DeadArgumentElimination.cpp revision 53d25bd95ad54eb4e50873ac1b07cbd4906d58cd
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/Compiler.h"
35#include <map>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
41
42namespace {
43  /// DAE - The dead argument elimination pass.
44  ///
45  class VISIBILITY_HIDDEN DAE : public ModulePass {
46  public:
47
48    /// Struct that represents (part of) either a return value or a function
49    /// argument.  Used so that arguments and return values can be used
50    /// interchangably.
51    struct RetOrArg {
52      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
53               IsArg(IsArg) {}
54      const Function *F;
55      unsigned Idx;
56      bool IsArg;
57
58      /// Make RetOrArg comparable, so we can put it into a map.
59      bool operator<(const RetOrArg &O) const {
60        if (F != O.F)
61          return F < O.F;
62        else if (Idx != O.Idx)
63          return Idx < O.Idx;
64        else
65          return IsArg < O.IsArg;
66      }
67
68      /// Make RetOrArg comparable, so we can easily iterate the multimap.
69      bool operator==(const RetOrArg &O) const {
70        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
71      }
72
73      std::string getDescription() const {
74        return std::string((IsArg ? "Argument #" : "Return value #"))
75               + utostr(Idx) + " of function " + F->getName();
76      }
77    };
78
79    /// Liveness enum - During our initial pass over the program, we determine
80    /// that things are either alive or maybe alive. We don't mark anything
81    /// explicitly dead (even if we know they are), since anything not alive
82    /// with no registered uses (in Uses) will never be marked alive and will
83    /// thus become dead in the end.
84    enum Liveness { Live, MaybeLive };
85
86    /// Convenience wrapper
87    RetOrArg CreateRet(const Function *F, unsigned Idx) {
88      return RetOrArg(F, Idx, false);
89    }
90    /// Convenience wrapper
91    RetOrArg CreateArg(const Function *F, unsigned Idx) {
92      return RetOrArg(F, Idx, true);
93    }
94
95    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96    /// This maps a return value or argument to any MaybeLive return values or
97    /// arguments it uses. This allows the MaybeLive values to be marked live
98    /// when any of its users is marked live.
99    /// For example (indices are left out for clarity):
100    ///  - Uses[ret F] = ret G
101    ///    This means that F calls G, and F returns the value returned by G.
102    ///  - Uses[arg F] = ret G
103    ///    This means that some function calls G and passes its result as an
104    ///    argument to F.
105    ///  - Uses[ret F] = arg F
106    ///    This means that F returns one of its own arguments.
107    ///  - Uses[arg F] = arg G
108    ///    This means that G calls F and passes one of its own (G's) arguments
109    ///    directly to F.
110    UseMap Uses;
111
112    typedef std::set<RetOrArg> LiveSet;
113
114    /// This set contains all values that have been determined to be live.
115    LiveSet LiveValues;
116
117    typedef SmallVector<RetOrArg, 5> UseVector;
118
119  public:
120    static char ID; // Pass identification, replacement for typeid
121    DAE() : ModulePass((intptr_t)&ID) {}
122    bool runOnModule(Module &M);
123
124    virtual bool ShouldHackArguments() const { return false; }
125
126  private:
127    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
128    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
129                       unsigned RetValNum = 0);
130    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
131
132    void SurveyFunction(Function &F);
133    void MarkValue(const RetOrArg &RA, Liveness L,
134                   const UseVector &MaybeLiveUses);
135    void MarkLive(const RetOrArg &RA);
136    void MarkLive(const Function &F);
137    void PropagateLiveness(const RetOrArg &RA);
138    bool RemoveDeadStuffFromFunction(Function *F);
139    bool DeleteDeadVarargs(Function &Fn);
140  };
141}
142
143
144char DAE::ID = 0;
145static RegisterPass<DAE>
146X("deadargelim", "Dead Argument Elimination");
147
148namespace {
149  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
150  /// deletes arguments to functions which are external.  This is only for use
151  /// by bugpoint.
152  struct DAH : public DAE {
153    static char ID;
154    virtual bool ShouldHackArguments() const { return true; }
155  };
156}
157
158char DAH::ID = 0;
159static RegisterPass<DAH>
160Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
161
162/// createDeadArgEliminationPass - This pass removes arguments from functions
163/// which are not used by the body of the function.
164///
165ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
166ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
167
168/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
169/// llvm.vastart is never called, the varargs list is dead for the function.
