DeadArgumentElimination.cpp revision 1434dfa8cead98bd1e63411fcb9424e1d37f61ac
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42
43namespace {
44  /// DAE - The dead argument elimination pass.
45  ///
46  class DAE : public ModulePass {
47  public:
48
49    /// Struct that represents (part of) either a return value or a function
50    /// argument.  Used so that arguments and return values can be used
51    /// interchangably.
52    struct RetOrArg {
53      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54               IsArg(IsArg) {}
55      const Function *F;
56      unsigned Idx;
57      bool IsArg;
58
59      /// Make RetOrArg comparable, so we can put it into a map.
60      bool operator<(const RetOrArg &O) const {
61        if (F != O.F)
62          return F < O.F;
63        else if (Idx != O.Idx)
64          return Idx < O.Idx;
65        else
66          return IsArg < O.IsArg;
67      }
68
69      /// Make RetOrArg comparable, so we can easily iterate the multimap.
70      bool operator==(const RetOrArg &O) const {
71        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
72      }
73
74      std::string getDescription() const {
75        return std::string((IsArg ? "Argument #" : "Return value #"))
76               + utostr(Idx) + " of function " + F->getNameStr();
77      }
78    };
79
80    /// Liveness enum - During our initial pass over the program, we determine
81    /// that things are either alive or maybe alive. We don't mark anything
82    /// explicitly dead (even if we know they are), since anything not alive
83    /// with no registered uses (in Uses) will never be marked alive and will
84    /// thus become dead in the end.
85    enum Liveness { Live, MaybeLive };
86
87    /// Convenience wrapper
88    RetOrArg CreateRet(const Function *F, unsigned Idx) {
89      return RetOrArg(F, Idx, false);
90    }
91    /// Convenience wrapper
92    RetOrArg CreateArg(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, true);
94    }
95
96    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97    /// This maps a return value or argument to any MaybeLive return values or
98    /// arguments it uses. This allows the MaybeLive values to be marked live
99    /// when any of its users is marked live.
100    /// For example (indices are left out for clarity):
101    ///  - Uses[ret F] = ret G
102    ///    This means that F calls G, and F returns the value returned by G.
103    ///  - Uses[arg F] = ret G
104    ///    This means that some function calls G and passes its result as an
105    ///    argument to F.
106    ///  - Uses[ret F] = arg F
107    ///    This means that F returns one of its own arguments.
108    ///  - Uses[arg F] = arg G
109    ///    This means that G calls F and passes one of its own (G's) arguments
110    ///    directly to F.
111    UseMap Uses;
112
113    typedef std::set<RetOrArg> LiveSet;
114    typedef std::set<const Function*> LiveFuncSet;
115
116    /// This set contains all values that have been determined to be live.
117    LiveSet LiveValues;
118    /// This set contains all values that are cannot be changed in any way.
119    LiveFuncSet LiveFunctions;
120
121    typedef SmallVector<RetOrArg, 5> UseVector;
122
123  protected:
124    // DAH uses this to specify a different ID.
125    explicit DAE(char &ID) : ModulePass(ID) {}
126
127  public:
128    static char ID; // Pass identification, replacement for typeid
129    DAE() : ModulePass(ID) {}
130
131    bool runOnModule(Module &M);
132
133    virtual bool ShouldHackArguments() const { return false; }
134
135  private:
136    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
137    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
138                       unsigned RetValNum = 0);
139    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
140
141    void SurveyFunction(const Function &F);
142    void MarkValue(const RetOrArg &RA, Liveness L,
143                   const UseVector &MaybeLiveUses);
144    void MarkLive(const RetOrArg &RA);
145    void MarkLive(const Function &F);
146    void PropagateLiveness(const RetOrArg &RA);
147    bool RemoveDeadStuffFromFunction(Function *F);
148    bool DeleteDeadVarargs(Function &Fn);
149  };
150}
151
152
153char DAE::ID = 0;
154INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
155
156namespace {
157  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
158  /// deletes arguments to functions which are external.  This is only for use
159  /// by bugpoint.
