DeadArgumentElimination.cpp revision 24ca635521d9598de3a46872aab85ae759da8828
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/Compiler.h"
35#include <map>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
41
42namespace {
43  /// DAE - The dead argument elimination pass.
44  ///
45  class VISIBILITY_HIDDEN DAE : public ModulePass {
46  public:
47
48    /// Struct that represents (part of) either a return value or a function
49    /// argument.  Used so that arguments and return values can be used
50    /// interchangably.
51    struct RetOrArg {
52      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
53               IsArg(IsArg) {}
54      const Function *F;
55      unsigned Idx;
56      bool IsArg;
57
58      /// Make RetOrArg comparable, so we can put it into a map.
59      bool operator<(const RetOrArg &O) const {
60        if (F != O.F)
61          return F < O.F;
62        else if (Idx != O.Idx)
63          return Idx < O.Idx;
64        else
65          return IsArg < O.IsArg;
66      }
67
68      /// Make RetOrArg comparable, so we can easily iterate the multimap.
69      bool operator==(const RetOrArg &O) const {
70        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
71      }
72
73      std::string getDescription() {
74        return std::string((IsArg ? "Argument #" : "Return value #"))
75               + utostr(Idx) + " of function " + F->getName();
76      }
77    };
78
79    /// Liveness enum - During our initial pass over the program, we determine
80    /// that things are either alive or maybe alive. We don't mark anything
81    /// explicitly dead (even if we know they are), since anything not alive
82    /// with no registered uses (in Uses) will never be marked alive and will
83    /// thus become dead in the end.
84    enum Liveness { Live, MaybeLive };
85
86    /// Convenience wrapper
87    RetOrArg CreateRet(const Function *F, unsigned Idx) {
88      return RetOrArg(F, Idx, false);
89    }
90    /// Convenience wrapper
91    RetOrArg CreateArg(const Function *F, unsigned Idx) {
92      return RetOrArg(F, Idx, true);
93    }
94
95    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96    /// This maps a return value or argument to any MaybeLive return values or
97    /// arguments it uses. This allows the MaybeLive values to be marked live
98    /// when any of its users is marked live.
99    /// For example (indices are left out for clarity):
100    ///  - Uses[ret F] = ret G
101    ///    This means that F calls G, and F returns the value returned by G.
102    ///  - Uses[arg F] = ret G
103    ///    This means that some function calls G and passes its result as an
104    ///    argument to F.
105    ///  - Uses[ret F] = arg F
106    ///    This means that F returns one of its own arguments.
107    ///  - Uses[arg F] = arg G
108    ///    This means that G calls F and passes one of its own (G's) arguments
109    ///    directly to F.
110    UseMap Uses;
111
112    typedef std::set<RetOrArg> LiveSet;
113
114    /// This set contains all values that have been determined to be live.
115    LiveSet LiveValues;
116
117    typedef SmallVector<RetOrArg, 5> UseVector;
118
119  public:
120    static char ID; // Pass identification, replacement for typeid
121    DAE() : ModulePass((intptr_t)&ID) {}
122    bool runOnModule(Module &M);
123
124    virtual bool ShouldHackArguments() const { return false; }
125
126  private:
127    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
128    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
129                       unsigned RetValNum = 0);
130    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
131
132    void SurveyFunction(Function &F);
133    void MarkValue(const RetOrArg &RA, Liveness L,
134                   const UseVector &MaybeLiveUses);
135    void MarkLive(RetOrArg RA);
136    void MarkLive(const Function &F);
137    bool RemoveDeadStuffFromFunction(Function *F);
138    bool DeleteDeadVarargs(Function &Fn);
139  };
140}
141
142
143char DAE::ID = 0;
144static RegisterPass<DAE>
145X("deadargelim", "Dead Argument Elimination");
146
147namespace {
148  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
149  /// deletes arguments to functions which are external.  This is only for use
150  /// by bugpoint.
151  struct DAH : public DAE {
152    static char ID;
153    virtual bool ShouldHackArguments() const { return true; }
154  };
155}
156
157char DAH::ID = 0;
158static RegisterPass<DAH>
159Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
160
161/// createDeadArgEliminationPass - This pass removes arguments from functions
162/// which are not used by the body of the function.
163///
164ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
165ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
166
167/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
168/// llvm.vastart is never called, the varargs list is dead for the function.