170bool DAE::DeleteDeadVarargs(Function &Fn) {
171  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
172  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
173
174  // Ensure that the function is only directly called.
175  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
176    // If this use is anything other than a call site, give up.
177    CallSite CS = CallSite::get(*I);
178    Instruction *TheCall = CS.getInstruction();
179    if (!TheCall) return false;   // Not a direct call site?
180
181    // The addr of this function is passed to the call.
182    if (I.getOperandNo() != 0) return false;
183  }
184
185  // Okay, we know we can transform this function if safe.  Scan its body
186  // looking for calls to llvm.vastart.
187  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
188    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
189      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
190        if (II->getIntrinsicID() == Intrinsic::vastart)
191          return false;
192      }
193    }
194  }
195
196  // If we get here, there are no calls to llvm.vastart in the function body,
197  // remove the "..." and adjust all the calls.
198
199  // Start by computing a new prototype for the function, which is the same as
200  // the old function, but doesn't have isVarArg set.
201  const FunctionType *FTy = Fn.getFunctionType();
202  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
203  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
204  unsigned NumArgs = Params.size();
205
206  // Create the new function body and insert it into the module...
207  Function *NF = Function::Create(NFTy, Fn.getLinkage());
208  NF->copyAttributesFrom(&Fn);
209  Fn.getParent()->getFunctionList().insert(&Fn, NF);
210  NF->takeName(&Fn);
211
212  // Loop over all of the callers of the function, transforming the call sites
213  // to pass in a smaller number of arguments into the new function.
214  //
215  std::vector<Value*> Args;
216  while (!Fn.use_empty()) {
217    CallSite CS = CallSite::get(Fn.use_back());
218    Instruction *Call = CS.getInstruction();
219
220    // Pass all the same arguments.
221    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
222
223    // Drop any attributes that were on the vararg arguments.
224    PAListPtr PAL = CS.getParamAttrs();
225    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
226      SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
227      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
228        ParamAttrsVec.push_back(PAL.getSlot(i));
229      PAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
230    }
231
232    Instruction *New;
233    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
234      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
235                               Args.begin(), Args.end(), "", Call);
236      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
237      cast<InvokeInst>(New)->setParamAttrs(PAL);
238    } else {
239      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
240      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
241      cast<CallInst>(New)->setParamAttrs(PAL);
242      if (cast<CallInst>(Call)->isTailCall())
243        cast<CallInst>(New)->setTailCall();
244    }
245    Args.clear();
246
247    if (!Call->use_empty())
248      Call->replaceAllUsesWith(New);
249
250    New->takeName(Call);
251
252    // Finally, remove the old call from the program, reducing the use-count of
253    // F.
254    Call->eraseFromParent();
255  }
256
257  // Since we have now created the new function, splice the body of the old
258  // function right into the new function, leaving the old rotting hulk of the
259  // function empty.
260  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
261
262  // Loop over the argument list, transfering uses of the old arguments over to
263  // the new arguments, also transfering over the names as well.  While we're at
264  // it, remove the dead arguments from the DeadArguments list.
265  //
266  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
267       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
268    // Move the name and users over to the new version.
269    I->replaceAllUsesWith(I2);
270    I2->takeName(I);
271  }
272
273  // Finally, nuke the old function.
274  Fn.eraseFromParent();
275  return true;
276}
277
278/// Convenience function that returns the number of return values. It returns 0
279/// for void functions and 1 for functions not returning a struct. It returns
280/// the number of struct elements for functions returning a struct.
281static unsigned NumRetVals(const Function *F) {
282  if (F->getReturnType() == Type::VoidTy)
283    return 0;
284  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
285    return STy->getNumElements();
286  else
287    return 1;
288}
289
290/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
291/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
292/// liveness of Use.
293DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
294  // We're live if our use is already marked as live.
295  if (LiveValues.count(Use))
296    return Live;
297
298  // We're maybe live otherwise, but remember that we must become live if
299  // Use becomes live.
300  MaybeLiveUses.push_back(Use);
301  return MaybeLive;
302}
303
304
305/// SurveyUse - This looks at a single use of an argument or return value
306/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
307/// if it causes the used value to become MaybeAlive.
308///
309/// RetValNum is the return value number to use when this use is used in a
310/// return instruction. This is used in the recursion, you should always leave
311/// it at 0.
312DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
313                             unsigned RetValNum) {
314    Value *V = *U;
315    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
316      // The value is returned from a function. It's only live when the
317      // function's return value is live. We use RetValNum here, for the case
318      // that U is really a use of an insertvalue instruction that uses the
319      // orginal Use.
320      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
321      // We might be live, depending on the liveness of Use.
322      return MarkIfNotLive(Use, MaybeLiveUses);
323    }
324    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
325      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
326          && IV->hasIndices())
327        // The use we are examining is inserted into an aggregate. Our liveness
328        // depends on all uses of that aggregate, but if it is used as a return
329        // value, only index at which we were inserted counts.
330        RetValNum = *IV->idx_begin();
331
332      // Note that if we are used as the aggregate operand to the insertvalue,
333      // we don't change RetValNum, but do survey all our uses.
334
335      Liveness Result = MaybeLive;
336      for (Value::use_iterator I = IV->use_begin(),
337           E = V->use_end(); I != E; ++I) {
338        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
339        if (Result == Live)
340          break;
341      }
342      return Result;
343    }
344    CallSite CS = CallSite::get(V);
345    if (CS.getInstruction()) {
346      Function *F = CS.getCalledFunction();
347      if (F) {
348        // Used in a direct call.
349
350        // Find the argument number. We know for sure that this use is an
351        // argument, since if it was the function argument this would be an
352        // indirect call and the we know can't be looking at a value of the
353        // label type (for the invoke instruction).
354        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
355
356        if (ArgNo >= F->getFunctionType()->getNumParams())
357          // The value is passed in through a vararg! Must be live.
358          return Live;
359
360        assert(CS.getArgument(ArgNo)
361               == CS.getInstruction()->getOperand(U.getOperandNo())
362               && "Argument is not where we expected it");
363
364        // Value passed to a normal call. It's only live when the corresponding
365        // argument to the called function turns out live.
366        RetOrArg Use = CreateArg(F, ArgNo);
367        return MarkIfNotLive(Use, MaybeLiveUses);
368      }
369    }
370    // Used in any other way? Value must be live.
371    return Live;
372}
373
374/// SurveyUses - This looks at all the uses of the given value
375/// Returns the Liveness deduced from the uses of this value.
376///
377/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
378/// the result is Live, MaybeLiveUses might be modified but its content should
379/// be ignored (since it might not be complete).
380DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
381  // Assume it's dead (which will only hold if there are no uses at all..).
382  Liveness Result = MaybeLive;
383  // Check each use.
384  for (Value::use_iterator I = V->use_begin(),
385       E = V->use_end(); I != E; ++I) {
386    Result = SurveyUse(I, MaybeLiveUses);
387    if (Result == Live)
388      break;
389  }
390  return Result;
391}
392
393// SurveyFunction - This performs the initial survey of the specified function,
394// checking out whether or not it uses any of its incoming arguments or whether
395// any callers use the return value.  This fills in the LiveValues set and Uses
396// map.
397//
398// We consider arguments of non-internal functions to be intrinsically alive as
399// well as arguments to functions which have their "address taken".
400//
401void DAE::SurveyFunction(Function &F) {
402  unsigned RetCount = NumRetVals(&F);
403  // Assume all return values are dead
404  typedef SmallVector<Liveness, 5> RetVals;
405  RetVals RetValLiveness(RetCount, MaybeLive);
406
407  typedef SmallVector<UseVector, 5> RetUses;
408  // These vectors map each return value to the uses that make it MaybeLive, so
409  // we can add those to the Uses map if the return value really turns out to be
410  // MaybeLive. Initialized to a list of RetCount empty lists.
411  RetUses MaybeLiveRetUses(RetCount);
412
413  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
414    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
415      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
416          != F.getFunctionType()->getReturnType()) {
417        // We don't support old style multiple return values.
418        MarkLive(F);
419        return;
420      }
421
422  if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
423    MarkLive(F);
424    return;
425  }
426
427  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
428  // Keep track of the number of live retvals, so we can skip checks once all
429  // of them turn out to be live.
430  unsigned NumLiveRetVals = 0;
431  const Type *STy = dyn_cast<StructType>(F.getReturnType());
432  // Loop all uses of the function.
433  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
434    // If the function is PASSED IN as an argument, its address has been
435    // taken.
436    if (I.getOperandNo() != 0) {
437      MarkLive(F);
438      return;
439    }
440
441    // If this use is anything other than a call site, the function is alive.