160  struct DAH : public DAE {
161    static char ID;
162    DAH() : DAE(ID) {}
163
164    virtual bool ShouldHackArguments() const { return true; }
165  };
166}
167
168char DAH::ID = 0;
169INITIALIZE_PASS(DAH, "deadarghaX0r",
170                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
171                false, false)
172
173/// createDeadArgEliminationPass - This pass removes arguments from functions
174/// which are not used by the body of the function.
175///
176ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
177ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
178
179/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
180/// llvm.vastart is never called, the varargs list is dead for the function.
181bool DAE::DeleteDeadVarargs(Function &Fn) {
182  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
183  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
184
185  // Ensure that the function is only directly called.
186  if (Fn.hasAddressTaken())
187    return false;
188
189  // Okay, we know we can transform this function if safe.  Scan its body
190  // looking for calls to llvm.vastart.
191  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
192    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
193      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
194        if (II->getIntrinsicID() == Intrinsic::vastart)
195          return false;
196      }
197    }
198  }
199
200  // If we get here, there are no calls to llvm.vastart in the function body,
201  // remove the "..." and adjust all the calls.
202
203  // Start by computing a new prototype for the function, which is the same as
204  // the old function, but doesn't have isVarArg set.
205  const FunctionType *FTy = Fn.getFunctionType();
206
207  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
208  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
209                                                Params, false);
210  unsigned NumArgs = Params.size();
211
212  // Create the new function body and insert it into the module...
213  Function *NF = Function::Create(NFTy, Fn.getLinkage());
214  NF->copyAttributesFrom(&Fn);
215  Fn.getParent()->getFunctionList().insert(&Fn, NF);
216  NF->takeName(&Fn);
217
218  // Loop over all of the callers of the function, transforming the call sites
219  // to pass in a smaller number of arguments into the new function.
220  //
221  std::vector<Value*> Args;
222  while (!Fn.use_empty()) {
223    CallSite CS(Fn.use_back());
224    Instruction *Call = CS.getInstruction();
225
226    // Pass all the same arguments.
227    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
228
229    // Drop any attributes that were on the vararg arguments.
230    AttrListPtr PAL = CS.getAttributes();
231    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
232      SmallVector<AttributeWithIndex, 8> AttributesVec;
233      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
234        AttributesVec.push_back(PAL.getSlot(i));
235      if (Attributes FnAttrs = PAL.getFnAttributes())
236        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
237      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
238    }
239
240    Instruction *New;
241    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
242      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
243                               Args.begin(), Args.end(), "", Call);
244      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
245      cast<InvokeInst>(New)->setAttributes(PAL);
246    } else {
247      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
248      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
249      cast<CallInst>(New)->setAttributes(PAL);
250      if (cast<CallInst>(Call)->isTailCall())
251        cast<CallInst>(New)->setTailCall();
252    }
253    New->setDebugLoc(Call->getDebugLoc());
254
255    Args.clear();
256
257    if (!Call->use_empty())
258      Call->replaceAllUsesWith(New);
259
260    New->takeName(Call);
261
262    // Finally, remove the old call from the program, reducing the use-count of
263    // F.
264    Call->eraseFromParent();
265  }
266
267  // Since we have now created the new function, splice the body of the old
268  // function right into the new function, leaving the old rotting hulk of the
269  // function empty.
270  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
271
272  // Loop over the argument list, transfering uses of the old arguments over to
273  // the new arguments, also transfering over the names as well.  While we're at
274  // it, remove the dead arguments from the DeadArguments list.
275  //
276  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
277       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
278    // Move the name and users over to the new version.
279    I->replaceAllUsesWith(I2);
280    I2->takeName(I);
281  }
282
283  // Finally, nuke the old function.
284  Fn.eraseFromParent();
285  return true;
286}
287
288/// Convenience function that returns the number of return values. It returns 0
289/// for void functions and 1 for functions not returning a struct. It returns
290/// the number of struct elements for functions returning a struct.
291static unsigned NumRetVals(const Function *F) {
292  if (F->getReturnType()->isVoidTy())
293    return 0;
294  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
295    return STy->getNumElements();
296  else
297    return 1;
298}
299
300/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
301/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
302/// liveness of Use.
303DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
304  // We're live if our use or its Function is already marked as live.
305  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
306    return Live;
307
308  // We're maybe live otherwise, but remember that we must become live if
309  // Use becomes live.
