DeadArgumentElimination.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/IR/CallSite.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/DIBuilder.h"
30#include "llvm/IR/DebugInfo.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Module.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40#include <set>
41using namespace llvm;
42
43STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
44STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
45STATISTIC(NumArgumentsReplacedWithUndef,
46          "Number of unread args replaced with undef");
47namespace {
48  /// DAE - The dead argument elimination pass.
49  ///
50  class DAE : public ModulePass {
51  public:
52
53    /// Struct that represents (part of) either a return value or a function
54    /// argument.  Used so that arguments and return values can be used
55    /// interchangeably.
56    struct RetOrArg {
57      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
58               IsArg(IsArg) {}
59      const Function *F;
60      unsigned Idx;
61      bool IsArg;
62
63      /// Make RetOrArg comparable, so we can put it into a map.
64      bool operator<(const RetOrArg &O) const {
65        return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
66      }
67
68      /// Make RetOrArg comparable, so we can easily iterate the multimap.
69      bool operator==(const RetOrArg &O) const {
70        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
71      }
72
73      std::string getDescription() const {
74        return std::string((IsArg ? "Argument #" : "Return value #"))
75               + utostr(Idx) + " of function " + F->getName().str();
76      }
77    };
78
79    /// Liveness enum - During our initial pass over the program, we determine
80    /// that things are either alive or maybe alive. We don't mark anything
81    /// explicitly dead (even if we know they are), since anything not alive
82    /// with no registered uses (in Uses) will never be marked alive and will
83    /// thus become dead in the end.
84    enum Liveness { Live, MaybeLive };
85
86    /// Convenience wrapper
87    RetOrArg CreateRet(const Function *F, unsigned Idx) {
88      return RetOrArg(F, Idx, false);
89    }
90    /// Convenience wrapper
91    RetOrArg CreateArg(const Function *F, unsigned Idx) {
92      return RetOrArg(F, Idx, true);
93    }
94
95    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96    /// This maps a return value or argument to any MaybeLive return values or
97    /// arguments it uses. This allows the MaybeLive values to be marked live
98    /// when any of its users is marked live.
99    /// For example (indices are left out for clarity):
100    ///  - Uses[ret F] = ret G
101    ///    This means that F calls G, and F returns the value returned by G.
102    ///  - Uses[arg F] = ret G
103    ///    This means that some function calls G and passes its result as an
104    ///    argument to F.
105    ///  - Uses[ret F] = arg F
106    ///    This means that F returns one of its own arguments.
107    ///  - Uses[arg F] = arg G
108    ///    This means that G calls F and passes one of its own (G's) arguments
109    ///    directly to F.
110    UseMap Uses;
111
112    typedef std::set<RetOrArg> LiveSet;
113    typedef std::set<const Function*> LiveFuncSet;
114
115    /// This set contains all values that have been determined to be live.
116    LiveSet LiveValues;
117    /// This set contains all values that are cannot be changed in any way.
118    LiveFuncSet LiveFunctions;
119
120    typedef SmallVector<RetOrArg, 5> UseVector;
121
122    // Map each LLVM function to corresponding metadata with debug info. If
123    // the function is replaced with another one, we should patch the pointer
124    // to LLVM function in metadata.
125    // As the code generation for module is finished (and DIBuilder is
126    // finalized) we assume that subprogram descriptors won't be changed, and
127    // they are stored in map for short duration anyway.
128    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
129    FunctionDIMap FunctionDIs;
130
131  protected:
132    // DAH uses this to specify a different ID.
133    explicit DAE(char &ID) : ModulePass(ID) {}
134
135  public:
136    static char ID; // Pass identification, replacement for typeid
137    DAE() : ModulePass(ID) {
138      initializeDAEPass(*PassRegistry::getPassRegistry());
139    }
140
141    bool runOnModule(Module &M) override;
142
143    virtual bool ShouldHackArguments() const { return false; }
144
145  private:
146    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
147    Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
148                       unsigned RetValNum = 0);
149    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
150
151    void CollectFunctionDIs(Module &M);
152    void SurveyFunction(const Function &F);
153    void MarkValue(const RetOrArg &RA, Liveness L,
154                   const UseVector &MaybeLiveUses);
155    void MarkLive(const RetOrArg &RA);
156    void MarkLive(const Function &F);
157    void PropagateLiveness(const RetOrArg &RA);
158    bool RemoveDeadStuffFromFunction(Function *F);
159    bool DeleteDeadVarargs(Function &Fn);
160    bool RemoveDeadArgumentsFromCallers(Function &Fn);
161  };
162}
163
164
165char DAE::ID = 0;
166INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
167
168namespace {
169  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
170  /// deletes arguments to functions which are external.  This is only for use
171  /// by bugpoint.