169bool DAE::DeleteDeadVarargs(Function &Fn) {
170  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
171  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
172
173  // Ensure that the function is only directly called.
174  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
175    // If this use is anything other than a call site, give up.
176    CallSite CS = CallSite::get(*I);
177    Instruction *TheCall = CS.getInstruction();
178    if (!TheCall) return false;   // Not a direct call site?
179
180    // The addr of this function is passed to the call.
181    if (I.getOperandNo() != 0) return false;
182  }
183
184  // Okay, we know we can transform this function if safe.  Scan its body
185  // looking for calls to llvm.vastart.
186  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
187    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
188      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
189        if (II->getIntrinsicID() == Intrinsic::vastart)
190          return false;
191      }
192    }
193  }
194
195  // If we get here, there are no calls to llvm.vastart in the function body,
196  // remove the "..." and adjust all the calls.
197
198  // Start by computing a new prototype for the function, which is the same as
199  // the old function, but doesn't have isVarArg set.
200  const FunctionType *FTy = Fn.getFunctionType();
201  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
202  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
203  unsigned NumArgs = Params.size();
204
205  // Create the new function body and insert it into the module...
206  Function *NF = Function::Create(NFTy, Fn.getLinkage());
207  NF->copyAttributesFrom(&Fn);
208  Fn.getParent()->getFunctionList().insert(&Fn, NF);
209  NF->takeName(&Fn);
210
211  // Loop over all of the callers of the function, transforming the call sites
212  // to pass in a smaller number of arguments into the new function.
213  //
214  std::vector<Value*> Args;
215  while (!Fn.use_empty()) {
216    CallSite CS = CallSite::get(Fn.use_back());
217    Instruction *Call = CS.getInstruction();
218
219    // Pass all the same arguments.
220    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
221
222    // Drop any attributes that were on the vararg arguments.
223    PAListPtr PAL = CS.getParamAttrs();
224    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
225      SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
226      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
227        ParamAttrsVec.push_back(PAL.getSlot(i));
228      PAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
229    }
230
231    Instruction *New;
232    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
233      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
234                               Args.begin(), Args.end(), "", Call);
235      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
236      cast<InvokeInst>(New)->setParamAttrs(PAL);
237    } else {
238      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
239      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
240      cast<CallInst>(New)->setParamAttrs(PAL);
241      if (cast<CallInst>(Call)->isTailCall())
242        cast<CallInst>(New)->setTailCall();
243    }
244    Args.clear();
245
246    if (!Call->use_empty())
247      Call->replaceAllUsesWith(New);
248
249    New->takeName(Call);
250
251    // Finally, remove the old call from the program, reducing the use-count of
252    // F.
253    Call->eraseFromParent();
254  }
255
256  // Since we have now created the new function, splice the body of the old
257  // function right into the new function, leaving the old rotting hulk of the
258  // function empty.
259  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
260
261  // Loop over the argument list, transfering uses of the old arguments over to
262  // the new arguments, also transfering over the names as well.  While we're at
263  // it, remove the dead arguments from the DeadArguments list.
264  //
265  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
266       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
267    // Move the name and users over to the new version.
268    I->replaceAllUsesWith(I2);
269    I2->takeName(I);
270  }
271
272  // Finally, nuke the old function.
273  Fn.eraseFromParent();
274  return true;
275}
276
277/// Convenience function that returns the number of return values. It returns 0
278/// for void functions and 1 for functions not returning a struct. It returns
279/// the number of struct elements for functions returning a struct.
280static unsigned NumRetVals(const Function *F) {
281  if (F->getReturnType() == Type::VoidTy)
282    return 0;
283  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
284    return STy->getNumElements();
285  else
286    return 1;
287}
288
289/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
290/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
291/// liveness of Use.
292DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
293  // We're live if our use is already marked as live.
294  if (LiveValues.count(Use))
295    return Live;
296
297  // We're maybe live otherwise, but remember that we must become live if
298  // Use becomes live.
299  MaybeLiveUses.push_back(Use);
300  return MaybeLive;
301}
302
303
304/// SurveyUse - This looks at a single use of an argument or return value
305/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
306/// if it causes the used value to become MaybeAlive.
307///
308/// RetValNum is the return value number to use when this use is used in a
309/// return instruction. This is used in the recursion, you should always leave
310/// it at 0.
311DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
312                             unsigned RetValNum) {
313    Value *V = *U;
314    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
315      // The value is returned from a function. It's only live when the
316      // function's return value is live. We use RetValNum here, for the case
317      // that U is really a use of an insertvalue instruction that uses the
318      // orginal Use.
319      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
320      // We might be live, depending on the liveness of Use.
321      return MarkIfNotLive(Use, MaybeLiveUses);
322    }
323    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
324      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
325          && IV->hasIndices())
326        // The use we are examining is inserted into an aggregate. Our liveness
327        // depends on all uses of that aggregate, but if it is used as a return
328        // value, only index at which we were inserted counts.
329        RetValNum = *IV->idx_begin();
330
331      // Note that if we are used as the aggregate operand to the insertvalue,
332      // we don't change RetValNum, but do survey all our uses.
333
334      Liveness Result = MaybeLive;
335      for (Value::use_iterator I = IV->use_begin(),
336           E = V->use_end(); I != E; ++I) {
337        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
338        if (Result == Live)
339          break;
340      }
341      return Result;
342    }
343    CallSite CS = CallSite::get(V);
344    if (CS.getInstruction()) {
345      Function *F = CS.getCalledFunction();
346      if (F) {
347        // Used in a direct call.
348
349        // Find the argument number. We know for sure that this use is an
350        // argument, since if it was the function argument this would be an
351        // indirect call and the we know can't be looking at a value of the
352        // label type (for the invoke instruction).
353        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
354
355        if (ArgNo >= F->getFunctionType()->getNumParams())
356          // The value is passed in through a vararg! Must be live.
357          return Live;
358
359        assert(CS.getArgument(ArgNo)
360               == CS.getInstruction()->getOperand(U.getOperandNo())
361               && "Argument is not where we expected it");
362
363        // Value passed to a normal call. It's only live when the corresponding
364        // argument to the called function turns out live.
365        RetOrArg Use = CreateArg(F, ArgNo);
366        return MarkIfNotLive(Use, MaybeLiveUses);
367      }
368    }
369    // Used in any other way? Value must be live.
370    return Live;
371}
372
373/// SurveyUses - This looks at all the uses of the given value
374/// Returns the Liveness deduced from the uses of this value.
375///
376/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
377/// the result is Live, MaybeLiveUses might be modified but its content should
378/// be ignored (since it might not be complete).
379DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
380  // Assume it's dead (which will only hold if there are no uses at all..).
381  Liveness Result = MaybeLive;
382  // Check each use.
383  for (Value::use_iterator I = V->use_begin(),
384       E = V->use_end(); I != E; ++I) {
385    Result = SurveyUse(I, MaybeLiveUses);
386    if (Result == Live)
387      break;
388  }
389  return Result;
390}
391
392// SurveyFunction - This performs the initial survey of the specified function,
393// checking out whether or not it uses any of its incoming arguments or whether
394// any callers use the return value.  This fills in the LiveValues set and Uses
395// map.
396//
397// We consider arguments of non-internal functions to be intrinsically alive as
398// well as arguments to functions which have their "address taken".
399//
400void DAE::SurveyFunction(Function &F) {
401  unsigned RetCount = NumRetVals(&F);
402  // Assume all return values are dead
403  typedef SmallVector<Liveness, 5> RetVals;
404  RetVals RetValLiveness(RetCount, MaybeLive);
405
406  typedef SmallVector<UseVector, 5> RetUses;
407  // These vectors map each return value to the uses that make it MaybeLive, so
408  // we can add those to the Uses map if the return value really turns out to be
409  // MaybeLive. Initialized to a list of RetCount empty lists.
410  RetUses MaybeLiveRetUses(RetCount);
411
412  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
413    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
414      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
415          != F.getFunctionType()->getReturnType()) {
416        // We don't support old style multiple return values.
417        MarkLive(F);
418        return;
419      }
420
421  if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
422    MarkLive(F);
423    return;
424  }
425
426  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
427  // Keep track of the number of live retvals, so we can skip checks once all
428  // of them turn out to be live.
429  unsigned NumLiveRetVals = 0;
430  const Type *STy = dyn_cast<StructType>(F.getReturnType());
431  // Loop all uses of the function.
432  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
433    // If the function is PASSED IN as an argument, its address has been
434    // taken.
435    if (I.getOperandNo() != 0) {
436      MarkLive(F);
437      return;
438    }
439
440    // If this use is anything other than a call site, the function is alive.
