
604  // Explicitly track if anything changed, for debugging.
605  bool Changed = false;
606  // -1 means unused, other numbers are the new index
607  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
608  std::vector<const Type*> RetTypes;
609  if (RetTy == Type::VoidTy) {
610    NRetTy = Type::VoidTy;
611  } else {
612    const StructType *STy = dyn_cast<StructType>(RetTy);
613    if (STy)
614      // Look at each of the original return values individually.
615      for (unsigned i = 0; i != RetCount; ++i) {
616        RetOrArg Ret = CreateRet(F, i);
617        if (LiveValues.erase(Ret)) {
618          RetTypes.push_back(STy->getElementType(i));
619          NewRetIdxs[i] = RetTypes.size() - 1;
620        } else {
621          ++NumRetValsEliminated;
622          DOUT << "DAE - Removing return value " << i << " from "
623               << F->getNameStart() << "\n";
624          Changed = true;
625        }
626      }
627    else
628      // We used to return a single value.
629      if (LiveValues.erase(CreateRet(F, 0))) {
630        RetTypes.push_back(RetTy);
631        NewRetIdxs[0] = 0;
632      } else {
633        DOUT << "DAE - Removing return value from " << F->getNameStart()
634             << "\n";
635        ++NumRetValsEliminated;
636        Changed = true;
637      }
638    if (RetTypes.size() > 1 || (STy && STy->getNumElements()==RetTypes.size()))
639      // More than one return type? Return a struct with them. Also, if we used
640      // to return a struct and didn't change the number of return values,
641      // return a struct again. This prevents changing {something} into
642      // something and {} into void.
643      // Make the new struct packed if we used to return a packed struct
644      // already.
645      NRetTy = StructType::get(RetTypes, STy->isPacked());
646    else if (RetTypes.size() == 1)
647      // One return type? Just a simple value then, but only if we didn't use to
648      // return a struct with that simple value before.
649      NRetTy = RetTypes.front();
650    else if (RetTypes.size() == 0)
651      // No return types? Make it void, but only if we didn't use to return {}.
652      NRetTy = Type::VoidTy;
653  }
654
655  assert(NRetTy && "No new return type found?");
656
657  // Remove any incompatible attributes, but only if we removed all return
658  // values. Otherwise, ensure that we don't have any conflicting attributes
659  // here. Currently, this should not be possible, but special handling might be
660  // required when new return value attributes are added.
661  if (NRetTy == Type::VoidTy)
662    RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
663  else
664    assert((RAttrs & ParamAttr::typeIncompatible(NRetTy)) == 0
665           && "Return attributes no longer compatible?");
666
667  if (RAttrs)
668    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
669
670  // Remember which arguments are still alive.
671  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
672  // Construct the new parameter list from non-dead arguments. Also construct
673  // a new set of parameter attributes to correspond. Skip the first parameter
674  // attribute, since that belongs to the return value.
675  unsigned i = 0;
676  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
677       I != E; ++I, ++i) {
678    RetOrArg Arg = CreateArg(F, i);
679    if (LiveValues.erase(Arg)) {
680      Params.push_back(I->getType());
681      ArgAlive[i] = true;
682
683      // Get the original parameter attributes (skipping the first one, that is
684      // for the return value.
685      if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
686        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
687    } else {
688      ++NumArgumentsEliminated;
689      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
690           << ") from " << F->getNameStart() << "\n";
691      Changed = true;
692    }
693  }
694
695  // Reconstruct the ParamAttrsList based on the vector we constructed.
696  PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
697
698  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
699  // have zero fixed arguments.
700  //
701  // Note that we apply this hack for a vararg fuction that does not have any
702  // arguments anymore, but did have them before (so don't bother fixing
703  // functions that were already broken wrt CWriter).
704  bool ExtraArgHack = false;
705  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
706    ExtraArgHack = true;
707    Params.push_back(Type::Int32Ty);
708  }
709
710  // Create the new function type based on the recomputed parameters.
711  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
712
713  // No change?