172  struct DAH : public DAE {
173    static char ID;
174    DAH() : DAE(ID) {}
175
176    bool ShouldHackArguments() const override { return true; }
177  };
178}
179
180char DAH::ID = 0;
181INITIALIZE_PASS(DAH, "deadarghaX0r",
182                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
183                false, false)
184
185/// createDeadArgEliminationPass - This pass removes arguments from functions
186/// which are not used by the body of the function.
187///
188ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
189ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
190
191/// CollectFunctionDIs - Map each function in the module to its debug info
192/// descriptor.
193void DAE::CollectFunctionDIs(Module &M) {
194  FunctionDIs.clear();
195
196  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
197       E = M.named_metadata_end(); I != E; ++I) {
198    NamedMDNode &NMD = *I;
199    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
200         MDIndex < MDNum; ++MDIndex) {
201      MDNode *Node = NMD.getOperand(MDIndex);
202      if (!DIDescriptor(Node).isCompileUnit())
203        continue;
204      DICompileUnit CU(Node);
205      const DIArray &SPs = CU.getSubprograms();
206      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
207           SPIndex < SPNum; ++SPIndex) {
208        DISubprogram SP(SPs.getElement(SPIndex));
209        assert((!SP || SP.isSubprogram()) &&
210          "A MDNode in subprograms of a CU should be null or a DISubprogram.");
211        if (!SP)
212          continue;
213        if (Function *F = SP.getFunction())
214          FunctionDIs[F] = SP;
215      }
216    }
217  }
218}
219
220/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
221/// llvm.vastart is never called, the varargs list is dead for the function.
222bool DAE::DeleteDeadVarargs(Function &Fn) {
223  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
224  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
225
226  // Ensure that the function is only directly called.
227  if (Fn.hasAddressTaken())
228    return false;
229
230  // Okay, we know we can transform this function if safe.  Scan its body
231  // looking for calls to llvm.vastart.
232  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
233    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
234      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
235        if (II->getIntrinsicID() == Intrinsic::vastart)
236          return false;
237      }
238    }
239  }
240
241  // If we get here, there are no calls to llvm.vastart in the function body,
242  // remove the "..." and adjust all the calls.
243
244  // Start by computing a new prototype for the function, which is the same as
245  // the old function, but doesn't have isVarArg set.
246  FunctionType *FTy = Fn.getFunctionType();
247
248  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
249  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
250                                                Params, false);
251  unsigned NumArgs = Params.size();
252
253  // Create the new function body and insert it into the module...
254  Function *NF = Function::Create(NFTy, Fn.getLinkage());
255  NF->copyAttributesFrom(&Fn);
256  Fn.getParent()->getFunctionList().insert(&Fn, NF);
257  NF->takeName(&Fn);
258
259  // Loop over all of the callers of the function, transforming the call sites
260  // to pass in a smaller number of arguments into the new function.
261  //
262  std::vector<Value*> Args;
263  for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
264    CallSite CS(*I++);
265    if (!CS)
266      continue;
267    Instruction *Call = CS.getInstruction();
268
269    // Pass all the same arguments.
270    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
271
272    // Drop any attributes that were on the vararg arguments.
273    AttributeSet PAL = CS.getAttributes();
274    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
275      SmallVector<AttributeSet, 8> AttributesVec;
276      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
277        AttributesVec.push_back(PAL.getSlotAttributes(i));
278      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
279        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
280                                                  PAL.getFnAttributes()));
281      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
282    }
283
284    Instruction *New;
285    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
286      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
287                               Args, "", Call);
288      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
289      cast<InvokeInst>(New)->setAttributes(PAL);
290    } else {
291      New = CallInst::Create(NF, Args, "", Call);
292      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
293      cast<CallInst>(New)->setAttributes(PAL);
294      if (cast<CallInst>(Call)->isTailCall())
295        cast<CallInst>(New)->setTailCall();
296    }
297    New->setDebugLoc(Call->getDebugLoc());
298
299    Args.clear();
300
301    if (!Call->use_empty())
302      Call->replaceAllUsesWith(New);
303
304    New->takeName(Call);
305
306    // Finally, remove the old call from the program, reducing the use-count of
307    // F.
308    Call->eraseFromParent();
309  }
310
311  // Since we have now created the new function, splice the body of the old
312  // function right into the new function, leaving the old rotting hulk of the
313  // function empty.
314  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
315
316  // Loop over the argument list, transferring uses of the old arguments over to
317  // the new arguments, also transferring over the names as well.  While we're at
318  // it, remove the dead arguments from the DeadArguments list.