442    CallSite CS = CallSite::get(*I);
443    Instruction *TheCall = CS.getInstruction();
444    if (!TheCall) {   // Not a direct call site?
445      MarkLive(F);
446      return;
447    }
448
449    // If we end up here, we are looking at a direct call to our function.
450
451    // Now, check how our return value(s) is/are used in this caller. Don't
452    // bother checking return values if all of them are live already.
453    if (NumLiveRetVals != RetCount) {
454      if (STy) {
455        // Check all uses of the return value.
456        for (Value::use_iterator I = TheCall->use_begin(),
457             E = TheCall->use_end(); I != E; ++I) {
458          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
459          if (Ext && Ext->hasIndices()) {
460            // This use uses a part of our return value, survey the uses of
461            // that part and store the results for this index only.
462            unsigned Idx = *Ext->idx_begin();
463            if (RetValLiveness[Idx] != Live) {
464              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
465              if (RetValLiveness[Idx] == Live)
466                NumLiveRetVals++;
467            }
468          } else {
469            // Used by something else than extractvalue. Mark all return
470            // values as live.
471            for (unsigned i = 0; i != RetCount; ++i )
472              RetValLiveness[i] = Live;
473            NumLiveRetVals = RetCount;
474            break;
475          }
476        }
477      } else {
478        // Single return value
479        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
480        if (RetValLiveness[0] == Live)
481          NumLiveRetVals = RetCount;
482      }
483    }
484  }
485
486  // Now we've inspected all callers, record the liveness of our return values.
487  for (unsigned i = 0; i != RetCount; ++i)
488    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
489
490  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
491
492  // Now, check all of our arguments.
493  unsigned i = 0;
494  UseVector MaybeLiveArgUses;
495  for (Function::arg_iterator AI = F.arg_begin(),
496       E = F.arg_end(); AI != E; ++AI, ++i) {
497    // See what the effect of this use is (recording any uses that cause
498    // MaybeLive in MaybeLiveArgUses).
499    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
500    // Mark the result.
501    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
502    // Clear the vector again for the next iteration.
503    MaybeLiveArgUses.clear();
504  }
505}
506
507/// MarkValue - This function marks the liveness of RA depending on L. If L is
508/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
509/// such that RA will be marked live if any use in MaybeLiveUses gets marked
510/// live later on.
511void DAE::MarkValue(const RetOrArg &RA, Liveness L,
512                    const UseVector &MaybeLiveUses) {
513  switch (L) {
514    case Live: MarkLive(RA); break;
515    case MaybeLive:
516    {
517      // Note any uses of this value, so this return value can be
518      // marked live whenever one of the uses becomes live.
519      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
520           UE = MaybeLiveUses.end(); UI != UE; ++UI)
521        Uses.insert(std::make_pair(*UI, RA));
522      break;
523    }
524  }
525}
526
527/// MarkLive - Mark the given Function as alive, meaning that it cannot be
528/// changed in any way. Additionally,
529/// mark any values that are used as this function's parameters or by its return
530/// values (according to Uses) live as well.
531void DAE::MarkLive(const Function &F) {
532    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
533    // Mark all arguments as live.
534    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
535      MarkLive(CreateArg(&F, i));
536    // Mark all return values as live.
537    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
538      MarkLive(CreateRet(&F, i));
539}
540
541/// MarkLive - Mark the given return value or argument as live. Additionally,
542/// mark any values that are used by this value (according to Uses) live as
543/// well.
544void DAE::MarkLive(const RetOrArg &RA) {
545  if (!LiveValues.insert(RA).second)
546    return; // We were already marked Live.
547
548  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
549  PropagateLiveness(RA);
550}
551
552/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
553/// to any other values it uses (according to Uses).
554void DAE::PropagateLiveness(const RetOrArg &RA) {
555  // We don't use upper_bound (or equal_range) here, because our recursive call
556  // to ourselves is likely to cause the upper_bound (which is the first value
557  // not belonging to RA) to become erased and the iterator invalidated.
558  UseMap::iterator Begin = Uses.lower_bound(RA);
559  UseMap::iterator E = Uses.end();
560  UseMap::iterator I;
561  for (I = Begin; I != E && I->first == RA; ++I)
562    MarkLive(I->second);
563
564  // Erase RA from the Uses map (from the lower bound to wherever we ended up
565  // after the loop).
