DeadArgumentElimination.cpp revision 64dd20c3ef8d69592ee60d9fc35b17c76c2a7370
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/Compiler.h"
35#include <map>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
41
42namespace {
43  /// DAE - The dead argument elimination pass.
44  ///
45  class VISIBILITY_HIDDEN DAE : public ModulePass {
46  public:
47
48    /// Struct that represents (part of) either a return value or a function
49    /// argument.  Used so that arguments and return values can be used
50    /// interchangably.
51    struct RetOrArg {
52      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
53               IsArg(IsArg) {}
54      const Function *F;
55      unsigned Idx;
56      bool IsArg;
57
58      /// Make RetOrArg comparable, so we can put it into a map.
59      bool operator<(const RetOrArg &O) const {
60        if (F != O.F)
61          return F < O.F;
62        else if (Idx != O.Idx)
63          return Idx < O.Idx;
64        else
65          return IsArg < O.IsArg;
66      }
67
68      /// Make RetOrArg comparable, so we can easily iterate the multimap.
69      bool operator==(const RetOrArg &O) const {
70        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
71      }
72
73      std::string getDescription() const {
74        return std::string((IsArg ? "Argument #" : "Return value #"))
75               + utostr(Idx) + " of function " + F->getName();
76      }
77    };
78
79    /// Liveness enum - During our initial pass over the program, we determine
80    /// that things are either alive or maybe alive. We don't mark anything
81    /// explicitly dead (even if we know they are), since anything not alive
82    /// with no registered uses (in Uses) will never be marked alive and will
83    /// thus become dead in the end.
84    enum Liveness { Live, MaybeLive };
85
86    /// Convenience wrapper
87    RetOrArg CreateRet(const Function *F, unsigned Idx) {
88      return RetOrArg(F, Idx, false);
89    }
90    /// Convenience wrapper
91    RetOrArg CreateArg(const Function *F, unsigned Idx) {
92      return RetOrArg(F, Idx, true);
93    }
94
95    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
96    /// This maps a return value or argument to any MaybeLive return values or
97    /// arguments it uses. This allows the MaybeLive values to be marked live
98    /// when any of its users is marked live.
99    /// For example (indices are left out for clarity):
100    ///  - Uses[ret F] = ret G
101    ///    This means that F calls G, and F returns the value returned by G.
102    ///  - Uses[arg F] = ret G
103    ///    This means that some function calls G and passes its result as an
104    ///    argument to F.
105    ///  - Uses[ret F] = arg F
106    ///    This means that F returns one of its own arguments.
107    ///  - Uses[arg F] = arg G
108    ///    This means that G calls F and passes one of its own (G's) arguments
109    ///    directly to F.
110    UseMap Uses;
111
112    typedef std::set<RetOrArg> LiveSet;
113    typedef std::set<const Function*> LiveFuncSet;
114
115    /// This set contains all values that have been determined to be live.
116    LiveSet LiveValues;
117    /// This set contains all values that are cannot be changed in any way.
118    LiveFuncSet LiveFunctions;
119
120    typedef SmallVector<RetOrArg, 5> UseVector;
121
122  public:
123    static char ID; // Pass identification, replacement for typeid
124    DAE() : ModulePass(&ID) {}
125    bool runOnModule(Module &M);
126
127    virtual bool ShouldHackArguments() const { return false; }
128
129  private:
130    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
131    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
132                       unsigned RetValNum = 0);
133    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
134
135    void SurveyFunction(Function &F);
136    void MarkValue(const RetOrArg &RA, Liveness L,
137                   const UseVector &MaybeLiveUses);
138    void MarkLive(const RetOrArg &RA);
139    void MarkLive(const Function &F);
140    void PropagateLiveness(const RetOrArg &RA);
141    bool RemoveDeadStuffFromFunction(Function *F);
142    bool DeleteDeadVarargs(Function &Fn);
143  };
144}
145
146
147char DAE::ID = 0;
148static RegisterPass<DAE>
149X("deadargelim", "Dead Argument Elimination");
150
151namespace {
152  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
153  /// deletes arguments to functions which are external.  This is only for use
154  /// by bugpoint.
155  struct DAH : public DAE {
156    static char ID;
157    virtual bool ShouldHackArguments() const { return true; }
158  };
159}
160
161char DAH::ID = 0;
162static RegisterPass<DAH>
163Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
164
165/// createDeadArgEliminationPass - This pass removes arguments from functions
166/// which are not used by the body of the function.