319  //
320  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
321       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
322    // Move the name and users over to the new version.
323    I->replaceAllUsesWith(I2);
324    I2->takeName(I);
325  }
326
327  // Patch the pointer to LLVM function in debug info descriptor.
328  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
329  if (DI != FunctionDIs.end())
330    DI->second.replaceFunction(NF);
331
332  // Fix up any BlockAddresses that refer to the function.
333  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
334  // Delete the bitcast that we just created, so that NF does not
335  // appear to be address-taken.
336  NF->removeDeadConstantUsers();
337  // Finally, nuke the old function.
338  Fn.eraseFromParent();
339  return true;
340}
341
342/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
343/// arguments that are unused, and changes the caller parameters to be undefined
344/// instead.
345bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
346{
347  if (Fn.isDeclaration() || Fn.mayBeOverridden())
348    return false;
349
350  // Functions with local linkage should already have been handled, except the
351  // fragile (variadic) ones which we can improve here.
352  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
353    return false;
354
355  // If a function seen at compile time is not necessarily the one linked to
356  // the binary being built, it is illegal to change the actual arguments
357  // passed to it. These functions can be captured by isWeakForLinker().
358  // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
359  // doesn't include linkage types like AvailableExternallyLinkage and
360  // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
361  // *EQUIVALENT* globals that can be merged at link-time. However, the
362  // semantic of *EQUIVALENT*-functions includes parameters. Changing
363  // parameters breaks this assumption.
364  //
365  if (Fn.isWeakForLinker())
366    return false;
367
368  if (Fn.use_empty())
369    return false;
370
371  SmallVector<unsigned, 8> UnusedArgs;
372  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
373       I != E; ++I) {
374    Argument *Arg = I;
375
376    if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
377      UnusedArgs.push_back(Arg->getArgNo());
378  }
379
380  if (UnusedArgs.empty())
381    return false;
382
383  bool Changed = false;
384
385  for (Use &U : Fn.uses()) {
386    CallSite CS(U.getUser());
387    if (!CS || !CS.isCallee(&U))
388      continue;
389
390    // Now go through all unused args and replace them with "undef".
391    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
392      unsigned ArgNo = UnusedArgs[I];
393
394      Value *Arg = CS.getArgument(ArgNo);
395      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
396      ++NumArgumentsReplacedWithUndef;
397      Changed = true;
398    }
399  }
400
401  return Changed;
402}
403
404/// Convenience function that returns the number of return values. It returns 0
405/// for void functions and 1 for functions not returning a struct. It returns
406/// the number of struct elements for functions returning a struct.
407static unsigned NumRetVals(const Function *F) {
408  if (F->getReturnType()->isVoidTy())
409    return 0;
410  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
411    return STy->getNumElements();
412  else
413    return 1;
414}
415
416/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
417/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
418/// liveness of Use.
419DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
420  // We're live if our use or its Function is already marked as live.
421  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
422    return Live;
423
424  // We're maybe live otherwise, but remember that we must become live if
425  // Use becomes live.
426  MaybeLiveUses.push_back(Use);
427  return MaybeLive;
428}
429
430
431/// SurveyUse - This looks at a single use of an argument or return value
432/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
433/// if it causes the used value to become MaybeLive.
434///
435/// RetValNum is the return value number to use when this use is used in a
436/// return instruction. This is used in the recursion, you should always leave
437/// it at 0.
438DAE::Liveness DAE::SurveyUse(const Use *U,
439                             UseVector &MaybeLiveUses, unsigned RetValNum) {
440    const User *V = U->getUser();
441    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
442      // The value is returned from a function. It's only live when the
443      // function's return value is live. We use RetValNum here, for the case
444      // that U is really a use of an insertvalue instruction that uses the
445      // original Use.
446      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
447      // We might be live, depending on the liveness of Use.
448      return MarkIfNotLive(Use, MaybeLiveUses);
449    }
450    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
451      if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
452          && IV->hasIndices())
453        // The use we are examining is inserted into an aggregate. Our liveness
454        // depends on all uses of that aggregate, but if it is used as a return
455        // value, only index at which we were inserted counts.
456        RetValNum = *IV->idx_begin();
457
458      // Note that if we are used as the aggregate operand to the insertvalue,
459      // we don't change RetValNum, but do survey all our uses.
460
461      Liveness Result = MaybeLive;
462      for (const Use &UU : IV->uses()) {
463        Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
464        if (Result == Live)
465          break;
466      }
467      return Result;
468    }
469
470    if (ImmutableCallSite CS = V) {
471      const Function *F = CS.getCalledFunction();
472      if (F) {
473        // Used in a direct call.