566  Uses.erase(Begin, I);
567}
568
569// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
570// that are not in LiveValues. Transform the function and all of the callees of
571// the function to not have these arguments and return values.
572//
573bool DAE::RemoveDeadStuffFromFunction(Function *F) {
574  // Quick exit path for external functions
575  if (!F->hasInternalLinkage() && (!ShouldHackArguments() || F->isIntrinsic()))
576    return false;
577
578  // Start by computing a new prototype for the function, which is the same as
579  // the old function, but has fewer arguments and a different return type.
580  const FunctionType *FTy = F->getFunctionType();
581  std::vector<const Type*> Params;
582
583  // Set up to build a new list of parameter attributes.
584  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
585  const PAListPtr &PAL = F->getParamAttrs();
586
587  // The existing function return attributes.
588  ParameterAttributes RAttrs = PAL.getParamAttrs(0);
589
590
591  // Find out the new return value.
592
593  const Type *RetTy = FTy->getReturnType();
594  const Type *NRetTy = NULL;
595  unsigned RetCount = NumRetVals(F);
596  // Explicitly track if anything changed, for debugging.
597  bool Changed = false;
598  // -1 means unused, other numbers are the new index
599  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
600  std::vector<const Type*> RetTypes;
601  if (RetTy == Type::VoidTy) {
602    NRetTy = Type::VoidTy;
603  } else {
604    const StructType *STy = dyn_cast<StructType>(RetTy);
605    if (STy)
606      // Look at each of the original return values individually.
607      for (unsigned i = 0; i != RetCount; ++i) {
608        RetOrArg Ret = CreateRet(F, i);
609        if (LiveValues.erase(Ret)) {
610          RetTypes.push_back(STy->getElementType(i));
611          NewRetIdxs[i] = RetTypes.size() - 1;
612        } else {
613          ++NumRetValsEliminated;
614          DOUT << "DAE - Removing return value " << i << " from "
615               << F->getNameStart() << "\n";
616          Changed = true;
617        }
618      }
619    else
620      // We used to return a single value.
621      if (LiveValues.erase(CreateRet(F, 0))) {
622        RetTypes.push_back(RetTy);
623        NewRetIdxs[0] = 0;
624      } else {
625        DOUT << "DAE - Removing return value from " << F->getNameStart()
626             << "\n";
627        ++NumRetValsEliminated;
628        Changed = true;
629      }
630    if (RetTypes.size() > 1 || (STy && STy->getNumElements()==RetTypes.size()))
631      // More than one return type? Return a struct with them. Also, if we used
632      // to return a struct and didn't change the number of return values,
633      // return a struct again. This prevents changing {something} into
634      // something and {} into void.
635      // Make the new struct packed if we used to return a packed struct
636      // already.
637      NRetTy = StructType::get(RetTypes, STy->isPacked());
638    else if (RetTypes.size() == 1)
639      // One return type? Just a simple value then, but only if we didn't use to
640      // return a struct with that simple value before.
641      NRetTy = RetTypes.front();
642    else if (RetTypes.size() == 0)
643      // No return types? Make it void, but only if we didn't use to return {}.
644      NRetTy = Type::VoidTy;
645  }
646
647  assert(NRetTy && "No new return type found?");
648
649  // Remove any incompatible attributes, but only if we removed all return
650  // values. Otherwise, ensure that we don't have any conflicting attributes
651  // here. Currently, this should not be possible, but special handling might be
652  // required when new return value attributes are added.
653  if (NRetTy == Type::VoidTy)
654    RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
655  else
656    assert((RAttrs & ParamAttr::typeIncompatible(NRetTy)) == 0
657           && "Return attributes no longer compatible?");
658
659  if (RAttrs)
660    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
661
662  // Remember which arguments are still alive.
663  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
664  // Construct the new parameter list from non-dead arguments. Also construct
665  // a new set of parameter attributes to correspond. Skip the first parameter
666  // attribute, since that belongs to the return value.
667  unsigned i = 0;
668  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
669       I != E; ++I, ++i) {
670    RetOrArg Arg = CreateArg(F, i);
671    if (LiveValues.erase(Arg)) {
672      Params.push_back(I->getType());
673      ArgAlive[i] = true;
674
675      // Get the original parameter attributes (skipping the first one, that is
676      // for the return value.
