DeadArgumentElimination.cpp revision 4a325cbf6f2acb1034635bbcc7f3e5ea9829d012
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42
43namespace {
44  /// DAE - The dead argument elimination pass.
45  ///
46  class DAE : public ModulePass {
47  public:
48
49    /// Struct that represents (part of) either a return value or a function
50    /// argument.  Used so that arguments and return values can be used
51    /// interchangably.
52    struct RetOrArg {
53      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54               IsArg(IsArg) {}
55      const Function *F;
56      unsigned Idx;
57      bool IsArg;
58
59      /// Make RetOrArg comparable, so we can put it into a map.
60      bool operator<(const RetOrArg &O) const {
61        if (F != O.F)
62          return F < O.F;
63        else if (Idx != O.Idx)
64          return Idx < O.Idx;
65        else
66          return IsArg < O.IsArg;
67      }
68
69      /// Make RetOrArg comparable, so we can easily iterate the multimap.
70      bool operator==(const RetOrArg &O) const {
71        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
72      }
73
74      std::string getDescription() const {
75        return std::string((IsArg ? "Argument #" : "Return value #"))
76               + utostr(Idx) + " of function " + F->getNameStr();
77      }
78    };
79
80    /// Liveness enum - During our initial pass over the program, we determine
81    /// that things are either alive or maybe alive. We don't mark anything
82    /// explicitly dead (even if we know they are), since anything not alive
83    /// with no registered uses (in Uses) will never be marked alive and will
84    /// thus become dead in the end.
85    enum Liveness { Live, MaybeLive };
86
87    /// Convenience wrapper
88    RetOrArg CreateRet(const Function *F, unsigned Idx) {
89      return RetOrArg(F, Idx, false);
90    }
91    /// Convenience wrapper
92    RetOrArg CreateArg(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, true);
94    }
95
96    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97    /// This maps a return value or argument to any MaybeLive return values or
98    /// arguments it uses. This allows the MaybeLive values to be marked live
99    /// when any of its users is marked live.
100    /// For example (indices are left out for clarity):
101    ///  - Uses[ret F] = ret G
102    ///    This means that F calls G, and F returns the value returned by G.
103    ///  - Uses[arg F] = ret G
104    ///    This means that some function calls G and passes its result as an
105    ///    argument to F.
106    ///  - Uses[ret F] = arg F
107    ///    This means that F returns one of its own arguments.
108    ///  - Uses[arg F] = arg G
109    ///    This means that G calls F and passes one of its own (G's) arguments
110    ///    directly to F.
111    UseMap Uses;
112
113    typedef std::set<RetOrArg> LiveSet;
114    typedef std::set<const Function*> LiveFuncSet;
115
116    /// This set contains all values that have been determined to be live.
117    LiveSet LiveValues;
118    /// This set contains all values that are cannot be changed in any way.
119    LiveFuncSet LiveFunctions;
120
121    typedef SmallVector<RetOrArg, 5> UseVector;
122
123  protected:
124    // DAH uses this to specify a different ID.
125    explicit DAE(void *ID) : ModulePass(ID) {}
126
127  public:
128    static char ID; // Pass identification, replacement for typeid
129    DAE() : ModulePass(&ID) {}
130
131    bool runOnModule(Module &M);
132
133    virtual bool ShouldHackArguments() const { return false; }
134
135  private:
136    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
137    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
138                       unsigned RetValNum = 0);
139    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
140
141    void SurveyFunction(const Function &F);
142    void MarkValue(const RetOrArg &RA, Liveness L,
143                   const UseVector &MaybeLiveUses);
144    void MarkLive(const RetOrArg &RA);
145    void MarkLive(const Function &F);
146    void PropagateLiveness(const RetOrArg &RA);
147    bool RemoveDeadStuffFromFunction(Function *F);
148    bool DeleteDeadVarargs(Function &Fn);
149  };
150}
151
152
153char DAE::ID = 0;
154static RegisterPass<DAE>
155X("deadargelim", "Dead Argument Elimination");
156
157namespace {
158  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
159  /// deletes arguments to functions which are external.  This is only for use
160  /// by bugpoint.