167///
168ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
169ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
170
171/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
172/// llvm.vastart is never called, the varargs list is dead for the function.
173bool DAE::DeleteDeadVarargs(Function &Fn) {
174  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
175  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
176
177  // Ensure that the function is only directly called.
178  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
179    // If this use is anything other than a call site, give up.
180    CallSite CS = CallSite::get(*I);
181    Instruction *TheCall = CS.getInstruction();
182    if (!TheCall) return false;   // Not a direct call site?
183
184    // The addr of this function is passed to the call.
185    if (!CS.isCallee(I)) return false;
186  }
187
188  // Okay, we know we can transform this function if safe.  Scan its body
189  // looking for calls to llvm.vastart.
190  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
191    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
192      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
193        if (II->getIntrinsicID() == Intrinsic::vastart)
194          return false;
195      }
196    }
197  }
198
199  // If we get here, there are no calls to llvm.vastart in the function body,
200  // remove the "..." and adjust all the calls.
201
202  // Start by computing a new prototype for the function, which is the same as
203  // the old function, but doesn't have isVarArg set.
204  const FunctionType *FTy = Fn.getFunctionType();
205  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
206  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
207  unsigned NumArgs = Params.size();
208
209  // Create the new function body and insert it into the module...
210  Function *NF = Function::Create(NFTy, Fn.getLinkage());
211  NF->copyAttributesFrom(&Fn);
212  Fn.getParent()->getFunctionList().insert(&Fn, NF);
213  NF->takeName(&Fn);
214
215  // Loop over all of the callers of the function, transforming the call sites
216  // to pass in a smaller number of arguments into the new function.
217  //
218  std::vector<Value*> Args;
219  while (!Fn.use_empty()) {
220    CallSite CS = CallSite::get(Fn.use_back());
221    Instruction *Call = CS.getInstruction();
222
223    // Pass all the same arguments.
224    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
225
226    // Drop any attributes that were on the vararg arguments.
227    AttrListPtr PAL = CS.getAttributes();
228    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
229      SmallVector<AttributeWithIndex, 8> AttributesVec;
230      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
231        AttributesVec.push_back(PAL.getSlot(i));
232      if (Attributes FnAttrs = PAL.getFnAttributes())
233        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
234      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
235    }
236
237    Instruction *New;
238    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
239      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
240                               Args.begin(), Args.end(), "", Call);
241      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
242      cast<InvokeInst>(New)->setAttributes(PAL);
243    } else {
244      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
245      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
246      cast<CallInst>(New)->setAttributes(PAL);
247      if (cast<CallInst>(Call)->isTailCall())
248        cast<CallInst>(New)->setTailCall();
249    }
250    Args.clear();
251
252    if (!Call->use_empty())
253      Call->replaceAllUsesWith(New);
254
255    New->takeName(Call);
256
257    // Finally, remove the old call from the program, reducing the use-count of
258    // F.
259    Call->eraseFromParent();
260  }
261
262  // Since we have now created the new function, splice the body of the old
263  // function right into the new function, leaving the old rotting hulk of the
264  // function empty.
265  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
266
267  // Loop over the argument list, transfering uses of the old arguments over to
268  // the new arguments, also transfering over the names as well.  While we're at
269  // it, remove the dead arguments from the DeadArguments list.
270  //
271  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
272       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
273    // Move the name and users over to the new version.
274    I->replaceAllUsesWith(I2);
275    I2->takeName(I);
276  }
277
278  // Finally, nuke the old function.
279  Fn.eraseFromParent();
280  return true;
281}
282
283/// Convenience function that returns the number of return values. It returns 0
284/// for void functions and 1 for functions not returning a struct. It returns
285/// the number of struct elements for functions returning a struct.
286static unsigned NumRetVals(const Function *F) {
287  if (F->getReturnType() == Type::VoidTy)
288    return 0;
289  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
290    return STy->getNumElements();
291  else
292    return 1;
293}
294
295/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
296/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
297/// liveness of Use.
298DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
299  // We're live if our use or its Function is already marked as live.
300  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
301    return Live;
302
303  // We're maybe live otherwise, but remember that we must become live if
304  // Use becomes live.
