DeadArgumentElimination.cpp revision a3efbb15ddd5aa9006564cd79086723640084878
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42STATISTIC(NumArgumentsReplacedWithUndef,
43          "Number of unread args replaced with undef");
44namespace {
45  /// DAE - The dead argument elimination pass.
46  ///
47  class DAE : public ModulePass {
48  public:
49
50    /// Struct that represents (part of) either a return value or a function
51    /// argument.  Used so that arguments and return values can be used
52    /// interchangeably.
53    struct RetOrArg {
54      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
55               IsArg(IsArg) {}
56      const Function *F;
57      unsigned Idx;
58      bool IsArg;
59
60      /// Make RetOrArg comparable, so we can put it into a map.
61      bool operator<(const RetOrArg &O) const {
62        if (F != O.F)
63          return F < O.F;
64        else if (Idx != O.Idx)
65          return Idx < O.Idx;
66        else
67          return IsArg < O.IsArg;
68      }
69
70      /// Make RetOrArg comparable, so we can easily iterate the multimap.
71      bool operator==(const RetOrArg &O) const {
72        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73      }
74
75      std::string getDescription() const {
76        return std::string((IsArg ? "Argument #" : "Return value #"))
77               + utostr(Idx) + " of function " + F->getNameStr();
78      }
79    };
80
81    /// Liveness enum - During our initial pass over the program, we determine
82    /// that things are either alive or maybe alive. We don't mark anything
83    /// explicitly dead (even if we know they are), since anything not alive
84    /// with no registered uses (in Uses) will never be marked alive and will
85    /// thus become dead in the end.
86    enum Liveness { Live, MaybeLive };
87
88    /// Convenience wrapper
89    RetOrArg CreateRet(const Function *F, unsigned Idx) {
90      return RetOrArg(F, Idx, false);
91    }
92    /// Convenience wrapper
93    RetOrArg CreateArg(const Function *F, unsigned Idx) {
94      return RetOrArg(F, Idx, true);
95    }
96
97    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98    /// This maps a return value or argument to any MaybeLive return values or
99    /// arguments it uses. This allows the MaybeLive values to be marked live
100    /// when any of its users is marked live.
101    /// For example (indices are left out for clarity):
102    ///  - Uses[ret F] = ret G
103    ///    This means that F calls G, and F returns the value returned by G.
104    ///  - Uses[arg F] = ret G
105    ///    This means that some function calls G and passes its result as an
106    ///    argument to F.
107    ///  - Uses[ret F] = arg F
108    ///    This means that F returns one of its own arguments.
109    ///  - Uses[arg F] = arg G
110    ///    This means that G calls F and passes one of its own (G's) arguments
111    ///    directly to F.
112    UseMap Uses;
113
114    typedef std::set<RetOrArg> LiveSet;
115    typedef std::set<const Function*> LiveFuncSet;
116
117    /// This set contains all values that have been determined to be live.
118    LiveSet LiveValues;
119    /// This set contains all values that are cannot be changed in any way.
120    LiveFuncSet LiveFunctions;
121
122    typedef SmallVector<RetOrArg, 5> UseVector;
123
124  protected:
125    // DAH uses this to specify a different ID.
126    explicit DAE(char &ID) : ModulePass(ID) {}
127
128  public:
129    static char ID; // Pass identification, replacement for typeid
130    DAE() : ModulePass(ID) {
131      initializeDAEPass(*PassRegistry::getPassRegistry());
132    }
133
134    bool runOnModule(Module &M);
135
136    virtual bool ShouldHackArguments() const { return false; }
137
138  private:
139    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
140    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
141                       unsigned RetValNum = 0);
142    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
143
144    void SurveyFunction(const Function &F);
145    void MarkValue(const RetOrArg &RA, Liveness L,
146                   const UseVector &MaybeLiveUses);
147    void MarkLive(const RetOrArg &RA);
148    void MarkLive(const Function &F);
149    void PropagateLiveness(const RetOrArg &RA);
150    bool RemoveDeadStuffFromFunction(Function *F);
151    bool DeleteDeadVarargs(Function &Fn);
152    bool RemoveDeadArgumentsFromCallers(Function &Fn);
153  };
154}
155
156
157char DAE::ID = 0;
158INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
159
160namespace {
161  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
162  /// deletes arguments to functions which are external.  This is only for use
163  /// by bugpoint.
164  struct DAH : public DAE {
165    static char ID;
166    DAH() : DAE(ID) {}
167
168    virtual bool ShouldHackArguments() const { return true; }
169  };
170}
171
172char DAH::ID = 0;
173INITIALIZE_PASS(DAH, "deadarghaX0r",
174                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
175                false, false)
176
177/// createDeadArgEliminationPass - This pass removes arguments from functions
178/// which are not used by the body of the function.
179///
180ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
181ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
182
183/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
184/// llvm.vastart is never called, the varargs list is dead for the function.
185bool DAE::DeleteDeadVarargs(Function &Fn) {
186  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
187  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
188
189  // Ensure that the function is only directly called.
190  if (Fn.hasAddressTaken())
191    return false;
192
193  // Okay, we know we can transform this function if safe.  Scan its body
194  // looking for calls to llvm.vastart.