310  MaybeLiveUses.push_back(Use);
311  return MaybeLive;
312}
313
314
315/// SurveyUse - This looks at a single use of an argument or return value
316/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
317/// if it causes the used value to become MaybeLive.
318///
319/// RetValNum is the return value number to use when this use is used in a
320/// return instruction. This is used in the recursion, you should always leave
321/// it at 0.
322DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
323                             UseVector &MaybeLiveUses, unsigned RetValNum) {
324    const User *V = *U;
325    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
326      // The value is returned from a function. It's only live when the
327      // function's return value is live. We use RetValNum here, for the case
328      // that U is really a use of an insertvalue instruction that uses the
329      // orginal Use.
330      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
331      // We might be live, depending on the liveness of Use.
332      return MarkIfNotLive(Use, MaybeLiveUses);
333    }
334    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
335      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
336          && IV->hasIndices())
337        // The use we are examining is inserted into an aggregate. Our liveness
338        // depends on all uses of that aggregate, but if it is used as a return
339        // value, only index at which we were inserted counts.
340        RetValNum = *IV->idx_begin();
341
342      // Note that if we are used as the aggregate operand to the insertvalue,
343      // we don't change RetValNum, but do survey all our uses.
344
345      Liveness Result = MaybeLive;
346      for (Value::const_use_iterator I = IV->use_begin(),
347           E = V->use_end(); I != E; ++I) {
348        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
349        if (Result == Live)
350          break;
351      }
352      return Result;
353    }
354
355    if (ImmutableCallSite CS = V) {
356      const Function *F = CS.getCalledFunction();
357      if (F) {
358        // Used in a direct call.
359
360        // Find the argument number. We know for sure that this use is an
361        // argument, since if it was the function argument this would be an
362        // indirect call and the we know can't be looking at a value of the
363        // label type (for the invoke instruction).
364        unsigned ArgNo = CS.getArgumentNo(U);
365
366        if (ArgNo >= F->getFunctionType()->getNumParams())
367          // The value is passed in through a vararg! Must be live.
368          return Live;
369
370        assert(CS.getArgument(ArgNo)
371               == CS->getOperand(U.getOperandNo())
372               && "Argument is not where we expected it");
373
374        // Value passed to a normal call. It's only live when the corresponding
375        // argument to the called function turns out live.
376        RetOrArg Use = CreateArg(F, ArgNo);
377        return MarkIfNotLive(Use, MaybeLiveUses);
378      }
379    }
380    // Used in any other way? Value must be live.
381    return Live;
382}
383
384/// SurveyUses - This looks at all the uses of the given value
385/// Returns the Liveness deduced from the uses of this value.
386///
387/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
388/// the result is Live, MaybeLiveUses might be modified but its content should
389/// be ignored (since it might not be complete).
390DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
391  // Assume it's dead (which will only hold if there are no uses at all..).
392  Liveness Result = MaybeLive;
393  // Check each use.
394  for (Value::const_use_iterator I = V->use_begin(),
395       E = V->use_end(); I != E; ++I) {
396    Result = SurveyUse(I, MaybeLiveUses);
397    if (Result == Live)
398      break;
399  }
400  return Result;
401}
402
403// SurveyFunction - This performs the initial survey of the specified function,
404// checking out whether or not it uses any of its incoming arguments or whether
405// any callers use the return value.  This fills in the LiveValues set and Uses
406// map.
407//
408// We consider arguments of non-internal functions to be intrinsically alive as
409// well as arguments to functions which have their "address taken".
410//
411void DAE::SurveyFunction(const Function &F) {
412  unsigned RetCount = NumRetVals(&F);
413  // Assume all return values are dead
414  typedef SmallVector<Liveness, 5> RetVals;
415  RetVals RetValLiveness(RetCount, MaybeLive);
416
417  typedef SmallVector<UseVector, 5> RetUses;
418  // These vectors map each return value to the uses that make it MaybeLive, so
419  // we can add those to the Uses map if the return value really turns out to be
420  // MaybeLive. Initialized to a list of RetCount empty lists.
421  RetUses MaybeLiveRetUses(RetCount);
422
423  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
424    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
425      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
426          != F.getFunctionType()->getReturnType()) {
427        // We don't support old style multiple return values.