474
475        // Find the argument number. We know for sure that this use is an
476        // argument, since if it was the function argument this would be an
477        // indirect call and the we know can't be looking at a value of the
478        // label type (for the invoke instruction).
479        unsigned ArgNo = CS.getArgumentNo(U);
480
481        if (ArgNo >= F->getFunctionType()->getNumParams())
482          // The value is passed in through a vararg! Must be live.
483          return Live;
484
485        assert(CS.getArgument(ArgNo)
486               == CS->getOperand(U->getOperandNo())
487               && "Argument is not where we expected it");
488
489        // Value passed to a normal call. It's only live when the corresponding
490        // argument to the called function turns out live.
491        RetOrArg Use = CreateArg(F, ArgNo);
492        return MarkIfNotLive(Use, MaybeLiveUses);
493      }
494    }
495    // Used in any other way? Value must be live.
496    return Live;
497}
498
499/// SurveyUses - This looks at all the uses of the given value
500/// Returns the Liveness deduced from the uses of this value.
501///
502/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
503/// the result is Live, MaybeLiveUses might be modified but its content should
504/// be ignored (since it might not be complete).
505DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
506  // Assume it's dead (which will only hold if there are no uses at all..).
507  Liveness Result = MaybeLive;
508  // Check each use.
509  for (const Use &U : V->uses()) {
510    Result = SurveyUse(&U, MaybeLiveUses);
511    if (Result == Live)
512      break;
513  }
514  return Result;
515}
516
517// SurveyFunction - This performs the initial survey of the specified function,
518// checking out whether or not it uses any of its incoming arguments or whether
519// any callers use the return value.  This fills in the LiveValues set and Uses
520// map.
521//
522// We consider arguments of non-internal functions to be intrinsically alive as
523// well as arguments to functions which have their "address taken".
524//
525void DAE::SurveyFunction(const Function &F) {
526  // Functions with inalloca parameters are expecting args in a particular
527  // register and memory layout.
528  if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
529    MarkLive(F);
530    return;
531  }
532
533  unsigned RetCount = NumRetVals(&F);
534  // Assume all return values are dead
535  typedef SmallVector<Liveness, 5> RetVals;
536  RetVals RetValLiveness(RetCount, MaybeLive);
537
538  typedef SmallVector<UseVector, 5> RetUses;
539  // These vectors map each return value to the uses that make it MaybeLive, so
540  // we can add those to the Uses map if the return value really turns out to be
541  // MaybeLive. Initialized to a list of RetCount empty lists.
542  RetUses MaybeLiveRetUses(RetCount);
543
544  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
545    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
546      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
547          != F.getFunctionType()->getReturnType()) {
548        // We don't support old style multiple return values.
549        MarkLive(F);
550        return;
551      }
552
553  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
554    MarkLive(F);
555    return;
556  }
557
558  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
559  // Keep track of the number of live retvals, so we can skip checks once all
560  // of them turn out to be live.
561  unsigned NumLiveRetVals = 0;
562  Type *STy = dyn_cast<StructType>(F.getReturnType());
563  // Loop all uses of the function.
564  for (const Use &U : F.uses()) {
565    // If the function is PASSED IN as an argument, its address has been
566    // taken.
567    ImmutableCallSite CS(U.getUser());
568    if (!CS || !CS.isCallee(&U)) {
569      MarkLive(F);
570      return;
571    }
572
573    // If this use is anything other than a call site, the function is alive.
574    const Instruction *TheCall = CS.getInstruction();
575    if (!TheCall) {   // Not a direct call site?
576      MarkLive(F);
577      return;
578    }
579
580    // If we end up here, we are looking at a direct call to our function.
581
582    // Now, check how our return value(s) is/are used in this caller. Don't
583    // bother checking return values if all of them are live already.
584    if (NumLiveRetVals != RetCount) {
585      if (STy) {
586        // Check all uses of the return value.
587        for (const User *U : TheCall->users()) {
588          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U);
589          if (Ext && Ext->hasIndices()) {
590            // This use uses a part of our return value, survey the uses of
591            // that part and store the results for this index only.
592            unsigned Idx = *Ext->idx_begin();
593            if (RetValLiveness[Idx] != Live) {
594              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
595              if (RetValLiveness[Idx] == Live)
596                NumLiveRetVals++;
597            }
598          } else {
599            // Used by something else than extractvalue. Mark all return
600            // values as live.
601            for (unsigned i = 0; i != RetCount; ++i )
602              RetValLiveness[i] = Live;
603            NumLiveRetVals = RetCount;
604            break;
605          }
606        }
607      } else {
608        // Single return value
609        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
610        if (RetValLiveness[0] == Live)
611          NumLiveRetVals = RetCount;
612      }
613    }
614  }
615
616  // Now we've inspected all callers, record the liveness of our return values.