305  MaybeLiveUses.push_back(Use);
306  return MaybeLive;
307}
308
309
310/// SurveyUse - This looks at a single use of an argument or return value
311/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
312/// if it causes the used value to become MaybeAlive.
313///
314/// RetValNum is the return value number to use when this use is used in a
315/// return instruction. This is used in the recursion, you should always leave
316/// it at 0.
317DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
318                             unsigned RetValNum) {
319    Value *V = *U;
320    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
321      // The value is returned from a function. It's only live when the
322      // function's return value is live. We use RetValNum here, for the case
323      // that U is really a use of an insertvalue instruction that uses the
324      // orginal Use.
325      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
326      // We might be live, depending on the liveness of Use.
327      return MarkIfNotLive(Use, MaybeLiveUses);
328    }
329    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
330      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
331          && IV->hasIndices())
332        // The use we are examining is inserted into an aggregate. Our liveness
333        // depends on all uses of that aggregate, but if it is used as a return
334        // value, only index at which we were inserted counts.
335        RetValNum = *IV->idx_begin();
336
337      // Note that if we are used as the aggregate operand to the insertvalue,
338      // we don't change RetValNum, but do survey all our uses.
339
340      Liveness Result = MaybeLive;
341      for (Value::use_iterator I = IV->use_begin(),
342           E = V->use_end(); I != E; ++I) {
343        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
344        if (Result == Live)
345          break;
346      }
347      return Result;
348    }
349    CallSite CS = CallSite::get(V);
350    if (CS.getInstruction()) {
351      Function *F = CS.getCalledFunction();
352      if (F) {
353        // Used in a direct call.
354
355        // Find the argument number. We know for sure that this use is an
356        // argument, since if it was the function argument this would be an
357        // indirect call and the we know can't be looking at a value of the
358        // label type (for the invoke instruction).
359        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
360
361        if (ArgNo >= F->getFunctionType()->getNumParams())
362          // The value is passed in through a vararg! Must be live.
363          return Live;
364
365        assert(CS.getArgument(ArgNo)
366               == CS.getInstruction()->getOperand(U.getOperandNo())
367               && "Argument is not where we expected it");
368
369        // Value passed to a normal call. It's only live when the corresponding
370        // argument to the called function turns out live.
371        RetOrArg Use = CreateArg(F, ArgNo);
372        return MarkIfNotLive(Use, MaybeLiveUses);
373      }
374    }
375    // Used in any other way? Value must be live.
376    return Live;
377}
378
379/// SurveyUses - This looks at all the uses of the given value
380/// Returns the Liveness deduced from the uses of this value.
381///
382/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
383/// the result is Live, MaybeLiveUses might be modified but its content should
384/// be ignored (since it might not be complete).
385DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
386  // Assume it's dead (which will only hold if there are no uses at all..).
387  Liveness Result = MaybeLive;
388  // Check each use.
389  for (Value::use_iterator I = V->use_begin(),
390       E = V->use_end(); I != E; ++I) {
391    Result = SurveyUse(I, MaybeLiveUses);
392    if (Result == Live)
393      break;
394  }
395  return Result;
396}
397
398// SurveyFunction - This performs the initial survey of the specified function,
399// checking out whether or not it uses any of its incoming arguments or whether
400// any callers use the return value.  This fills in the LiveValues set and Uses
401// map.
402//
403// We consider arguments of non-internal functions to be intrinsically alive as
404// well as arguments to functions which have their "address taken".
405//
406void DAE::SurveyFunction(Function &F) {
407  unsigned RetCount = NumRetVals(&F);
408  // Assume all return values are dead
409  typedef SmallVector<Liveness, 5> RetVals;
410  RetVals RetValLiveness(RetCount, MaybeLive);
411
412  typedef SmallVector<UseVector, 5> RetUses;
413  // These vectors map each return value to the uses that make it MaybeLive, so
414  // we can add those to the Uses map if the return value really turns out to be
415  // MaybeLive. Initialized to a list of RetCount empty lists.
416  RetUses MaybeLiveRetUses(RetCount);
417
418  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
419    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
420      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
421          != F.getFunctionType()->getReturnType()) {
422        // We don't support old style multiple return values.
423        MarkLive(F);
424        return;
425      }
426
427  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
428    MarkLive(F);
429    return;
430  }
431
432  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
433  // Keep track of the number of live retvals, so we can skip checks once all
434  // of them turn out to be live.