428        MarkLive(F);
429        return;
430      }
431
432  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
433    MarkLive(F);
434    return;
435  }
436
437  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
438  // Keep track of the number of live retvals, so we can skip checks once all
439  // of them turn out to be live.
440  unsigned NumLiveRetVals = 0;
441  const Type *STy = dyn_cast<StructType>(F.getReturnType());
442  // Loop all uses of the function.
443  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
444       I != E; ++I) {
445    // If the function is PASSED IN as an argument, its address has been
446    // taken.
447    ImmutableCallSite CS(*I);
448    if (!CS || !CS.isCallee(I)) {
449      MarkLive(F);
450      return;
451    }
452
453    // If this use is anything other than a call site, the function is alive.
454    const Instruction *TheCall = CS.getInstruction();
455    if (!TheCall) {   // Not a direct call site?
456      MarkLive(F);
457      return;
458    }
459
460    // If we end up here, we are looking at a direct call to our function.
461
462    // Now, check how our return value(s) is/are used in this caller. Don't
463    // bother checking return values if all of them are live already.
464    if (NumLiveRetVals != RetCount) {
465      if (STy) {
466        // Check all uses of the return value.
467        for (Value::const_use_iterator I = TheCall->use_begin(),
468             E = TheCall->use_end(); I != E; ++I) {
469          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
470          if (Ext && Ext->hasIndices()) {
471            // This use uses a part of our return value, survey the uses of
472            // that part and store the results for this index only.
473            unsigned Idx = *Ext->idx_begin();
474            if (RetValLiveness[Idx] != Live) {
475              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
476              if (RetValLiveness[Idx] == Live)
477                NumLiveRetVals++;
478            }
479          } else {
480            // Used by something else than extractvalue. Mark all return
481            // values as live.
482            for (unsigned i = 0; i != RetCount; ++i )
483              RetValLiveness[i] = Live;
484            NumLiveRetVals = RetCount;
485            break;
486          }
487        }
488      } else {
489        // Single return value
490        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
491        if (RetValLiveness[0] == Live)
492          NumLiveRetVals = RetCount;
493      }
494    }
495  }
496
497  // Now we've inspected all callers, record the liveness of our return values.
498  for (unsigned i = 0; i != RetCount; ++i)
499    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
500
501  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
502
503  // Now, check all of our arguments.
504  unsigned i = 0;
505  UseVector MaybeLiveArgUses;
506  for (Function::const_arg_iterator AI = F.arg_begin(),
507       E = F.arg_end(); AI != E; ++AI, ++i) {
508    // See what the effect of this use is (recording any uses that cause
509    // MaybeLive in MaybeLiveArgUses).
510    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
511    // Mark the result.
512    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
513    // Clear the vector again for the next iteration.
514    MaybeLiveArgUses.clear();
515  }
516}
517
518/// MarkValue - This function marks the liveness of RA depending on L. If L is
519/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
520/// such that RA will be marked live if any use in MaybeLiveUses gets marked
521/// live later on.
522void DAE::MarkValue(const RetOrArg &RA, Liveness L,
523                    const UseVector &MaybeLiveUses) {
524  switch (L) {
525    case Live: MarkLive(RA); break;
526    case MaybeLive:
527    {
528      // Note any uses of this value, so this return value can be
529      // marked live whenever one of the uses becomes live.
530      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
531           UE = MaybeLiveUses.end(); UI != UE; ++UI)
532        Uses.insert(std::make_pair(*UI, RA));
533      break;
534    }
535  }
536}
537
538/// MarkLive - Mark the given Function as alive, meaning that it cannot be
539/// changed in any way. Additionally,
540/// mark any values that are used as this function's parameters or by its return
541/// values (according to Uses) live as well.
542void DAE::MarkLive(const Function &F) {
543  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
544  // Mark the function as live.
545  LiveFunctions.insert(&F);
546  // Mark all arguments as live.
547  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
548    PropagateLiveness(CreateArg(&F, i));
549  // Mark all return values as live.
550  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
551    PropagateLiveness(CreateRet(&F, i));
552}
553
554/// MarkLive - Mark the given return value or argument as live. Additionally,
555/// mark any values that are used by this value (according to Uses) live as
556/// well.
557void DAE::MarkLive(const RetOrArg &RA) {
558  if (LiveFunctions.count(RA.F))
559    return; // Function was already marked Live.