441    CallSite CS = CallSite::get(*I);
442    Instruction *TheCall = CS.getInstruction();
443    if (!TheCall) {   // Not a direct call site?
444      MarkLive(F);
445      return;
446    }
447
448    // If we end up here, we are looking at a direct call to our function.
449
450    // Now, check how our return value(s) is/are used in this caller. Don't
451    // bother checking return values if all of them are live already.
452    if (NumLiveRetVals != RetCount) {
453      if (STy) {
454        // Check all uses of the return value.
455        for (Value::use_iterator I = TheCall->use_begin(),
456             E = TheCall->use_end(); I != E; ++I) {
457          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
458          if (Ext && Ext->hasIndices()) {
459            // This use uses a part of our return value, survey the uses of
460            // that part and store the results for this index only.
461            unsigned Idx = *Ext->idx_begin();
462            if (RetValLiveness[Idx] != Live) {
463              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
464              if (RetValLiveness[Idx] == Live)
465                NumLiveRetVals++;
466            }
467          } else {
468            // Used by something else than extractvalue. Mark all return
469            // values as live.
470            for (unsigned i = 0; i != RetCount; ++i )
471              RetValLiveness[i] = Live;
472            NumLiveRetVals = RetCount;
473            break;
474          }
475        }
476      } else {
477        // Single return value
478        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
479        if (RetValLiveness[0] == Live)
480          NumLiveRetVals = RetCount;
481      }
482    }
483  }
484
485  // Now we've inspected all callers, record the liveness of our return values.
486  for (unsigned i = 0; i != RetCount; ++i)
487    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
488
489  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
490
491  // Now, check all of our arguments.
492  unsigned i = 0;
493  UseVector MaybeLiveArgUses;
494  for (Function::arg_iterator AI = F.arg_begin(),
495       E = F.arg_end(); AI != E; ++AI, ++i) {
496    // See what the effect of this use is (recording any uses that cause
497    // MaybeLive in MaybeLiveArgUses).
498    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
499    // Mark the result.
500    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
501    // Clear the vector again for the next iteration.
502    MaybeLiveArgUses.clear();
503  }
504}
505
506/// MarkValue - This function marks the liveness of RA depending on L. If L is
507/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
508/// such that RA will be marked live if any use in MaybeLiveUses gets marked
509/// live later on.
510void DAE::MarkValue(const RetOrArg &RA, Liveness L,
511                    const UseVector &MaybeLiveUses) {
512  switch (L) {
513    case Live: MarkLive(RA); break;
514    case MaybeLive:
515    {
516      // Note any uses of this value, so this return value can be
517      // marked live whenever one of the uses becomes live.
518      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
519           UE = MaybeLiveUses.end(); UI != UE; ++UI)
520        Uses.insert(std::make_pair(*UI, RA));
521      break;
522    }
523  }
524}
525
526/// MarkLive - Mark the given Function as alive, meaning that it cannot be
527/// changed in any way. Additionally,
528/// mark any values that are used as this function's parameters or by its return
529/// values (according to Uses) live as well.
530void DAE::MarkLive(const Function &F) {
531    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
532    // Mark all arguments as live.
533    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
534      MarkLive(CreateArg(&F, i));
535    // Mark all return values as live.
536    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
537      MarkLive(CreateRet(&F, i));
538}
539
540/// MarkLive - Mark the given return value or argument as live. Additionally,
541/// mark any values that are used by this value (according to Uses) live as
542/// well.
543void DAE::MarkLive(RetOrArg RA) {
544  if (!LiveValues.insert(RA).second)
545    return; // We were already marked Live.
546
547  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
548
549  // We don't use upper_bound (or equal_range) here, because our recursive call
550  // to ourselves is likely to cause the upper_bound (which is the first value
551  // not belonging to RA) to become erased and the iterator invalidated.
552  UseMap::iterator Begin = Uses.lower_bound(RA);
553  UseMap::iterator E = Uses.end();
554  UseMap::iterator I;
555  for (I = Begin; I != E && I->first == RA; ++I)
556    MarkLive(I->second);
557
558  // Erase RA from the Uses map (from the lower bound to wherever we ended up
559  // after the loop).
560  Uses.erase(Begin, I);
561}
562
563// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
564// that are not in LiveValues. Transform the function and all of the callees of
565// the function to not have these arguments and return values.