435  unsigned NumLiveRetVals = 0;
436  const Type *STy = dyn_cast<StructType>(F.getReturnType());
437  // Loop all uses of the function.
438  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
439    // If the function is PASSED IN as an argument, its address has been
440    // taken.
441    CallSite CS = CallSite::get(*I);
442    if (!CS.getInstruction() || !CS.isCallee(I)) {
443      MarkLive(F);
444      return;
445    }
446
447    // If this use is anything other than a call site, the function is alive.
448    Instruction *TheCall = CS.getInstruction();
449    if (!TheCall) {   // Not a direct call site?
450      MarkLive(F);
451      return;
452    }
453
454    // If we end up here, we are looking at a direct call to our function.
455
456    // Now, check how our return value(s) is/are used in this caller. Don't
457    // bother checking return values if all of them are live already.
458    if (NumLiveRetVals != RetCount) {
459      if (STy) {
460        // Check all uses of the return value.
461        for (Value::use_iterator I = TheCall->use_begin(),
462             E = TheCall->use_end(); I != E; ++I) {
463          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
464          if (Ext && Ext->hasIndices()) {
465            // This use uses a part of our return value, survey the uses of
466            // that part and store the results for this index only.
467            unsigned Idx = *Ext->idx_begin();
468            if (RetValLiveness[Idx] != Live) {
469              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
470              if (RetValLiveness[Idx] == Live)
471                NumLiveRetVals++;
472            }
473          } else {
474            // Used by something else than extractvalue. Mark all return
475            // values as live.
476            for (unsigned i = 0; i != RetCount; ++i )
477              RetValLiveness[i] = Live;
478            NumLiveRetVals = RetCount;
479            break;
480          }
481        }
482      } else {
483        // Single return value
484        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
485        if (RetValLiveness[0] == Live)
486          NumLiveRetVals = RetCount;
487      }
488    }
489  }
490
491  // Now we've inspected all callers, record the liveness of our return values.
492  for (unsigned i = 0; i != RetCount; ++i)
493    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
494
495  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
496
497  // Now, check all of our arguments.
498  unsigned i = 0;
499  UseVector MaybeLiveArgUses;
500  for (Function::arg_iterator AI = F.arg_begin(),
501       E = F.arg_end(); AI != E; ++AI, ++i) {
502    // See what the effect of this use is (recording any uses that cause
503    // MaybeLive in MaybeLiveArgUses).
504    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
505    // Mark the result.
506    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
507    // Clear the vector again for the next iteration.
508    MaybeLiveArgUses.clear();
509  }
510}
511
512/// MarkValue - This function marks the liveness of RA depending on L. If L is
513/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
514/// such that RA will be marked live if any use in MaybeLiveUses gets marked
515/// live later on.
516void DAE::MarkValue(const RetOrArg &RA, Liveness L,
517                    const UseVector &MaybeLiveUses) {
518  switch (L) {
519    case Live: MarkLive(RA); break;
520    case MaybeLive:
521    {
522      // Note any uses of this value, so this return value can be
523      // marked live whenever one of the uses becomes live.
524      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
525           UE = MaybeLiveUses.end(); UI != UE; ++UI)
526        Uses.insert(std::make_pair(*UI, RA));
527      break;
528    }
529  }
530}
531
532/// MarkLive - Mark the given Function as alive, meaning that it cannot be
533/// changed in any way. Additionally,
534/// mark any values that are used as this function's parameters or by its return
535/// values (according to Uses) live as well.
536void DAE::MarkLive(const Function &F) {
537    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
538    // Mark the function as live.
539    LiveFunctions.insert(&F);
540    // Mark all arguments as live.
541    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
542      PropagateLiveness(CreateArg(&F, i));
543    // Mark all return values as live.
544    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
545      PropagateLiveness(CreateRet(&F, i));
546}
547
548/// MarkLive - Mark the given return value or argument as live. Additionally,
549/// mark any values that are used by this value (according to Uses) live as
550/// well.
551void DAE::MarkLive(const RetOrArg &RA) {
552  if (LiveFunctions.count(RA.F))
553    return; // Function was already marked Live.
554
555  if (!LiveValues.insert(RA).second)
556    return; // We were already marked Live.
557
558  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
559  PropagateLiveness(RA);
560}
561
562/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
563/// to any other values it uses (according to Uses).