677      if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
678        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
679    } else {
680      ++NumArgumentsEliminated;
681      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
682           << ") from " << F->getNameStart() << "\n";
683      Changed = true;
684    }
685  }
686
687  // Reconstruct the ParamAttrsList based on the vector we constructed.
688  PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
689
690  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
691  // have zero fixed arguments.
692  //
693  // Note that we apply this hack for a vararg fuction that does not have any
694  // arguments anymore, but did have them before (so don't bother fixing
695  // functions that were already broken wrt CWriter).
696  bool ExtraArgHack = false;
697  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
698    ExtraArgHack = true;
699    Params.push_back(Type::Int32Ty);
700  }
701
702  // Create the new function type based on the recomputed parameters.
703  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
704
705  // No change?
706  if (NFTy == FTy)
707    return false;
708
709  // The function type is only allowed to be different if we actually left out
710  // an argument or return value.
711  assert(Changed && "Function type changed while no arguments or return values"
712                    "were removed!");
713
714  // Create the new function body and insert it into the module...
715  Function *NF = Function::Create(NFTy, F->getLinkage());
716  NF->copyAttributesFrom(F);
717  NF->setParamAttrs(NewPAL);
718  // Insert the new function before the old function, so we won't be processing
719  // it again.
720  F->getParent()->getFunctionList().insert(F, NF);
721  NF->takeName(F);
722
723  // Loop over all of the callers of the function, transforming the call sites
724  // to pass in a smaller number of arguments into the new function.
725  //
726  std::vector<Value*> Args;
727  while (!F->use_empty()) {
728    CallSite CS = CallSite::get(F->use_back());
729    Instruction *Call = CS.getInstruction();
730
731    ParamAttrsVec.clear();
732    const PAListPtr &CallPAL = CS.getParamAttrs();
733
734    // The call return attributes.
735    ParameterAttributes RAttrs = CallPAL.getParamAttrs(0);
736    // Adjust in case the function was changed to return void.
737    RAttrs &= ~ParamAttr::typeIncompatible(NF->getReturnType());
738    if (RAttrs)
739      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
740
741    // Declare these outside of the loops, so we can reuse them for the second
742    // loop, which loops the varargs.
743    CallSite::arg_iterator I = CS.arg_begin();
744    unsigned i = 0;
745    // Loop over those operands, corresponding to the normal arguments to the
746    // original function, and add those that are still alive.
747    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
748      if (ArgAlive[i]) {
749        Args.push_back(*I);
750        // Get original parameter attributes, but skip return attributes.
751        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
752          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
753      }
754
755    if (ExtraArgHack)
756      Args.push_back(UndefValue::get(Type::Int32Ty));
757
758    // Push any varargs arguments on the list. Don't forget their attributes.
759    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
760      Args.push_back(*I);
761      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
762        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
763    }
764
765    // Reconstruct the ParamAttrsList based on the vector we constructed.
766    PAListPtr NewCallPAL = PAListPtr::get(ParamAttrsVec.begin(),
767                                          ParamAttrsVec.end());
768
769    Instruction *New;
770    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
771      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
772                               Args.begin(), Args.end(), "", Call);
773      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
774      cast<InvokeInst>(New)->setParamAttrs(NewCallPAL);
775    } else {
776      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
777      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
778      cast<CallInst>(New)->setParamAttrs(NewCallPAL);
779      if (cast<CallInst>(Call)->isTailCall())
780        cast<CallInst>(New)->setTailCall();
781    }
782    Args.clear();
783
784    if (!Call->use_empty()) {
785      if (New->getType() == Call->getType()) {
786        // Return type not changed? Just replace users then.
787        Call->replaceAllUsesWith(New);
788        New->takeName(Call);
789      } else if (New->getType() == Type::VoidTy) {
790        // Our return value has uses, but they will get removed later on.
791        // Replace by null for now.
792        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
793      } else {
794        assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
795                                         "void. The old return type must have"
796                                         "been a struct!");
797        // The original return value was a struct, update all uses (which are
798        // all extractvalue instructions).
799        for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
800             I != E;) {
801          assert(isa<ExtractValueInst>(*I) && "Return value not only used by"
802                                              "extractvalue?");
803          ExtractValueInst *EV = cast<ExtractValueInst>(*I);
804          // Increment now, since we're about to throw away this use.