161  struct DAH : public DAE {
162    static char ID;
163    DAH() : DAE(&ID) {}
164
165    virtual bool ShouldHackArguments() const { return true; }
166  };
167}
168
169char DAH::ID = 0;
170static RegisterPass<DAH>
171Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
172
173/// createDeadArgEliminationPass - This pass removes arguments from functions
174/// which are not used by the body of the function.
175///
176ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
177ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
178
179/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
180/// llvm.vastart is never called, the varargs list is dead for the function.
181bool DAE::DeleteDeadVarargs(Function &Fn) {
182  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
183  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
184
185  // Ensure that the function is only directly called.
186  if (Fn.hasAddressTaken())
187    return false;
188
189  // Okay, we know we can transform this function if safe.  Scan its body
190  // looking for calls to llvm.vastart.
191  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
192    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
193      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
194        if (II->getIntrinsicID() == Intrinsic::vastart)
195          return false;
196      }
197    }
198  }
199
200  // If we get here, there are no calls to llvm.vastart in the function body,
201  // remove the "..." and adjust all the calls.
202
203  // Start by computing a new prototype for the function, which is the same as
204  // the old function, but doesn't have isVarArg set.
205  const FunctionType *FTy = Fn.getFunctionType();
206
207  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
208  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
209                                                Params, false);
210  unsigned NumArgs = Params.size();
211
212  // Create the new function body and insert it into the module...
213  Function *NF = Function::Create(NFTy, Fn.getLinkage());
214  NF->copyAttributesFrom(&Fn);
215  Fn.getParent()->getFunctionList().insert(&Fn, NF);
216  NF->takeName(&Fn);
217
218  // Loop over all of the callers of the function, transforming the call sites
219  // to pass in a smaller number of arguments into the new function.
220  //
221  std::vector<Value*> Args;
222  while (!Fn.use_empty()) {
223    CallSite CS = CallSite::get(Fn.use_back());
224    Instruction *Call = CS.getInstruction();
225
226    // Pass all the same arguments.
227    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
228
229    // Drop any attributes that were on the vararg arguments.
230    AttrListPtr PAL = CS.getAttributes();
231    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
232      SmallVector<AttributeWithIndex, 8> AttributesVec;
233      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
234        AttributesVec.push_back(PAL.getSlot(i));
235      if (Attributes FnAttrs = PAL.getFnAttributes())
236        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
237      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
238    }
239
240    Instruction *New;
241    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
242      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
243                               Args.begin(), Args.end(), "", Call);
244      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
245      cast<InvokeInst>(New)->setAttributes(PAL);
246    } else {
247      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
248      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
249      cast<CallInst>(New)->setAttributes(PAL);
250      if (cast<CallInst>(Call)->isTailCall())
251        cast<CallInst>(New)->setTailCall();
252    }
253    if (MDNode *N = Call->getDbgMetadata())
254      New->setDbgMetadata(N);
255
256    Args.clear();
257
258    if (!Call->use_empty())
259      Call->replaceAllUsesWith(New);
260
261    New->takeName(Call);
262
263    // Finally, remove the old call from the program, reducing the use-count of
264    // F.
265    Call->eraseFromParent();
266  }
267
268  // Since we have now created the new function, splice the body of the old
269  // function right into the new function, leaving the old rotting hulk of the
270  // function empty.
271  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
272
273  // Loop over the argument list, transfering uses of the old arguments over to
274  // the new arguments, also transfering over the names as well.  While we're at
275  // it, remove the dead arguments from the DeadArguments list.
276  //
277  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
278       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
279    // Move the name and users over to the new version.
280    I->replaceAllUsesWith(I2);
281    I2->takeName(I);
282  }
283
284  // Finally, nuke the old function.
285  Fn.eraseFromParent();
286  return true;
287}
288
289/// Convenience function that returns the number of return values. It returns 0
290/// for void functions and 1 for functions not returning a struct. It returns
291/// the number of struct elements for functions returning a struct.
292static unsigned NumRetVals(const Function *F) {
293  if (F->getReturnType()->isVoidTy())
294    return 0;
295  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
296    return STy->getNumElements();
297  else
298    return 1;
299}
300
301/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
302/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
303/// liveness of Use.
304DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
305  // We're live if our use or its Function is already marked as live.
306  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
307    return Live;
308
309  // We're maybe live otherwise, but remember that we must become live if
310  // Use becomes live.