714  if (NFTy == FTy)
715    return false;
716
717  // The function type is only allowed to be different if we actually left out
718  // an argument or return value.
719  assert(Changed && "Function type changed while no arguments or return values"
720                    "were removed!");
721
722  // Create the new function body and insert it into the module...
723  Function *NF = Function::Create(NFTy, F->getLinkage());
724  NF->copyAttributesFrom(F);
725  NF->setParamAttrs(NewPAL);
726  // Insert the new function before the old function, so we won't be processing
727  // it again.
728  F->getParent()->getFunctionList().insert(F, NF);
729  NF->takeName(F);
730
731  // Loop over all of the callers of the function, transforming the call sites
732  // to pass in a smaller number of arguments into the new function.
733  //
734  std::vector<Value*> Args;
735  while (!F->use_empty()) {
736    CallSite CS = CallSite::get(F->use_back());
737    Instruction *Call = CS.getInstruction();
738
739    ParamAttrsVec.clear();
740    const PAListPtr &CallPAL = CS.getParamAttrs();
741
742    // The call return attributes.
743    ParameterAttributes RAttrs = CallPAL.getParamAttrs(0);
744    // Adjust in case the function was changed to return void.
745    RAttrs &= ~ParamAttr::typeIncompatible(NF->getReturnType());
746    if (RAttrs)
747      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
748
749    // Declare these outside of the loops, so we can reuse them for the second
750    // loop, which loops the varargs.
751    CallSite::arg_iterator I = CS.arg_begin();
752    unsigned i = 0;
753    // Loop over those operands, corresponding to the normal arguments to the
754    // original function, and add those that are still alive.
755    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
756      if (ArgAlive[i]) {
757        Args.push_back(*I);
758        // Get original parameter attributes, but skip return attributes.
759        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
760          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
761      }
762
763    if (ExtraArgHack)
764      Args.push_back(UndefValue::get(Type::Int32Ty));
765
766    // Push any varargs arguments on the list. Don't forget their attributes.
767    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
768      Args.push_back(*I);
769      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
770        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
771    }
772
773    // Reconstruct the ParamAttrsList based on the vector we constructed.
774    PAListPtr NewCallPAL = PAListPtr::get(ParamAttrsVec.begin(),
775                                          ParamAttrsVec.end());
776
777    Instruction *New;
778    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
779      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
780                               Args.begin(), Args.end(), "", Call);
781      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
782      cast<InvokeInst>(New)->setParamAttrs(NewCallPAL);
783    } else {
784      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
785      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
786      cast<CallInst>(New)->setParamAttrs(NewCallPAL);
787      if (cast<CallInst>(Call)->isTailCall())
788        cast<CallInst>(New)->setTailCall();
789    }
790    Args.clear();
791
792    if (!Call->use_empty()) {
793      if (New->getType() == Call->getType()) {
794        // Return type not changed? Just replace users then.
795        Call->replaceAllUsesWith(New);
796        New->takeName(Call);
797      } else if (New->getType() == Type::VoidTy) {
798        // Our return value has uses, but they will get removed later on.
799        // Replace by null for now.
800        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
801      } else {
802        assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
803                                         "void. The old return type must have"
804                                         "been a struct!");
805        // The original return value was a struct, update all uses (which are
806        // all extractvalue instructions).
807        for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
808             I != E;) {
809          assert(isa<ExtractValueInst>(*I) && "Return value not only used by"
810                                              "extractvalue?");
811          ExtractValueInst *EV = cast<ExtractValueInst>(*I);
812          // Increment now, since we're about to throw away this use.
813          ++I;
814          assert(EV->hasIndices() && "Return value used by extractvalue without"
815                                     "indices?");
816          unsigned Idx = *EV->idx_begin();
817          if (NewRetIdxs[Idx] != -1) {
818            if (RetTypes.size() > 1) {
819              // We're still returning a struct, create a new extractvalue
820              // instruction with the first index updated
821              std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
822              NewIdxs[0] = NewRetIdxs[Idx];
823              Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
824                                                    NewIdxs.end(), "retval",
825                                                    EV);
826              EV->replaceAllUsesWith(NEV);
827              EV->eraseFromParent();
828            } else {
829              // We are now only returning a simple value, remove the
830              // extractvalue.