617  for (unsigned i = 0; i != RetCount; ++i)
618    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
619
620  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
621
622  // Now, check all of our arguments.
623  unsigned i = 0;
624  UseVector MaybeLiveArgUses;
625  for (Function::const_arg_iterator AI = F.arg_begin(),
626       E = F.arg_end(); AI != E; ++AI, ++i) {
627    Liveness Result;
628    if (F.getFunctionType()->isVarArg()) {
629      // Variadic functions will already have a va_arg function expanded inside
630      // them, making them potentially very sensitive to ABI changes resulting
631      // from removing arguments entirely, so don't. For example AArch64 handles
632      // register and stack HFAs very differently, and this is reflected in the
633      // IR which has already been generated.
634      Result = Live;
635    } else {
636      // See what the effect of this use is (recording any uses that cause
637      // MaybeLive in MaybeLiveArgUses).
638      Result = SurveyUses(AI, MaybeLiveArgUses);
639    }
640
641    // Mark the result.
642    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
643    // Clear the vector again for the next iteration.
644    MaybeLiveArgUses.clear();
645  }
646}
647
648/// MarkValue - This function marks the liveness of RA depending on L. If L is
649/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
650/// such that RA will be marked live if any use in MaybeLiveUses gets marked
651/// live later on.
652void DAE::MarkValue(const RetOrArg &RA, Liveness L,
653                    const UseVector &MaybeLiveUses) {
654  switch (L) {
655    case Live: MarkLive(RA); break;
656    case MaybeLive:
657    {
658      // Note any uses of this value, so this return value can be
659      // marked live whenever one of the uses becomes live.
660      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
661           UE = MaybeLiveUses.end(); UI != UE; ++UI)
662        Uses.insert(std::make_pair(*UI, RA));
663      break;
664    }
665  }
666}
667
668/// MarkLive - Mark the given Function as alive, meaning that it cannot be
669/// changed in any way. Additionally,
670/// mark any values that are used as this function's parameters or by its return
671/// values (according to Uses) live as well.
672void DAE::MarkLive(const Function &F) {
673  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
674  // Mark the function as live.
675  LiveFunctions.insert(&F);
676  // Mark all arguments as live.
677  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
678    PropagateLiveness(CreateArg(&F, i));
679  // Mark all return values as live.
680  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
681    PropagateLiveness(CreateRet(&F, i));
682}
683
684/// MarkLive - Mark the given return value or argument as live. Additionally,
685/// mark any values that are used by this value (according to Uses) live as
686/// well.
687void DAE::MarkLive(const RetOrArg &RA) {
688  if (LiveFunctions.count(RA.F))
689    return; // Function was already marked Live.
690
691  if (!LiveValues.insert(RA).second)
692    return; // We were already marked Live.
693
694  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
695  PropagateLiveness(RA);
696}
697
698/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
699/// to any other values it uses (according to Uses).
700void DAE::PropagateLiveness(const RetOrArg &RA) {
701  // We don't use upper_bound (or equal_range) here, because our recursive call
702  // to ourselves is likely to cause the upper_bound (which is the first value
703  // not belonging to RA) to become erased and the iterator invalidated.
704  UseMap::iterator Begin = Uses.lower_bound(RA);
705  UseMap::iterator E = Uses.end();
706  UseMap::iterator I;
707  for (I = Begin; I != E && I->first == RA; ++I)
708    MarkLive(I->second);
709
710  // Erase RA from the Uses map (from the lower bound to wherever we ended up
711  // after the loop).
712  Uses.erase(Begin, I);
713}
714
715// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
716// that are not in LiveValues. Transform the function and all of the callees of
717// the function to not have these arguments and return values.
718//
719bool DAE::RemoveDeadStuffFromFunction(Function *F) {
720  // Don't modify fully live functions
721  if (LiveFunctions.count(F))
722    return false;
723
724  // Start by computing a new prototype for the function, which is the same as
725  // the old function, but has fewer arguments and a different return type.
726  FunctionType *FTy = F->getFunctionType();
727  std::vector<Type*> Params;
728
729  // Keep track of if we have a live 'returned' argument
730  bool HasLiveReturnedArg = false;
731
732  // Set up to build a new list of parameter attributes.
733  SmallVector<AttributeSet, 8> AttributesVec;
734  const AttributeSet &PAL = F->getAttributes();
735
736  // Remember which arguments are still alive.
737  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
738  // Construct the new parameter list from non-dead arguments. Also construct
739  // a new set of parameter attributes to correspond. Skip the first parameter
740  // attribute, since that belongs to the return value.