560
561  if (!LiveValues.insert(RA).second)
562    return; // We were already marked Live.
563
564  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
565  PropagateLiveness(RA);
566}
567
568/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
569/// to any other values it uses (according to Uses).
570void DAE::PropagateLiveness(const RetOrArg &RA) {
571  // We don't use upper_bound (or equal_range) here, because our recursive call
572  // to ourselves is likely to cause the upper_bound (which is the first value
573  // not belonging to RA) to become erased and the iterator invalidated.
574  UseMap::iterator Begin = Uses.lower_bound(RA);
575  UseMap::iterator E = Uses.end();
576  UseMap::iterator I;
577  for (I = Begin; I != E && I->first == RA; ++I)
578    MarkLive(I->second);
579
580  // Erase RA from the Uses map (from the lower bound to wherever we ended up
581  // after the loop).
582  Uses.erase(Begin, I);
583}
584
585// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
586// that are not in LiveValues. Transform the function and all of the callees of
587// the function to not have these arguments and return values.
588//
589bool DAE::RemoveDeadStuffFromFunction(Function *F) {
590  // Don't modify fully live functions
591  if (LiveFunctions.count(F))
592    return false;
593
594  // Start by computing a new prototype for the function, which is the same as
595  // the old function, but has fewer arguments and a different return type.
596  const FunctionType *FTy = F->getFunctionType();
597  std::vector<const Type*> Params;
598
599  // Set up to build a new list of parameter attributes.
600  SmallVector<AttributeWithIndex, 8> AttributesVec;
601  const AttrListPtr &PAL = F->getAttributes();
602
603  // The existing function return attributes.
604  Attributes RAttrs = PAL.getRetAttributes();
605  Attributes FnAttrs = PAL.getFnAttributes();
606
607  // Find out the new return value.
608
609  const Type *RetTy = FTy->getReturnType();
610  const Type *NRetTy = NULL;
611  unsigned RetCount = NumRetVals(F);
612
613  // -1 means unused, other numbers are the new index
614  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
615  std::vector<const Type*> RetTypes;
616  if (RetTy->isVoidTy()) {
617    NRetTy = RetTy;
618  } else {
619    const StructType *STy = dyn_cast<StructType>(RetTy);
620    if (STy)
621      // Look at each of the original return values individually.
622      for (unsigned i = 0; i != RetCount; ++i) {
623        RetOrArg Ret = CreateRet(F, i);
624        if (LiveValues.erase(Ret)) {
625          RetTypes.push_back(STy->getElementType(i));
626          NewRetIdxs[i] = RetTypes.size() - 1;
627        } else {
628          ++NumRetValsEliminated;
629          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
630                << F->getName() << "\n");
631        }
632      }
633    else
634      // We used to return a single value.
635      if (LiveValues.erase(CreateRet(F, 0))) {
636        RetTypes.push_back(RetTy);
637        NewRetIdxs[0] = 0;
638      } else {
639        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
640              << "\n");
641        ++NumRetValsEliminated;
642      }
643    if (RetTypes.size() > 1)
644      // More than one return type? Return a struct with them. Also, if we used
645      // to return a struct and didn't change the number of return values,
646      // return a struct again. This prevents changing {something} into
647      // something and {} into void.
648      // Make the new struct packed if we used to return a packed struct
649      // already.
650      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
651    else if (RetTypes.size() == 1)
652      // One return type? Just a simple value then, but only if we didn't use to
653      // return a struct with that simple value before.
654      NRetTy = RetTypes.front();
655    else if (RetTypes.size() == 0)
656      // No return types? Make it void, but only if we didn't use to return {}.
657      NRetTy = Type::getVoidTy(F->getContext());
658  }
659
660  assert(NRetTy && "No new return type found?");
661
662  // Remove any incompatible attributes, but only if we removed all return
663  // values. Otherwise, ensure that we don't have any conflicting attributes
664  // here. Currently, this should not be possible, but special handling might be
665  // required when new return value attributes are added.
666  if (NRetTy->isVoidTy())
667    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
668  else
669    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
670           && "Return attributes no longer compatible?");
671
672  if (RAttrs)
673    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
674
675  // Remember which arguments are still alive.