311  MaybeLiveUses.push_back(Use);
312  return MaybeLive;
313}
314
315
316/// SurveyUse - This looks at a single use of an argument or return value
317/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
318/// if it causes the used value to become MaybeLive.
319///
320/// RetValNum is the return value number to use when this use is used in a
321/// return instruction. This is used in the recursion, you should always leave
322/// it at 0.
323DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
324                             UseVector &MaybeLiveUses, unsigned RetValNum) {
325    const User *V = *U;
326    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
327      // The value is returned from a function. It's only live when the
328      // function's return value is live. We use RetValNum here, for the case
329      // that U is really a use of an insertvalue instruction that uses the
330      // orginal Use.
331      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
332      // We might be live, depending on the liveness of Use.
333      return MarkIfNotLive(Use, MaybeLiveUses);
334    }
335    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
336      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
337          && IV->hasIndices())
338        // The use we are examining is inserted into an aggregate. Our liveness
339        // depends on all uses of that aggregate, but if it is used as a return
340        // value, only index at which we were inserted counts.
341        RetValNum = *IV->idx_begin();
342
343      // Note that if we are used as the aggregate operand to the insertvalue,
344      // we don't change RetValNum, but do survey all our uses.
345
346      Liveness Result = MaybeLive;
347      for (Value::const_use_iterator I = IV->use_begin(),
348           E = V->use_end(); I != E; ++I) {
349        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
350        if (Result == Live)
351          break;
352      }
353      return Result;
354    }
355
356    if (ImmutableCallSite CS = V) {
357      const Function *F = CS.getCalledFunction();
358      if (F) {
359        // Used in a direct call.
360
361        // Find the argument number. We know for sure that this use is an
362        // argument, since if it was the function argument this would be an
363        // indirect call and the we know can't be looking at a value of the
364        // label type (for the invoke instruction).
365        unsigned ArgNo = CS.getArgumentNo(U);
366
367        if (ArgNo >= F->getFunctionType()->getNumParams())
368          // The value is passed in through a vararg! Must be live.
369          return Live;
370
371        assert(CS.getArgument(ArgNo)
372               == CS->getOperand(U.getOperandNo())
373               && "Argument is not where we expected it");
374
375        // Value passed to a normal call. It's only live when the corresponding
376        // argument to the called function turns out live.
377        RetOrArg Use = CreateArg(F, ArgNo);
378        return MarkIfNotLive(Use, MaybeLiveUses);
379      }
380    }
381    // Used in any other way? Value must be live.
382    return Live;
383}
384
385/// SurveyUses - This looks at all the uses of the given value
386/// Returns the Liveness deduced from the uses of this value.
387///
388/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
389/// the result is Live, MaybeLiveUses might be modified but its content should
390/// be ignored (since it might not be complete).
391DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
392  // Assume it's dead (which will only hold if there are no uses at all..).
393  Liveness Result = MaybeLive;
394  // Check each use.
395  for (Value::const_use_iterator I = V->use_begin(),
396       E = V->use_end(); I != E; ++I) {
397    Result = SurveyUse(I, MaybeLiveUses);
398    if (Result == Live)
399      break;
400  }
401  return Result;
402}
403
404// SurveyFunction - This performs the initial survey of the specified function,
405// checking out whether or not it uses any of its incoming arguments or whether
406// any callers use the return value.  This fills in the LiveValues set and Uses
407// map.
408//
409// We consider arguments of non-internal functions to be intrinsically alive as
410// well as arguments to functions which have their "address taken".
411//
412void DAE::SurveyFunction(const Function &F) {
413  unsigned RetCount = NumRetVals(&F);
414  // Assume all return values are dead
415  typedef SmallVector<Liveness, 5> RetVals;
416  RetVals RetValLiveness(RetCount, MaybeLive);
417
418  typedef SmallVector<UseVector, 5> RetUses;
419  // These vectors map each return value to the uses that make it MaybeLive, so
420  // we can add those to the Uses map if the return value really turns out to be
421  // MaybeLive. Initialized to a list of RetCount empty lists.
422  RetUses MaybeLiveRetUses(RetCount);
423
424  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
425    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
426      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
427          != F.getFunctionType()->getReturnType()) {
428        // We don't support old style multiple return values.