831              EV->replaceAllUsesWith(New);
832              EV->eraseFromParent();
833            }
834          } else {
835            // Value unused, replace uses by null for now, they will get removed
836            // later on.
837            EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
838            EV->eraseFromParent();
839          }
840        }
841        New->takeName(Call);
842      }
843    }
844
845    // Finally, remove the old call from the program, reducing the use-count of
846    // F.
847    Call->eraseFromParent();
848  }
849
850  // Since we have now created the new function, splice the body of the old
851  // function right into the new function, leaving the old rotting hulk of the
852  // function empty.
853  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
854
855  // Loop over the argument list, transfering uses of the old arguments over to
856  // the new arguments, also transfering over the names as well.
857  i = 0;
858  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
859       I2 = NF->arg_begin(); I != E; ++I, ++i)
860    if (ArgAlive[i]) {
861      // If this is a live argument, move the name and users over to the new
862      // version.
863      I->replaceAllUsesWith(I2);
864      I2->takeName(I);
865      ++I2;
866    } else {
867      // If this argument is dead, replace any uses of it with null constants
868      // (these are guaranteed to become unused later on).
869      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
870    }
871
872  // If we change the return value of the function we must rewrite any return
873  // instructions.  Check this now.
874  if (F->getReturnType() != NF->getReturnType())
875    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
876      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
877        Value *RetVal;
878
879        if (NFTy->getReturnType() == Type::VoidTy) {
880          RetVal = 0;
881        } else {
882          assert (isa<StructType>(RetTy));
883          // The original return value was a struct, insert
884          // extractvalue/insertvalue chains to extract only the values we need
885          // to return and insert them into our new result.
886          // This does generate messy code, but we'll let it to instcombine to
887          // clean that up.
888          Value *OldRet = RI->getOperand(0);
889          // Start out building up our return value from undef
890          RetVal = llvm::UndefValue::get(NRetTy);
891          for (unsigned i = 0; i != RetCount; ++i)
892            if (NewRetIdxs[i] != -1) {
893              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
894                                                              "oldret", RI);
895              if (RetTypes.size() > 1) {
896                // We're still returning a struct, so reinsert the value into
897                // our new return value at the new index
898
899                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
900                                                 "newret", RI);
901              } else {
902                // We are now only returning a simple value, so just return the
903                // extracted value.
904                RetVal = EV;
905              }
906            }
907        }
908        // Replace the return instruction with one returning the new return
909        // value (possibly 0 if we became void).
910        ReturnInst::Create(RetVal, RI);
911        BB->getInstList().erase(RI);
912      }
913
914  // Now that the old function is dead, delete it.
915  F->eraseFromParent();
916
917  return true;
918}
919
920bool DAE::runOnModule(Module &M) {
921  bool Changed = false;
922
923  // First pass: Do a simple check to see if any functions can have their "..."
924  // removed.  We can do this if they never call va_start.  This loop cannot be
925  // fused with the next loop, because deleting a function invalidates
926  // information computed while surveying other functions.
927  DOUT << "DAE - Deleting dead varargs\n";
928  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
929    Function &F = *I++;
930    if (F.getFunctionType()->isVarArg())
931      Changed |= DeleteDeadVarargs(F);
932  }
933
934  // Second phase:loop through the module, determining which arguments are live.
935  // We assume all arguments are dead unless proven otherwise (allowing us to
936  // determine that dead arguments passed into recursive functions are dead).
937  //
938  DOUT << "DAE - Determining liveness\n";
939  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
940    SurveyFunction(*I);
941
942  // Now, remove all dead arguments and return values from each function in
943  // turn
944  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
945    // Increment now, because the function will probably get removed (ie
946    // replaced by a new one).
947    Function *F = I++;
948    Changed |= RemoveDeadStuffFromFunction(F);
949  }
950  return Changed;
951}
952