564void DAE::PropagateLiveness(const RetOrArg &RA) {
565  // We don't use upper_bound (or equal_range) here, because our recursive call
566  // to ourselves is likely to cause the upper_bound (which is the first value
567  // not belonging to RA) to become erased and the iterator invalidated.
568  UseMap::iterator Begin = Uses.lower_bound(RA);
569  UseMap::iterator E = Uses.end();
570  UseMap::iterator I;
571  for (I = Begin; I != E && I->first == RA; ++I)
572    MarkLive(I->second);
573
574  // Erase RA from the Uses map (from the lower bound to wherever we ended up
575  // after the loop).
576  Uses.erase(Begin, I);
577}
578
579// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
580// that are not in LiveValues. Transform the function and all of the callees of
581// the function to not have these arguments and return values.
582//
583bool DAE::RemoveDeadStuffFromFunction(Function *F) {
584  // Don't modify fully live functions
585  if (LiveFunctions.count(F))
586    return false;
587
588  // Start by computing a new prototype for the function, which is the same as
589  // the old function, but has fewer arguments and a different return type.
590  const FunctionType *FTy = F->getFunctionType();
591  std::vector<const Type*> Params;
592
593  // Set up to build a new list of parameter attributes.
594  SmallVector<AttributeWithIndex, 8> AttributesVec;
595  const AttrListPtr &PAL = F->getAttributes();
596
597  // The existing function return attributes.
598  Attributes RAttrs = PAL.getRetAttributes();
599  Attributes FnAttrs = PAL.getFnAttributes();
600
601  // Find out the new return value.
602
603  const Type *RetTy = FTy->getReturnType();
604  const Type *NRetTy = NULL;
605  unsigned RetCount = NumRetVals(F);
606  // -1 means unused, other numbers are the new index
607  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
608  std::vector<const Type*> RetTypes;
609  if (RetTy == Type::VoidTy) {
610    NRetTy = Type::VoidTy;
611  } else {
612    const StructType *STy = dyn_cast<StructType>(RetTy);
613    if (STy)
614      // Look at each of the original return values individually.
615      for (unsigned i = 0; i != RetCount; ++i) {
616        RetOrArg Ret = CreateRet(F, i);
617        if (LiveValues.erase(Ret)) {
618          RetTypes.push_back(STy->getElementType(i));
619          NewRetIdxs[i] = RetTypes.size() - 1;
620        } else {
621          ++NumRetValsEliminated;
622          DOUT << "DAE - Removing return value " << i << " from "
623               << F->getNameStart() << "\n";
624        }
625      }
626    else
627      // We used to return a single value.
628      if (LiveValues.erase(CreateRet(F, 0))) {
629        RetTypes.push_back(RetTy);
630        NewRetIdxs[0] = 0;
631      } else {
632        DOUT << "DAE - Removing return value from " << F->getNameStart()
633             << "\n";
634        ++NumRetValsEliminated;
635      }
636    if (RetTypes.size() > 1)
637      // More than one return type? Return a struct with them. Also, if we used
638      // to return a struct and didn't change the number of return values,
639      // return a struct again. This prevents changing {something} into
640      // something and {} into void.
641      // Make the new struct packed if we used to return a packed struct
642      // already.
643      NRetTy = StructType::get(RetTypes, STy->isPacked());
644    else if (RetTypes.size() == 1)
645      // One return type? Just a simple value then, but only if we didn't use to
646      // return a struct with that simple value before.
647      NRetTy = RetTypes.front();
648    else if (RetTypes.size() == 0)
649      // No return types? Make it void, but only if we didn't use to return {}.
650      NRetTy = Type::VoidTy;
651  }
652
653  assert(NRetTy && "No new return type found?");
654
655  // Remove any incompatible attributes, but only if we removed all return
656  // values. Otherwise, ensure that we don't have any conflicting attributes
657  // here. Currently, this should not be possible, but special handling might be
658  // required when new return value attributes are added.
659  if (NRetTy == Type::VoidTy)
660    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
661  else
662    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
663           && "Return attributes no longer compatible?");
664
665  if (RAttrs)
666    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
667
668  // Remember which arguments are still alive.
669  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
670  // Construct the new parameter list from non-dead arguments. Also construct
671  // a new set of parameter attributes to correspond. Skip the first parameter
672  // attribute, since that belongs to the return value.