429        MarkLive(F);
430        return;
431      }
432
433  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
434    MarkLive(F);
435    return;
436  }
437
438  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
439  // Keep track of the number of live retvals, so we can skip checks once all
440  // of them turn out to be live.
441  unsigned NumLiveRetVals = 0;
442  const Type *STy = dyn_cast<StructType>(F.getReturnType());
443  // Loop all uses of the function.
444  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
445       I != E; ++I) {
446    // If the function is PASSED IN as an argument, its address has been
447    // taken.
448    ImmutableCallSite CS(*I);
449    if (!CS || !CS.isCallee(I)) {
450      MarkLive(F);
451      return;
452    }
453
454    // If this use is anything other than a call site, the function is alive.
455    const Instruction *TheCall = CS.getInstruction();
456    if (!TheCall) {   // Not a direct call site?
457      MarkLive(F);
458      return;
459    }
460
461    // If we end up here, we are looking at a direct call to our function.
462
463    // Now, check how our return value(s) is/are used in this caller. Don't
464    // bother checking return values if all of them are live already.
465    if (NumLiveRetVals != RetCount) {
466      if (STy) {
467        // Check all uses of the return value.
468        for (Value::const_use_iterator I = TheCall->use_begin(),
469             E = TheCall->use_end(); I != E; ++I) {
470          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
471          if (Ext && Ext->hasIndices()) {
472            // This use uses a part of our return value, survey the uses of
473            // that part and store the results for this index only.
474            unsigned Idx = *Ext->idx_begin();
475            if (RetValLiveness[Idx] != Live) {
476              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
477              if (RetValLiveness[Idx] == Live)
478                NumLiveRetVals++;
479            }
480          } else {
481            // Used by something else than extractvalue. Mark all return
482            // values as live.
483            for (unsigned i = 0; i != RetCount; ++i )
484              RetValLiveness[i] = Live;
485            NumLiveRetVals = RetCount;
486            break;
487          }
488        }
489      } else {
490        // Single return value
491        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
492        if (RetValLiveness[0] == Live)
493          NumLiveRetVals = RetCount;
494      }
495    }
496  }
497
498  // Now we've inspected all callers, record the liveness of our return values.
499  for (unsigned i = 0; i != RetCount; ++i)
500    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
501
502  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
503
504  // Now, check all of our arguments.
505  unsigned i = 0;
506  UseVector MaybeLiveArgUses;
507  for (Function::const_arg_iterator AI = F.arg_begin(),
508       E = F.arg_end(); AI != E; ++AI, ++i) {
509    // See what the effect of this use is (recording any uses that cause
510    // MaybeLive in MaybeLiveArgUses).
511    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
512    // Mark the result.
513    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
514    // Clear the vector again for the next iteration.
515    MaybeLiveArgUses.clear();
516  }
517}
518
519/// MarkValue - This function marks the liveness of RA depending on L. If L is
520/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
521/// such that RA will be marked live if any use in MaybeLiveUses gets marked
522/// live later on.
523void DAE::MarkValue(const RetOrArg &RA, Liveness L,
524                    const UseVector &MaybeLiveUses) {
525  switch (L) {
526    case Live: MarkLive(RA); break;
527    case MaybeLive:
528    {
529      // Note any uses of this value, so this return value can be
530      // marked live whenever one of the uses becomes live.
531      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
532           UE = MaybeLiveUses.end(); UI != UE; ++UI)
533        Uses.insert(std::make_pair(*UI, RA));
534      break;
535    }
536  }
537}
538
539/// MarkLive - Mark the given Function as alive, meaning that it cannot be
540/// changed in any way. Additionally,
541/// mark any values that are used as this function's parameters or by its return
542/// values (according to Uses) live as well.
543void DAE::MarkLive(const Function &F) {
544  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
545  // Mark the function as live.
546  LiveFunctions.insert(&F);
547  // Mark all arguments as live.
548  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
549    PropagateLiveness(CreateArg(&F, i));
550  // Mark all return values as live.
551  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
552    PropagateLiveness(CreateRet(&F, i));
553}
554
555/// MarkLive - Mark the given return value or argument as live. Additionally,
556/// mark any values that are used by this value (according to Uses) live as
557/// well.