566//
567bool DAE::RemoveDeadStuffFromFunction(Function *F) {
568  // Quick exit path for external functions
569  if (!F->hasInternalLinkage() && (!ShouldHackArguments() || F->isIntrinsic()))
570    return false;
571
572  // Start by computing a new prototype for the function, which is the same as
573  // the old function, but has fewer arguments and a different return type.
574  const FunctionType *FTy = F->getFunctionType();
575  std::vector<const Type*> Params;
576
577  // Set up to build a new list of parameter attributes.
578  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
579  const PAListPtr &PAL = F->getParamAttrs();
580
581  // The existing function return attributes.
582  ParameterAttributes RAttrs = PAL.getParamAttrs(0);
583
584
585  // Find out the new return value.
586
587  const Type *RetTy = FTy->getReturnType();
588  const Type *NRetTy = NULL;
589  unsigned RetCount = NumRetVals(F);
590  // Explicitly track if anything changed, for debugging.
591  bool Changed = false;
592  // -1 means unused, other numbers are the new index
593  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
594  std::vector<const Type*> RetTypes;
595  if (RetTy == Type::VoidTy) {
596    NRetTy = Type::VoidTy;
597  } else {
598    const StructType *STy = dyn_cast<StructType>(RetTy);
599    if (STy)
600      // Look at each of the original return values individually.
601      for (unsigned i = 0; i != RetCount; ++i) {
602        RetOrArg Ret = CreateRet(F, i);
603        if (LiveValues.erase(Ret)) {
604          RetTypes.push_back(STy->getElementType(i));
605          NewRetIdxs[i] = RetTypes.size() - 1;
606        } else {
607          ++NumRetValsEliminated;
608          DOUT << "DAE - Removing return value " << i << " from "
609               << F->getNameStart() << "\n";
610          Changed = true;
611        }
612      }
613    else
614      // We used to return a single value.
615      if (LiveValues.erase(CreateRet(F, 0))) {
616        RetTypes.push_back(RetTy);
617        NewRetIdxs[0] = 0;
618      } else {
619        DOUT << "DAE - Removing return value from " << F->getNameStart()
620             << "\n";
621        ++NumRetValsEliminated;
622        Changed = true;
623      }
624    if (RetTypes.size() > 1 || (STy && STy->getNumElements()==RetTypes.size()))
625      // More than one return type? Return a struct with them. Also, if we used
626      // to return a struct and didn't change the number of return values,
627      // return a struct again. This prevents changing {something} into
628      // something and {} into void.
629      // Make the new struct packed if we used to return a packed struct
630      // already.
631      NRetTy = StructType::get(RetTypes, STy->isPacked());
632    else if (RetTypes.size() == 1)
633      // One return type? Just a simple value then, but only if we didn't use to
634      // return a struct with that simple value before.
635      NRetTy = RetTypes.front();
636    else if (RetTypes.size() == 0)
637      // No return types? Make it void, but only if we didn't use to return {}.
638      NRetTy = Type::VoidTy;
639  }
640
641  assert(NRetTy && "No new return type found?");
642
643  // Remove any incompatible attributes, but only if we removed all return
644  // values. Otherwise, ensure that we don't have any conflicting attributes
645  // here. Currently, this should not be possible, but special handling might be
646  // required when new return value attributes are added.
647  if (NRetTy == Type::VoidTy)
648    RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
649  else
650    assert((RAttrs & ParamAttr::typeIncompatible(NRetTy)) == 0
651           && "Return attributes no longer compatible?");
652
653  if (RAttrs)
654    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
655
656  // Remember which arguments are still alive.
657  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
658  // Construct the new parameter list from non-dead arguments. Also construct
659  // a new set of parameter attributes to correspond. Skip the first parameter
660  // attribute, since that belongs to the return value.
661  unsigned i = 0;
662  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
663       I != E; ++I, ++i) {
664    RetOrArg Arg = CreateArg(F, i);
665    if (LiveValues.erase(Arg)) {
666      Params.push_back(I->getType());
667      ArgAlive[i] = true;
668
669      // Get the original parameter attributes (skipping the first one, that is
670      // for the return value.
671      if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
672        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
673    } else {
674      ++NumArgumentsEliminated;
675      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
676           << ") from " << F->getNameStart() << "\n";
677      Changed = true;
678    }
679  }
680
681  // Reconstruct the ParamAttrsList based on the vector we constructed.