741  unsigned i = 0;
742  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
743       I != E; ++I, ++i) {
744    RetOrArg Arg = CreateArg(F, i);
745    if (LiveValues.erase(Arg)) {
746      Params.push_back(I->getType());
747      ArgAlive[i] = true;
748
749      // Get the original parameter attributes (skipping the first one, that is
750      // for the return value.
751      if (PAL.hasAttributes(i + 1)) {
752        AttrBuilder B(PAL, i + 1);
753        if (B.contains(Attribute::Returned))
754          HasLiveReturnedArg = true;
755        AttributesVec.
756          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
757      }
758    } else {
759      ++NumArgumentsEliminated;
760      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
761            << ") from " << F->getName() << "\n");
762    }
763  }
764
765  // Find out the new return value.
766  Type *RetTy = FTy->getReturnType();
767  Type *NRetTy = NULL;
768  unsigned RetCount = NumRetVals(F);
769
770  // -1 means unused, other numbers are the new index
771  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
772  std::vector<Type*> RetTypes;
773
774  // If there is a function with a live 'returned' argument but a dead return
775  // value, then there are two possible actions:
776  // 1) Eliminate the return value and take off the 'returned' attribute on the
777  //    argument.
778  // 2) Retain the 'returned' attribute and treat the return value (but not the
779  //    entire function) as live so that it is not eliminated.
780  //
781  // It's not clear in the general case which option is more profitable because,
782  // even in the absence of explicit uses of the return value, code generation
783  // is free to use the 'returned' attribute to do things like eliding
784  // save/restores of registers across calls. Whether or not this happens is
785  // target and ABI-specific as well as depending on the amount of register
786  // pressure, so there's no good way for an IR-level pass to figure this out.
787  //
788  // Fortunately, the only places where 'returned' is currently generated by
789  // the FE are places where 'returned' is basically free and almost always a
790  // performance win, so the second option can just be used always for now.
791  //
792  // This should be revisited if 'returned' is ever applied more liberally.
793  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
794    NRetTy = RetTy;
795  } else {
796    StructType *STy = dyn_cast<StructType>(RetTy);
797    if (STy)
798      // Look at each of the original return values individually.
799      for (unsigned i = 0; i != RetCount; ++i) {
800        RetOrArg Ret = CreateRet(F, i);
801        if (LiveValues.erase(Ret)) {
802          RetTypes.push_back(STy->getElementType(i));
803          NewRetIdxs[i] = RetTypes.size() - 1;
804        } else {
805          ++NumRetValsEliminated;
806          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
807                << F->getName() << "\n");
808        }
809      }
810    else
811      // We used to return a single value.
812      if (LiveValues.erase(CreateRet(F, 0))) {
813        RetTypes.push_back(RetTy);
814        NewRetIdxs[0] = 0;
815      } else {
816        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
817              << "\n");
818        ++NumRetValsEliminated;
819      }
820    if (RetTypes.size() > 1)
821      // More than one return type? Return a struct with them. Also, if we used
822      // to return a struct and didn't change the number of return values,
823      // return a struct again. This prevents changing {something} into
824      // something and {} into void.
825      // Make the new struct packed if we used to return a packed struct
826      // already.
827      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
828    else if (RetTypes.size() == 1)
829      // One return type? Just a simple value then, but only if we didn't use to
830      // return a struct with that simple value before.
831      NRetTy = RetTypes.front();
832    else if (RetTypes.size() == 0)
833      // No return types? Make it void, but only if we didn't use to return {}.
834      NRetTy = Type::getVoidTy(F->getContext());
835  }
836
837  assert(NRetTy && "No new return type found?");
838
839  // The existing function return attributes.
840  AttributeSet RAttrs = PAL.getRetAttributes();
841
842  // Remove any incompatible attributes, but only if we removed all return
843  // values. Otherwise, ensure that we don't have any conflicting attributes
844  // here. Currently, this should not be possible, but special handling might be
845  // required when new return value attributes are added.
846  if (NRetTy->isVoidTy())
847    RAttrs =
848      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
849                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
850         removeAttributes(AttributeFuncs::
851                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
852                          AttributeSet::ReturnIndex));
853  else
854    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
855             hasAttributes(AttributeFuncs::
856                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
857                           AttributeSet::ReturnIndex) &&
858           "Return attributes no longer compatible?");
859
860  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
861    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
862
863  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
864    AttributesVec.push_back(AttributeSet::get(F->getContext(),
865                                              PAL.getFnAttributes()));
866
867  // Reconstruct the AttributesList based on the vector we constructed.
868  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
869
870  // Create the new function type based on the recomputed parameters.
871  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
872
873  // No change?