558void DAE::MarkLive(const RetOrArg &RA) {
559  if (LiveFunctions.count(RA.F))
560    return; // Function was already marked Live.
561
562  if (!LiveValues.insert(RA).second)
563    return; // We were already marked Live.
564
565  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
566  PropagateLiveness(RA);
567}
568
569/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
570/// to any other values it uses (according to Uses).
571void DAE::PropagateLiveness(const RetOrArg &RA) {
572  // We don't use upper_bound (or equal_range) here, because our recursive call
573  // to ourselves is likely to cause the upper_bound (which is the first value
574  // not belonging to RA) to become erased and the iterator invalidated.
575  UseMap::iterator Begin = Uses.lower_bound(RA);
576  UseMap::iterator E = Uses.end();
577  UseMap::iterator I;
578  for (I = Begin; I != E && I->first == RA; ++I)
579    MarkLive(I->second);
580
581  // Erase RA from the Uses map (from the lower bound to wherever we ended up
582  // after the loop).
583  Uses.erase(Begin, I);
584}
585
586// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
587// that are not in LiveValues. Transform the function and all of the callees of
588// the function to not have these arguments and return values.
589//
590bool DAE::RemoveDeadStuffFromFunction(Function *F) {
591  // Don't modify fully live functions
592  if (LiveFunctions.count(F))
593    return false;
594
595  // Start by computing a new prototype for the function, which is the same as
596  // the old function, but has fewer arguments and a different return type.
597  const FunctionType *FTy = F->getFunctionType();
598  std::vector<const Type*> Params;
599
600  // Set up to build a new list of parameter attributes.
601  SmallVector<AttributeWithIndex, 8> AttributesVec;
602  const AttrListPtr &PAL = F->getAttributes();
603
604  // The existing function return attributes.
605  Attributes RAttrs = PAL.getRetAttributes();
606  Attributes FnAttrs = PAL.getFnAttributes();
607
608  // Find out the new return value.
609
610  const Type *RetTy = FTy->getReturnType();
611  const Type *NRetTy = NULL;
612  unsigned RetCount = NumRetVals(F);
613
614  // -1 means unused, other numbers are the new index
615  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
616  std::vector<const Type*> RetTypes;
617  if (RetTy->isVoidTy()) {
618    NRetTy = RetTy;
619  } else {
620    const StructType *STy = dyn_cast<StructType>(RetTy);
621    if (STy)
622      // Look at each of the original return values individually.
623      for (unsigned i = 0; i != RetCount; ++i) {
624        RetOrArg Ret = CreateRet(F, i);
625        if (LiveValues.erase(Ret)) {
626          RetTypes.push_back(STy->getElementType(i));
627          NewRetIdxs[i] = RetTypes.size() - 1;
628        } else {
629          ++NumRetValsEliminated;
630          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
631                << F->getName() << "\n");
632        }
633      }
634    else
635      // We used to return a single value.
636      if (LiveValues.erase(CreateRet(F, 0))) {
637        RetTypes.push_back(RetTy);
638        NewRetIdxs[0] = 0;
639      } else {
640        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
641              << "\n");
642        ++NumRetValsEliminated;
643      }
644    if (RetTypes.size() > 1)
645      // More than one return type? Return a struct with them. Also, if we used
646      // to return a struct and didn't change the number of return values,
647      // return a struct again. This prevents changing {something} into
648      // something and {} into void.
649      // Make the new struct packed if we used to return a packed struct
650      // already.
651      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
652    else if (RetTypes.size() == 1)
653      // One return type? Just a simple value then, but only if we didn't use to
654      // return a struct with that simple value before.
655      NRetTy = RetTypes.front();
656    else if (RetTypes.size() == 0)
657      // No return types? Make it void, but only if we didn't use to return {}.
658      NRetTy = Type::getVoidTy(F->getContext());
659  }
660
661  assert(NRetTy && "No new return type found?");
662
663  // Remove any incompatible attributes, but only if we removed all return
664  // values. Otherwise, ensure that we don't have any conflicting attributes
665  // here. Currently, this should not be possible, but special handling might be
666  // required when new return value attributes are added.
667  if (NRetTy->isVoidTy())
668    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
669  else
670    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
671           && "Return attributes no longer compatible?");
672
673  if (RAttrs)
674    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
675
676  // Remember which arguments are still alive.