805          ++I;
806          assert(EV->hasIndices() && "Return value used by extractvalue without"
807                                     "indices?");
808          unsigned Idx = *EV->idx_begin();
809          if (NewRetIdxs[Idx] != -1) {
810            if (RetTypes.size() > 1) {
811              // We're still returning a struct, create a new extractvalue
812              // instruction with the first index updated
813              std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
814              NewIdxs[0] = NewRetIdxs[Idx];
815              Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
816                                                    NewIdxs.end(), "retval",
817                                                    EV);
818              EV->replaceAllUsesWith(NEV);
819              EV->eraseFromParent();
820            } else {
821              // We are now only returning a simple value, remove the
822              // extractvalue.
823              EV->replaceAllUsesWith(New);
824              EV->eraseFromParent();
825            }
826          } else {
827            // Value unused, replace uses by null for now, they will get removed
828            // later on.
829            EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
830            EV->eraseFromParent();
831          }
832        }
833        New->takeName(Call);
834      }
835    }
836
837    // Finally, remove the old call from the program, reducing the use-count of
838    // F.
839    Call->eraseFromParent();
840  }
841
842  // Since we have now created the new function, splice the body of the old
843  // function right into the new function, leaving the old rotting hulk of the
844  // function empty.
845  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
846
847  // Loop over the argument list, transfering uses of the old arguments over to
848  // the new arguments, also transfering over the names as well.
849  i = 0;
850  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
851       I2 = NF->arg_begin(); I != E; ++I, ++i)
852    if (ArgAlive[i]) {
853      // If this is a live argument, move the name and users over to the new
854      // version.
855      I->replaceAllUsesWith(I2);
856      I2->takeName(I);
857      ++I2;
858    } else {
859      // If this argument is dead, replace any uses of it with null constants
860      // (these are guaranteed to become unused later on).
861      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
862    }
863
864  // If we change the return value of the function we must rewrite any return
865  // instructions.  Check this now.
866  if (F->getReturnType() != NF->getReturnType())
867    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
868      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
869        Value *RetVal;
870
871        if (NFTy->getReturnType() == Type::VoidTy) {
872          RetVal = 0;
873        } else {
874          assert (isa<StructType>(RetTy));
875          // The original return value was a struct, insert
876          // extractvalue/insertvalue chains to extract only the values we need
877          // to return and insert them into our new result.
878          // This does generate messy code, but we'll let it to instcombine to
879          // clean that up.
880          Value *OldRet = RI->getOperand(0);
881          // Start out building up our return value from undef
882          RetVal = llvm::UndefValue::get(NRetTy);
883          for (unsigned i = 0; i != RetCount; ++i)
884            if (NewRetIdxs[i] != -1) {
885              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
886                                                              "oldret", RI);
887              if (RetTypes.size() > 1) {
888                // We're still returning a struct, so reinsert the value into
889                // our new return value at the new index
890
891                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
892                                                 "newret", RI);
893              } else {
894                // We are now only returning a simple value, so just return the
895                // extracted value.
896                RetVal = EV;
897              }
898            }
899        }
900        // Replace the return instruction with one returning the new return
901        // value (possibly 0 if we became void).
902        ReturnInst::Create(RetVal, RI);
903        BB->getInstList().erase(RI);
904      }
905
906  // Now that the old function is dead, delete it.
907  F->eraseFromParent();
908
909  return true;
910}
911
912bool DAE::runOnModule(Module &M) {
913  bool Changed = false;
914
915  // First pass: Do a simple check to see if any functions can have their "..."
916  // removed.  We can do this if they never call va_start.  This loop cannot be
917  // fused with the next loop, because deleting a function invalidates
918  // information computed while surveying other functions.
919  DOUT << "DAE - Deleting dead varargs\n";
920  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
921    Function &F = *I++;
922    if (F.getFunctionType()->isVarArg())
923      Changed |= DeleteDeadVarargs(F);
924  }
925
926  // Second phase:loop through the module, determining which arguments are live.
927  // We assume all arguments are dead unless proven otherwise (allowing us to
928  // determine that dead arguments passed into recursive functions are dead).
929  //
930  DOUT << "DAE - Determining liveness\n";
931  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
932    SurveyFunction(*I);
933
934  // Now, remove all dead arguments and return values from each function in
935  // turn
936  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
937    // Increment now, because the function will probably get removed (ie
938    // replaced by a new one).
939    Function *F = I++;
940    Changed |= RemoveDeadStuffFromFunction(F);
941  }
942  return Changed;
943}
944