673  unsigned i = 0;
674  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
675       I != E; ++I, ++i) {
676    RetOrArg Arg = CreateArg(F, i);
677    if (LiveValues.erase(Arg)) {
678      Params.push_back(I->getType());
679      ArgAlive[i] = true;
680
681      // Get the original parameter attributes (skipping the first one, that is
682      // for the return value.
683      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
684        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
685    } else {
686      ++NumArgumentsEliminated;
687      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
688           << ") from " << F->getNameStart() << "\n";
689    }
690  }
691
692  if (FnAttrs != Attribute::None)
693    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
694
695  // Reconstruct the AttributesList based on the vector we constructed.
696  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
697
698  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
699  // have zero fixed arguments.
700  //
701  // Note that we apply this hack for a vararg fuction that does not have any
702  // arguments anymore, but did have them before (so don't bother fixing
703  // functions that were already broken wrt CWriter).
704  bool ExtraArgHack = false;
705  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
706    ExtraArgHack = true;
707    Params.push_back(Type::Int32Ty);
708  }
709
710  // Create the new function type based on the recomputed parameters.
711  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
712
713  // No change?
714  if (NFTy == FTy)
715    return false;
716
717  // Create the new function body and insert it into the module...
718  Function *NF = Function::Create(NFTy, F->getLinkage());
719  NF->copyAttributesFrom(F);
720  NF->setAttributes(NewPAL);
721  // Insert the new function before the old function, so we won't be processing
722  // it again.
723  F->getParent()->getFunctionList().insert(F, NF);
724  NF->takeName(F);
725
726  // Loop over all of the callers of the function, transforming the call sites
727  // to pass in a smaller number of arguments into the new function.
728  //
729  std::vector<Value*> Args;
730  while (!F->use_empty()) {
731    CallSite CS = CallSite::get(F->use_back());
732    Instruction *Call = CS.getInstruction();
733
734    AttributesVec.clear();
735    const AttrListPtr &CallPAL = CS.getAttributes();
736
737    // The call return attributes.
738    Attributes RAttrs = CallPAL.getRetAttributes();
739    Attributes FnAttrs = CallPAL.getFnAttributes();
740    // Adjust in case the function was changed to return void.
741    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
742    if (RAttrs)
743      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
744
745    // Declare these outside of the loops, so we can reuse them for the second
746    // loop, which loops the varargs.
747    CallSite::arg_iterator I = CS.arg_begin();
748    unsigned i = 0;
749    // Loop over those operands, corresponding to the normal arguments to the
750    // original function, and add those that are still alive.
751    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
752      if (ArgAlive[i]) {
753        Args.push_back(*I);
754        // Get original parameter attributes, but skip return attributes.
755        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
756          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
757      }
758
759    if (ExtraArgHack)
760      Args.push_back(UndefValue::get(Type::Int32Ty));
761
762    // Push any varargs arguments on the list. Don't forget their attributes.
763    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
764      Args.push_back(*I);
765      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
766        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
767    }
768
769    if (FnAttrs != Attribute::None)
770      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
771
772    // Reconstruct the AttributesList based on the vector we constructed.
773    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
774                                              AttributesVec.end());
775
776    Instruction *New;
777    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
778      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
779                               Args.begin(), Args.end(), "", Call);
780      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
781      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
782    } else {
783      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
784      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
785      cast<CallInst>(New)->setAttributes(NewCallPAL);
786      if (cast<CallInst>(Call)->isTailCall())
787        cast<CallInst>(New)->setTailCall();
788    }
789    Args.clear();
790
791    if (!Call->use_empty()) {
792      if (New->getType() == Call->getType()) {
793        // Return type not changed? Just replace users then.
794        Call->replaceAllUsesWith(New);
795        New->takeName(Call);
796      } else if (New->getType() == Type::VoidTy) {
797        // Our return value has uses, but they will get removed later on.
798        // Replace by null for now.
799        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
800      } else {
801        assert(isa<StructType>(RetTy) &&
802               "Return type changed, but not into a void. The old return type"
803               " must have been a struct!");
804        Instruction *InsertPt = Call;
805        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
806          InsertPt = II->getNormalDest()->begin();
807          assert(!isa<PHINode>(InsertPt) &&
808                "Can't have a use of the invoke value if the edge is critical");
809        }
810
811        // We used to return a struct. Instead of doing smart stuff with all the
812        // uses of this struct, we will just rebuild it using
813        // extract/insertvalue chaining and let instcombine clean that up.