677  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
678  // Construct the new parameter list from non-dead arguments. Also construct
679  // a new set of parameter attributes to correspond. Skip the first parameter
680  // attribute, since that belongs to the return value.
681  unsigned i = 0;
682  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
683       I != E; ++I, ++i) {
684    RetOrArg Arg = CreateArg(F, i);
685    if (LiveValues.erase(Arg)) {
686      Params.push_back(I->getType());
687      ArgAlive[i] = true;
688
689      // Get the original parameter attributes (skipping the first one, that is
690      // for the return value.
691      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
692        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
693    } else {
694      ++NumArgumentsEliminated;
695      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
696            << ") from " << F->getName() << "\n");
697    }
698  }
699
700  if (FnAttrs != Attribute::None)
701    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
702
703  // Reconstruct the AttributesList based on the vector we constructed.
704  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
705                                        AttributesVec.end());
706
707  // Create the new function type based on the recomputed parameters.
708  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
709
710  // No change?
711  if (NFTy == FTy)
712    return false;
713
714  // Create the new function body and insert it into the module...
715  Function *NF = Function::Create(NFTy, F->getLinkage());
716  NF->copyAttributesFrom(F);
717  NF->setAttributes(NewPAL);
718  // Insert the new function before the old function, so we won't be processing
719  // it again.
720  F->getParent()->getFunctionList().insert(F, NF);
721  NF->takeName(F);
722
723  // Loop over all of the callers of the function, transforming the call sites
724  // to pass in a smaller number of arguments into the new function.
725  //
726  std::vector<Value*> Args;
727  while (!F->use_empty()) {
728    CallSite CS = CallSite::get(F->use_back());
729    Instruction *Call = CS.getInstruction();
730
731    AttributesVec.clear();
732    const AttrListPtr &CallPAL = CS.getAttributes();
733
734    // The call return attributes.
735    Attributes RAttrs = CallPAL.getRetAttributes();
736    Attributes FnAttrs = CallPAL.getFnAttributes();
737    // Adjust in case the function was changed to return void.
738    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
739    if (RAttrs)
740      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
741
742    // Declare these outside of the loops, so we can reuse them for the second
743    // loop, which loops the varargs.
744    CallSite::arg_iterator I = CS.arg_begin();
745    unsigned i = 0;
746    // Loop over those operands, corresponding to the normal arguments to the
747    // original function, and add those that are still alive.
748    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
749      if (ArgAlive[i]) {
750        Args.push_back(*I);
751        // Get original parameter attributes, but skip return attributes.
752        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
753          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
754      }
755
756    // Push any varargs arguments on the list. Don't forget their attributes.
757    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
758      Args.push_back(*I);
759      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
760        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
761    }
762
763    if (FnAttrs != Attribute::None)
764      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
765
766    // Reconstruct the AttributesList based on the vector we constructed.
767    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
768                                              AttributesVec.end());
769
770    Instruction *New;
771    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
772      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
773                               Args.begin(), Args.end(), "", Call);
774      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
775      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
776    } else {
777      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
778      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
779      cast<CallInst>(New)->setAttributes(NewCallPAL);
780      if (cast<CallInst>(Call)->isTailCall())
781        cast<CallInst>(New)->setTailCall();
782    }
783    if (MDNode *N = Call->getDbgMetadata())
784      New->setDbgMetadata(N);
785
786    Args.clear();
787
788    if (!Call->use_empty()) {
789      if (New->getType() == Call->getType()) {
790        // Return type not changed? Just replace users then.
791        Call->replaceAllUsesWith(New);
792        New->takeName(Call);
793      } else if (New->getType()->isVoidTy()) {
794        // Our return value has uses, but they will get removed later on.
795        // Replace by null for now.
796        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
797      } else {
798        assert(RetTy->isStructTy() &&
799               "Return type changed, but not into a void. The old return type"
800               " must have been a struct!");
801        Instruction *InsertPt = Call;
802        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
803          BasicBlock::iterator IP = II->getNormalDest()->begin();
804          while (isa<PHINode>(IP)) ++IP;
805          InsertPt = IP;
806        }
807
808        // We used to return a struct. Instead of doing smart stuff with all the
809        // uses of this struct, we will just rebuild it using
810        // extract/insertvalue chaining and let instcombine clean that up.