874  if (NFTy == FTy)
875    return false;
876
877  // Create the new function body and insert it into the module...
878  Function *NF = Function::Create(NFTy, F->getLinkage());
879  NF->copyAttributesFrom(F);
880  NF->setAttributes(NewPAL);
881  // Insert the new function before the old function, so we won't be processing
882  // it again.
883  F->getParent()->getFunctionList().insert(F, NF);
884  NF->takeName(F);
885
886  // Loop over all of the callers of the function, transforming the call sites
887  // to pass in a smaller number of arguments into the new function.
888  //
889  std::vector<Value*> Args;
890  while (!F->use_empty()) {
891    CallSite CS(F->user_back());
892    Instruction *Call = CS.getInstruction();
893
894    AttributesVec.clear();
895    const AttributeSet &CallPAL = CS.getAttributes();
896
897    // The call return attributes.
898    AttributeSet RAttrs = CallPAL.getRetAttributes();
899
900    // Adjust in case the function was changed to return void.
901    RAttrs =
902      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
903                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
904        removeAttributes(AttributeFuncs::
905                         typeIncompatible(NF->getReturnType(),
906                                          AttributeSet::ReturnIndex),
907                         AttributeSet::ReturnIndex));
908    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
909      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
910
911    // Declare these outside of the loops, so we can reuse them for the second
912    // loop, which loops the varargs.
913    CallSite::arg_iterator I = CS.arg_begin();
914    unsigned i = 0;
915    // Loop over those operands, corresponding to the normal arguments to the
916    // original function, and add those that are still alive.
917    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
918      if (ArgAlive[i]) {
919        Args.push_back(*I);
920        // Get original parameter attributes, but skip return attributes.
921        if (CallPAL.hasAttributes(i + 1)) {
922          AttrBuilder B(CallPAL, i + 1);
923          // If the return type has changed, then get rid of 'returned' on the
924          // call site. The alternative is to make all 'returned' attributes on
925          // call sites keep the return value alive just like 'returned'
926          // attributes on function declaration but it's less clearly a win
927          // and this is not an expected case anyway
928          if (NRetTy != RetTy && B.contains(Attribute::Returned))
929            B.removeAttribute(Attribute::Returned);
930          AttributesVec.
931            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
932        }
933      }
934
935    // Push any varargs arguments on the list. Don't forget their attributes.
936    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
937      Args.push_back(*I);
938      if (CallPAL.hasAttributes(i + 1)) {
939        AttrBuilder B(CallPAL, i + 1);
940        AttributesVec.
941          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
942      }
943    }
944
945    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
946      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
947                                                CallPAL.getFnAttributes()));
948
949    // Reconstruct the AttributesList based on the vector we constructed.
950    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
951
952    Instruction *New;
953    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
954      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
955                               Args, "", Call);
956      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
957      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
958    } else {
959      New = CallInst::Create(NF, Args, "", Call);
960      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
961      cast<CallInst>(New)->setAttributes(NewCallPAL);
962      if (cast<CallInst>(Call)->isTailCall())
963        cast<CallInst>(New)->setTailCall();
964    }
965    New->setDebugLoc(Call->getDebugLoc());
966
967    Args.clear();
968
969    if (!Call->use_empty()) {
970      if (New->getType() == Call->getType()) {
971        // Return type not changed? Just replace users then.
972        Call->replaceAllUsesWith(New);
973        New->takeName(Call);
974      } else if (New->getType()->isVoidTy()) {
975        // Our return value has uses, but they will get removed later on.
976        // Replace by null for now.
977        if (!Call->getType()->isX86_MMXTy())
978          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
979      } else {
980        assert(RetTy->isStructTy() &&
981               "Return type changed, but not into a void. The old return type"
982               " must have been a struct!");
983        Instruction *InsertPt = Call;
984        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
985          BasicBlock::iterator IP = II->getNormalDest()->begin();
986          while (isa<PHINode>(IP)) ++IP;
987          InsertPt = IP;
988        }
989
990        // We used to return a struct. Instead of doing smart stuff with all the
991        // uses of this struct, we will just rebuild it using
992        // extract/insertvalue chaining and let instcombine clean that up.
993        //
994        // Start out building up our return value from undef
995        Value *RetVal = UndefValue::get(RetTy);
996        for (unsigned i = 0; i != RetCount; ++i)
997          if (NewRetIdxs[i] != -1) {
998            Value *V;
999            if (RetTypes.size() > 1)
1000              // We are still returning a struct, so extract the value from our
1001              // return value
1002              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
1003                                           InsertPt);
1004            else
1005              // We are now returning a single element, so just insert that
1006              V = New;
1007            // Insert the value at the old position
1008            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
1009          }
1010        // Now, replace all uses of the old call instruction with the return
1011        // struct we built
1012        Call->replaceAllUsesWith(RetVal);
1013        New->takeName(Call);
1014      }
1015    }
1016
1017    // Finally, remove the old call from the program, reducing the use-count of
1018    // F.