676  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
677  // Construct the new parameter list from non-dead arguments. Also construct
678  // a new set of parameter attributes to correspond. Skip the first parameter
679  // attribute, since that belongs to the return value.
680  unsigned i = 0;
681  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
682       I != E; ++I, ++i) {
683    RetOrArg Arg = CreateArg(F, i);
684    if (LiveValues.erase(Arg)) {
685      Params.push_back(I->getType());
686      ArgAlive[i] = true;
687
688      // Get the original parameter attributes (skipping the first one, that is
689      // for the return value.
690      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
691        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
692    } else {
693      ++NumArgumentsEliminated;
694      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
695            << ") from " << F->getName() << "\n");
696    }
697  }
698
699  if (FnAttrs != Attribute::None)
700    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
701
702  // Reconstruct the AttributesList based on the vector we constructed.
703  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
704                                        AttributesVec.end());
705
706  // Create the new function type based on the recomputed parameters.
707  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
708
709  // No change?
710  if (NFTy == FTy)
711    return false;
712
713  // Create the new function body and insert it into the module...
714  Function *NF = Function::Create(NFTy, F->getLinkage());
715  NF->copyAttributesFrom(F);
716  NF->setAttributes(NewPAL);
717  // Insert the new function before the old function, so we won't be processing
718  // it again.
719  F->getParent()->getFunctionList().insert(F, NF);
720  NF->takeName(F);
721
722  // Loop over all of the callers of the function, transforming the call sites
723  // to pass in a smaller number of arguments into the new function.
724  //
725  std::vector<Value*> Args;
726  while (!F->use_empty()) {
727    CallSite CS(F->use_back());
728    Instruction *Call = CS.getInstruction();
729
730    AttributesVec.clear();
731    const AttrListPtr &CallPAL = CS.getAttributes();
732
733    // The call return attributes.
734    Attributes RAttrs = CallPAL.getRetAttributes();
735    Attributes FnAttrs = CallPAL.getFnAttributes();
736    // Adjust in case the function was changed to return void.
737    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
738    if (RAttrs)
739      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
740
741    // Declare these outside of the loops, so we can reuse them for the second
742    // loop, which loops the varargs.
743    CallSite::arg_iterator I = CS.arg_begin();
744    unsigned i = 0;
745    // Loop over those operands, corresponding to the normal arguments to the
746    // original function, and add those that are still alive.
747    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
748      if (ArgAlive[i]) {
749        Args.push_back(*I);
750        // Get original parameter attributes, but skip return attributes.
751        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
752          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
753      }
754
755    // Push any varargs arguments on the list. Don't forget their attributes.
756    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
757      Args.push_back(*I);
758      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
759        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
760    }
761
762    if (FnAttrs != Attribute::None)
763      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
764
765    // Reconstruct the AttributesList based on the vector we constructed.
766    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
767                                              AttributesVec.end());
768
769    Instruction *New;
770    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
771      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
772                               Args.begin(), Args.end(), "", Call);
773      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
774      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
775    } else {
776      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
777      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
778      cast<CallInst>(New)->setAttributes(NewCallPAL);
779      if (cast<CallInst>(Call)->isTailCall())
780        cast<CallInst>(New)->setTailCall();
781    }
782    New->setDebugLoc(Call->getDebugLoc());
783
784    Args.clear();
785
786    if (!Call->use_empty()) {
787      if (New->getType() == Call->getType()) {
788        // Return type not changed? Just replace users then.
789        Call->replaceAllUsesWith(New);
790        New->takeName(Call);
791      } else if (New->getType()->isVoidTy()) {
792        // Our return value has uses, but they will get removed later on.
793        // Replace by null for now.
794        if (!Call->getType()->isX86_MMXTy())
795          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
796      } else {
797        assert(RetTy->isStructTy() &&
798               "Return type changed, but not into a void. The old return type"
799               " must have been a struct!");
800        Instruction *InsertPt = Call;
801        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
802          BasicBlock::iterator IP = II->getNormalDest()->begin();
803          while (isa<PHINode>(IP)) ++IP;
804          InsertPt = IP;
805        }
806
807        // We used to return a struct. Instead of doing smart stuff with all the
808        // uses of this struct, we will just rebuild it using
809        // extract/insertvalue chaining and let instcombine clean that up.