811        //
812        // Start out building up our return value from undef
813        Value *RetVal = UndefValue::get(RetTy);
814        for (unsigned i = 0; i != RetCount; ++i)
815          if (NewRetIdxs[i] != -1) {
816            Value *V;
817            if (RetTypes.size() > 1)
818              // We are still returning a struct, so extract the value from our
819              // return value
820              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
821                                           InsertPt);
822            else
823              // We are now returning a single element, so just insert that
824              V = New;
825            // Insert the value at the old position
826            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
827          }
828        // Now, replace all uses of the old call instruction with the return
829        // struct we built
830        Call->replaceAllUsesWith(RetVal);
831        New->takeName(Call);
832      }
833    }
834
835    // Finally, remove the old call from the program, reducing the use-count of
836    // F.
837    Call->eraseFromParent();
838  }
839
840  // Since we have now created the new function, splice the body of the old
841  // function right into the new function, leaving the old rotting hulk of the
842  // function empty.
843  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
844
845  // Loop over the argument list, transfering uses of the old arguments over to
846  // the new arguments, also transfering over the names as well.
847  i = 0;
848  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
849       I2 = NF->arg_begin(); I != E; ++I, ++i)
850    if (ArgAlive[i]) {
851      // If this is a live argument, move the name and users over to the new
852      // version.
853      I->replaceAllUsesWith(I2);
854      I2->takeName(I);
855      ++I2;
856    } else {
857      // If this argument is dead, replace any uses of it with null constants
858      // (these are guaranteed to become unused later on).
859      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
860    }
861
862  // If we change the return value of the function we must rewrite any return
863  // instructions.  Check this now.
864  if (F->getReturnType() != NF->getReturnType())
865    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
866      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
867        Value *RetVal;
868
869        if (NFTy->getReturnType()->isVoidTy()) {
870          RetVal = 0;
871        } else {
872          assert (RetTy->isStructTy());
873          // The original return value was a struct, insert
874          // extractvalue/insertvalue chains to extract only the values we need
875          // to return and insert them into our new result.
876          // This does generate messy code, but we'll let it to instcombine to
877          // clean that up.
878          Value *OldRet = RI->getOperand(0);
879          // Start out building up our return value from undef
880          RetVal = UndefValue::get(NRetTy);
881          for (unsigned i = 0; i != RetCount; ++i)
882            if (NewRetIdxs[i] != -1) {
883              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
884                                                              "oldret", RI);
885              if (RetTypes.size() > 1) {
886                // We're still returning a struct, so reinsert the value into
887                // our new return value at the new index
888
889                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
890                                                 "newret", RI);
891              } else {
892                // We are now only returning a simple value, so just return the
893                // extracted value.
894                RetVal = EV;
895              }
896            }
897        }
898        // Replace the return instruction with one returning the new return
899        // value (possibly 0 if we became void).
900        ReturnInst::Create(F->getContext(), RetVal, RI);
901        BB->getInstList().erase(RI);
902      }
903
904  // Now that the old function is dead, delete it.
905  F->eraseFromParent();
906
907  return true;
908}
909
910bool DAE::runOnModule(Module &M) {
911  bool Changed = false;
912
913  // First pass: Do a simple check to see if any functions can have their "..."
914  // removed.  We can do this if they never call va_start.  This loop cannot be
915  // fused with the next loop, because deleting a function invalidates
916  // information computed while surveying other functions.
917  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
918  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
919    Function &F = *I++;
920    if (F.getFunctionType()->isVarArg())
921      Changed |= DeleteDeadVarargs(F);
922  }
923
924  // Second phase:loop through the module, determining which arguments are live.
925  // We assume all arguments are dead unless proven otherwise (allowing us to
926  // determine that dead arguments passed into recursive functions are dead).
927  //
928  DEBUG(dbgs() << "DAE - Determining liveness\n");
929  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
930    SurveyFunction(*I);
931
932  // Now, remove all dead arguments and return values from each function in
933  // turn.
934  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
935    // Increment now, because the function will probably get removed (ie.
936    // replaced by a new one).
937    Function *F = I++;
938    Changed |= RemoveDeadStuffFromFunction(F);
939  }
940  return Changed;
941}
942