814        //
815        // Start out building up our return value from undef
816        Value *RetVal = llvm::UndefValue::get(RetTy);
817        for (unsigned i = 0; i != RetCount; ++i)
818          if (NewRetIdxs[i] != -1) {
819            Value *V;
820            if (RetTypes.size() > 1)
821              // We are still returning a struct, so extract the value from our
822              // return value
823              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
824                                           InsertPt);
825            else
826              // We are now returning a single element, so just insert that
827              V = New;
828            // Insert the value at the old position
829            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
830          }
831        // Now, replace all uses of the old call instruction with the return
832        // struct we built
833        Call->replaceAllUsesWith(RetVal);
834        New->takeName(Call);
835      }
836    }
837
838    // Finally, remove the old call from the program, reducing the use-count of
839    // F.
840    Call->eraseFromParent();
841  }
842
843  // Since we have now created the new function, splice the body of the old
844  // function right into the new function, leaving the old rotting hulk of the
845  // function empty.
846  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
847
848  // Loop over the argument list, transfering uses of the old arguments over to
849  // the new arguments, also transfering over the names as well.
850  i = 0;
851  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
852       I2 = NF->arg_begin(); I != E; ++I, ++i)
853    if (ArgAlive[i]) {
854      // If this is a live argument, move the name and users over to the new
855      // version.
856      I->replaceAllUsesWith(I2);
857      I2->takeName(I);
858      ++I2;
859    } else {
860      // If this argument is dead, replace any uses of it with null constants
861      // (these are guaranteed to become unused later on).
862      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
863    }
864
865  // If we change the return value of the function we must rewrite any return
866  // instructions.  Check this now.
867  if (F->getReturnType() != NF->getReturnType())
868    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
869      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
870        Value *RetVal;
871
872        if (NFTy->getReturnType() == Type::VoidTy) {
873          RetVal = 0;
874        } else {
875          assert (isa<StructType>(RetTy));
876          // The original return value was a struct, insert
877          // extractvalue/insertvalue chains to extract only the values we need
878          // to return and insert them into our new result.
879          // This does generate messy code, but we'll let it to instcombine to
880          // clean that up.
881          Value *OldRet = RI->getOperand(0);
882          // Start out building up our return value from undef
883          RetVal = llvm::UndefValue::get(NRetTy);
884          for (unsigned i = 0; i != RetCount; ++i)
885            if (NewRetIdxs[i] != -1) {
886              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
887                                                              "oldret", RI);
888              if (RetTypes.size() > 1) {
889                // We're still returning a struct, so reinsert the value into
890                // our new return value at the new index
891
892                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
893                                                 "newret", RI);
894              } else {
895                // We are now only returning a simple value, so just return the
896                // extracted value.
897                RetVal = EV;
898              }
899            }
900        }
901        // Replace the return instruction with one returning the new return
902        // value (possibly 0 if we became void).
903        ReturnInst::Create(RetVal, RI);
904        BB->getInstList().erase(RI);
905      }
906
907  // Now that the old function is dead, delete it.
908  F->eraseFromParent();
909
910  return true;
911}
912
913bool DAE::runOnModule(Module &M) {
914  bool Changed = false;
915
916  // First pass: Do a simple check to see if any functions can have their "..."
917  // removed.  We can do this if they never call va_start.  This loop cannot be
918  // fused with the next loop, because deleting a function invalidates
919  // information computed while surveying other functions.
920  DOUT << "DAE - Deleting dead varargs\n";
921  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
922    Function &F = *I++;
923    if (F.getFunctionType()->isVarArg())
924      Changed |= DeleteDeadVarargs(F);
925  }
926
927  // Second phase:loop through the module, determining which arguments are live.
928  // We assume all arguments are dead unless proven otherwise (allowing us to
929  // determine that dead arguments passed into recursive functions are dead).
930  //
931  DOUT << "DAE - Determining liveness\n";
932  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
933    SurveyFunction(*I);
934
935  // Now, remove all dead arguments and return values from each function in
936  // turn
937  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
938    // Increment now, because the function will probably get removed (ie
939    // replaced by a new one).
940    Function *F = I++;
941    Changed |= RemoveDeadStuffFromFunction(F);
942  }
943  return Changed;
944}
945