682  PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
683
684  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
685  // have zero fixed arguments.
686  //
687  // Note that we apply this hack for a vararg fuction that does not have any
688  // arguments anymore, but did have them before (so don't bother fixing
689  // functions that were already broken wrt CWriter).
690  bool ExtraArgHack = false;
691  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
692    ExtraArgHack = true;
693    Params.push_back(Type::Int32Ty);
694  }
695
696  // Create the new function type based on the recomputed parameters.
697  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
698
699  // No change?
700  if (NFTy == FTy)
701    return false;
702
703  // The function type is only allowed to be different if we actually left out
704  // an argument or return value.
705  assert(Changed && "Function type changed while no arguments or return values"
706                    "were removed!");
707
708  // Create the new function body and insert it into the module...
709  Function *NF = Function::Create(NFTy, F->getLinkage());
710  NF->copyAttributesFrom(F);
711  NF->setParamAttrs(NewPAL);
712  // Insert the new function before the old function, so we won't be processing
713  // it again.
714  F->getParent()->getFunctionList().insert(F, NF);
715  NF->takeName(F);
716
717  // Loop over all of the callers of the function, transforming the call sites
718  // to pass in a smaller number of arguments into the new function.
719  //
720  std::vector<Value*> Args;
721  while (!F->use_empty()) {
722    CallSite CS = CallSite::get(F->use_back());
723    Instruction *Call = CS.getInstruction();
724
725    ParamAttrsVec.clear();
726    const PAListPtr &CallPAL = CS.getParamAttrs();
727
728    // The call return attributes.
729    ParameterAttributes RAttrs = CallPAL.getParamAttrs(0);
730    // Adjust in case the function was changed to return void.
731    RAttrs &= ~ParamAttr::typeIncompatible(NF->getReturnType());
732    if (RAttrs)
733      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
734
735    // Declare these outside of the loops, so we can reuse them for the second
736    // loop, which loops the varargs.
737    CallSite::arg_iterator I = CS.arg_begin();
738    unsigned i = 0;
739    // Loop over those operands, corresponding to the normal arguments to the
740    // original function, and add those that are still alive.
741    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
742      if (ArgAlive[i]) {
743        Args.push_back(*I);
744        // Get original parameter attributes, but skip return attributes.
745        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
746          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
747      }
748
749    if (ExtraArgHack)
750      Args.push_back(UndefValue::get(Type::Int32Ty));
751
752    // Push any varargs arguments on the list. Don't forget their attributes.
753    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
754      Args.push_back(*I);
755      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
756        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
757    }
758
759    // Reconstruct the ParamAttrsList based on the vector we constructed.
760    PAListPtr NewCallPAL = PAListPtr::get(ParamAttrsVec.begin(),
761                                          ParamAttrsVec.end());
762
763    Instruction *New;
764    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
765      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
766                               Args.begin(), Args.end(), "", Call);
767      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
768      cast<InvokeInst>(New)->setParamAttrs(NewCallPAL);
769    } else {
770      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
771      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
772      cast<CallInst>(New)->setParamAttrs(NewCallPAL);
773      if (cast<CallInst>(Call)->isTailCall())
774        cast<CallInst>(New)->setTailCall();
775    }
776    Args.clear();
777
778    if (!Call->use_empty()) {
779      if (New->getType() == Call->getType()) {
780        // Return type not changed? Just replace users then.
781        Call->replaceAllUsesWith(New);
782        New->takeName(Call);
783      } else if (New->getType() == Type::VoidTy) {
784        // Our return value has uses, but they will get removed later on.
785        // Replace by null for now.
786        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
787      } else {
788        assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
789                                         "void. The old return type must have"
790                                         "been a struct!");
791        // The original return value was a struct, update all uses (which are
792        // all extractvalue instructions).
793        for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
794             I != E;) {
795          assert(isa<ExtractValueInst>(*I) && "Return value not only used by"
796                                              "extractvalue?");
797          ExtractValueInst *EV = cast<ExtractValueInst>(*I);
798          // Increment now, since we're about to throw away this use.