1019    Call->eraseFromParent();
1020  }
1021
1022  // Since we have now created the new function, splice the body of the old
1023  // function right into the new function, leaving the old rotting hulk of the
1024  // function empty.
1025  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1026
1027  // Loop over the argument list, transferring uses of the old arguments over to
1028  // the new arguments, also transferring over the names as well.
1029  i = 0;
1030  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1031       I2 = NF->arg_begin(); I != E; ++I, ++i)
1032    if (ArgAlive[i]) {
1033      // If this is a live argument, move the name and users over to the new
1034      // version.
1035      I->replaceAllUsesWith(I2);
1036      I2->takeName(I);
1037      ++I2;
1038    } else {
1039      // If this argument is dead, replace any uses of it with null constants
1040      // (these are guaranteed to become unused later on).
1041      if (!I->getType()->isX86_MMXTy())
1042        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1043    }
1044
1045  // If we change the return value of the function we must rewrite any return
1046  // instructions.  Check this now.
1047  if (F->getReturnType() != NF->getReturnType())
1048    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1049      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1050        Value *RetVal;
1051
1052        if (NFTy->getReturnType()->isVoidTy()) {
1053          RetVal = 0;
1054        } else {
1055          assert (RetTy->isStructTy());
1056          // The original return value was a struct, insert
1057          // extractvalue/insertvalue chains to extract only the values we need
1058          // to return and insert them into our new result.
1059          // This does generate messy code, but we'll let it to instcombine to
1060          // clean that up.
1061          Value *OldRet = RI->getOperand(0);
1062          // Start out building up our return value from undef
1063          RetVal = UndefValue::get(NRetTy);
1064          for (unsigned i = 0; i != RetCount; ++i)
1065            if (NewRetIdxs[i] != -1) {
1066              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1067                                                              "oldret", RI);
1068              if (RetTypes.size() > 1) {
1069                // We're still returning a struct, so reinsert the value into
1070                // our new return value at the new index
1071
1072                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1073                                                 "newret", RI);
1074              } else {
1075                // We are now only returning a simple value, so just return the
1076                // extracted value.
1077                RetVal = EV;
1078              }
1079            }
1080        }
1081        // Replace the return instruction with one returning the new return
1082        // value (possibly 0 if we became void).
1083        ReturnInst::Create(F->getContext(), RetVal, RI);
1084        BB->getInstList().erase(RI);
1085      }
1086
1087  // Patch the pointer to LLVM function in debug info descriptor.
1088  FunctionDIMap::iterator DI = FunctionDIs.find(F);
1089  if (DI != FunctionDIs.end())
1090    DI->second.replaceFunction(NF);
1091
1092  // Now that the old function is dead, delete it.
1093  F->eraseFromParent();
1094
1095  return true;
1096}
1097
1098bool DAE::runOnModule(Module &M) {
1099  bool Changed = false;
1100
1101  // Collect debug info descriptors for functions.
1102  CollectFunctionDIs(M);
1103
1104  // First pass: Do a simple check to see if any functions can have their "..."
1105  // removed.  We can do this if they never call va_start.  This loop cannot be
1106  // fused with the next loop, because deleting a function invalidates
1107  // information computed while surveying other functions.
1108  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1109  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1110    Function &F = *I++;
1111    if (F.getFunctionType()->isVarArg())
1112      Changed |= DeleteDeadVarargs(F);
1113  }
1114
1115  // Second phase:loop through the module, determining which arguments are live.
1116  // We assume all arguments are dead unless proven otherwise (allowing us to
1117  // determine that dead arguments passed into recursive functions are dead).
1118  //
1119  DEBUG(dbgs() << "DAE - Determining liveness\n");
1120  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
1121    SurveyFunction(*I);
1122
1123  // Now, remove all dead arguments and return values from each function in
1124  // turn.
1125  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1126    // Increment now, because the function will probably get removed (ie.
1127    // replaced by a new one).
1128    Function *F = I++;
1129    Changed |= RemoveDeadStuffFromFunction(F);
1130  }
1131
1132  // Finally, look for any unused parameters in functions with non-local
1133  // linkage and replace the passed in parameters with undef.
1134  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1135    Function& F = *I;
1136
1137    Changed |= RemoveDeadArgumentsFromCallers(F);
1138  }
1139
1140  return Changed;
1141}
1142