810        //
811        // Start out building up our return value from undef
812        Value *RetVal = UndefValue::get(RetTy);
813        for (unsigned i = 0; i != RetCount; ++i)
814          if (NewRetIdxs[i] != -1) {
815            Value *V;
816            if (RetTypes.size() > 1)
817              // We are still returning a struct, so extract the value from our
818              // return value
819              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
820                                           InsertPt);
821            else
822              // We are now returning a single element, so just insert that
823              V = New;
824            // Insert the value at the old position
825            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
826          }
827        // Now, replace all uses of the old call instruction with the return
828        // struct we built
829        Call->replaceAllUsesWith(RetVal);
830        New->takeName(Call);
831      }
832    }
833
834    // Finally, remove the old call from the program, reducing the use-count of
835    // F.
836    Call->eraseFromParent();
837  }
838
839  // Since we have now created the new function, splice the body of the old
840  // function right into the new function, leaving the old rotting hulk of the
841  // function empty.
842  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
843
844  // Loop over the argument list, transfering uses of the old arguments over to
845  // the new arguments, also transfering over the names as well.
846  i = 0;
847  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
848       I2 = NF->arg_begin(); I != E; ++I, ++i)
849    if (ArgAlive[i]) {
850      // If this is a live argument, move the name and users over to the new
851      // version.
852      I->replaceAllUsesWith(I2);
853      I2->takeName(I);
854      ++I2;
855    } else {
856      // If this argument is dead, replace any uses of it with null constants
857      // (these are guaranteed to become unused later on).
858      if (!I->getType()->isX86_MMXTy())
859        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
860    }
861
862  // If we change the return value of the function we must rewrite any return
863  // instructions.  Check this now.
864  if (F->getReturnType() != NF->getReturnType())
865    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
866      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
867        Value *RetVal;
868
869        if (NFTy->getReturnType()->isVoidTy()) {
870          RetVal = 0;
871        } else {
872          assert (RetTy->isStructTy());
873          // The original return value was a struct, insert
874          // extractvalue/insertvalue chains to extract only the values we need
875          // to return and insert them into our new result.
876          // This does generate messy code, but we'll let it to instcombine to
877          // clean that up.
878          Value *OldRet = RI->getOperand(0);
879          // Start out building up our return value from undef
880          RetVal = UndefValue::get(NRetTy);
881          for (unsigned i = 0; i != RetCount; ++i)
882            if (NewRetIdxs[i] != -1) {
883              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
884                                                              "oldret", RI);
885              if (RetTypes.size() > 1) {
886                // We're still returning a struct, so reinsert the value into
887                // our new return value at the new index
888
889                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
890                                                 "newret", RI);
891              } else {
892                // We are now only returning a simple value, so just return the
893                // extracted value.
894                RetVal = EV;
895              }
896            }
897        }
898        // Replace the return instruction with one returning the new return
899        // value (possibly 0 if we became void).
900        ReturnInst::Create(F->getContext(), RetVal, RI);
901        BB->getInstList().erase(RI);
902      }
903
904  // Now that the old function is dead, delete it.
905  F->eraseFromParent();
906
907  return true;
908}
909
910bool DAE::runOnModule(Module &M) {
911  bool Changed = false;
912
913  // First pass: Do a simple check to see if any functions can have their "..."
914  // removed.  We can do this if they never call va_start.  This loop cannot be
915  // fused with the next loop, because deleting a function invalidates
916  // information computed while surveying other functions.
917  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
918  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
919    Function &F = *I++;
920    if (F.getFunctionType()->isVarArg())
921      Changed |= DeleteDeadVarargs(F);
922  }
923
924  // Second phase:loop through the module, determining which arguments are live.
925  // We assume all arguments are dead unless proven otherwise (allowing us to
926  // determine that dead arguments passed into recursive functions are dead).
927  //
928  DEBUG(dbgs() << "DAE - Determining liveness\n");
929  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
930    SurveyFunction(*I);
931
932  // Now, remove all dead arguments and return values from each function in
933  // turn.
934  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
935    // Increment now, because the function will probably get removed (ie.
936    // replaced by a new one).
937    Function *F = I++;
938    Changed |= RemoveDeadStuffFromFunction(F);
939  }
940  return Changed;
941}
942