799          ++I;
800          assert(EV->hasIndices() && "Return value used by extractvalue without"
801                                     "indices?");
802          unsigned Idx = *EV->idx_begin();
803          if (NewRetIdxs[Idx] != -1) {
804            if (RetTypes.size() > 1) {
805              // We're still returning a struct, create a new extractvalue
806              // instruction with the first index updated
807              std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
808              NewIdxs[0] = NewRetIdxs[Idx];
809              Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
810                                                    NewIdxs.end(), "retval",
811                                                    EV);
812              EV->replaceAllUsesWith(NEV);
813              EV->eraseFromParent();
814            } else {
815              // We are now only returning a simple value, remove the
816              // extractvalue.
817              EV->replaceAllUsesWith(New);
818              EV->eraseFromParent();
819            }
820          } else {
821            // Value unused, replace uses by null for now, they will get removed
822            // later on.
823            EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
824            EV->eraseFromParent();
825          }
826        }
827        New->takeName(Call);
828      }
829    }
830
831    // Finally, remove the old call from the program, reducing the use-count of
832    // F.
833    Call->eraseFromParent();
834  }
835
836  // Since we have now created the new function, splice the body of the old
837  // function right into the new function, leaving the old rotting hulk of the
838  // function empty.
839  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
840
841  // Loop over the argument list, transfering uses of the old arguments over to
842  // the new arguments, also transfering over the names as well.
843  i = 0;
844  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
845       I2 = NF->arg_begin(); I != E; ++I, ++i)
846    if (ArgAlive[i]) {
847      // If this is a live argument, move the name and users over to the new
848      // version.
849      I->replaceAllUsesWith(I2);
850      I2->takeName(I);
851      ++I2;
852    } else {
853      // If this argument is dead, replace any uses of it with null constants
854      // (these are guaranteed to become unused later on).
855      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
856    }
857
858  // If we change the return value of the function we must rewrite any return
859  // instructions.  Check this now.
860  if (F->getReturnType() != NF->getReturnType())
861    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
862      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
863        Value *RetVal;
864
865        if (NFTy->getReturnType() == Type::VoidTy) {
866          RetVal = 0;
867        } else {
868          assert (isa<StructType>(RetTy));
869          // The original return value was a struct, insert
870          // extractvalue/insertvalue chains to extract only the values we need
871          // to return and insert them into our new result.
872          // This does generate messy code, but we'll let it to instcombine to
873          // clean that up.
874          Value *OldRet = RI->getOperand(0);
875          // Start out building up our return value from undef
876          RetVal = llvm::UndefValue::get(NRetTy);
877          for (unsigned i = 0; i != RetCount; ++i)
878            if (NewRetIdxs[i] != -1) {
879              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
880                                                              "oldret", RI);
881              if (RetTypes.size() > 1) {
882                // We're still returning a struct, so reinsert the value into
883                // our new return value at the new index
884
885                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
886                                                 "newret", RI);
887              } else {
888                // We are now only returning a simple value, so just return the
889                // extracted value.
890                RetVal = EV;
891              }
892            }
893        }
894        // Replace the return instruction with one returning the new return
895        // value (possibly 0 if we became void).
896        ReturnInst::Create(RetVal, RI);
897        BB->getInstList().erase(RI);
898      }
899
900  // Now that the old function is dead, delete it.
901  F->eraseFromParent();
902
903  return true;
904}
905
906bool DAE::runOnModule(Module &M) {
907  bool Changed = false;
908
909  // First pass: Do a simple check to see if any functions can have their "..."
910  // removed.  We can do this if they never call va_start.  This loop cannot be
911  // fused with the next loop, because deleting a function invalidates
912  // information computed while surveying other functions.
913  DOUT << "DAE - Deleting dead varargs\n";
914  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
915    Function &F = *I++;
916    if (F.getFunctionType()->isVarArg())
917      Changed |= DeleteDeadVarargs(F);
918  }
919
920  // Second phase:loop through the module, determining which arguments are live.
921  // We assume all arguments are dead unless proven otherwise (allowing us to
922  // determine that dead arguments passed into recursive functions are dead).
923  //
924  DOUT << "DAE - Determining liveness\n";
925  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
926    SurveyFunction(*I);
927
928  // Now, remove all dead arguments and return values from each function in
929  // turn
930  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
931    // Increment now, because the function will probably get removed (ie
932    // replaced by a new one).
933    Function *F = I++;
934    Changed |= RemoveDeadStuffFromFunction(F);
935  }
936  return Changed;
937}
938