195  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
196    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
197      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
198        if (II->getIntrinsicID() == Intrinsic::vastart)
199          return false;
200      }
201    }
202  }
203
204  // If we get here, there are no calls to llvm.vastart in the function body,
205  // remove the "..." and adjust all the calls.
206
207  // Start by computing a new prototype for the function, which is the same as
208  // the old function, but doesn't have isVarArg set.
209  const FunctionType *FTy = Fn.getFunctionType();
210
211  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
212  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
213                                                Params, false);
214  unsigned NumArgs = Params.size();
215
216  // Create the new function body and insert it into the module...
217  Function *NF = Function::Create(NFTy, Fn.getLinkage());
218  NF->copyAttributesFrom(&Fn);
219  Fn.getParent()->getFunctionList().insert(&Fn, NF);
220  NF->takeName(&Fn);
221
222  // Loop over all of the callers of the function, transforming the call sites
223  // to pass in a smaller number of arguments into the new function.
224  //
225  std::vector<Value*> Args;
226  while (!Fn.use_empty()) {
227    CallSite CS(Fn.use_back());
228    Instruction *Call = CS.getInstruction();
229
230    // Pass all the same arguments.
231    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
232
233    // Drop any attributes that were on the vararg arguments.
234    AttrListPtr PAL = CS.getAttributes();
235    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
236      SmallVector<AttributeWithIndex, 8> AttributesVec;
237      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
238        AttributesVec.push_back(PAL.getSlot(i));
239      if (Attributes FnAttrs = PAL.getFnAttributes())
240        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
241      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
242    }
243
244    Instruction *New;
245    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
246      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
247                               Args, "", Call);
248      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
249      cast<InvokeInst>(New)->setAttributes(PAL);
250    } else {
251      New = CallInst::Create(NF, Args, "", Call);
252      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
253      cast<CallInst>(New)->setAttributes(PAL);
254      if (cast<CallInst>(Call)->isTailCall())
255        cast<CallInst>(New)->setTailCall();
256    }
257    New->setDebugLoc(Call->getDebugLoc());
258
259    Args.clear();
260
261    if (!Call->use_empty())
262      Call->replaceAllUsesWith(New);
263
264    New->takeName(Call);
265
266    // Finally, remove the old call from the program, reducing the use-count of
267    // F.
268    Call->eraseFromParent();
269  }
270
271  // Since we have now created the new function, splice the body of the old
272  // function right into the new function, leaving the old rotting hulk of the
273  // function empty.
274  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
275
276  // Loop over the argument list, transferring uses of the old arguments over to
277  // the new arguments, also transferring over the names as well.  While we're at
278  // it, remove the dead arguments from the DeadArguments list.
279  //
280  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
281       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
282    // Move the name and users over to the new version.
283    I->replaceAllUsesWith(I2);
284    I2->takeName(I);
285  }
286
287  // Finally, nuke the old function.
288  Fn.eraseFromParent();
289  return true;
290}
291
292/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
293/// arguments that are unused, and changes the caller parameters to be undefined
294/// instead.
295bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
296{
297  if (Fn.isDeclaration() || Fn.mayBeOverridden())
298    return false;
299
300  // Functions with local linkage should already have been handled.
301  if (Fn.hasLocalLinkage())
302    return false;
303
304  if (Fn.use_empty())
305    return false;
306
307  llvm::SmallVector<unsigned, 8> UnusedArgs;
308  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
309       I != E; ++I) {
310    Argument *Arg = I;
311
312    if (Arg->use_empty() && !Arg->hasByValAttr())
313      UnusedArgs.push_back(Arg->getArgNo());
314  }
315
316  if (UnusedArgs.empty())
317    return false;
318
319  bool Changed = false;
320
321  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
322       I != E; ++I) {
323    CallSite CS(*I);
324    if (!CS || !CS.isCallee(I))
325      continue;
326
327    // Now go through all unused args and replace them with "undef".
328    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
329      unsigned ArgNo = UnusedArgs[I];
330
331      Value *Arg = CS.getArgument(ArgNo);
332      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
333      ++NumArgumentsReplacedWithUndef;
334      Changed = true;
335    }
336  }
337
338  return Changed;
339}
340
341/// Convenience function that returns the number of return values. It returns 0
342/// for void functions and 1 for functions not returning a struct. It returns
343/// the number of struct elements for functions returning a struct.
344static unsigned NumRetVals(const Function *F) {
345  if (F->getReturnType()->isVoidTy())
346    return 0;
347  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
348    return STy->getNumElements();
349  else
350    return 1;
351}
352
353/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
354/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
355/// liveness of Use.
356DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
357  // We're live if our use or its Function is already marked as live.
358  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
359    return Live;
360
361  // We're maybe live otherwise, but remember that we must become live if
362  // Use becomes live.
363  MaybeLiveUses.push_back(Use);
364  return MaybeLive;
365}
366
367
368/// SurveyUse - This looks at a single use of an argument or return value
369/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
370/// if it causes the used value to become MaybeLive.
371///
372/// RetValNum is the return value number to use when this use is used in a
373/// return instruction. This is used in the recursion, you should always leave
374/// it at 0.
375DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
376                             UseVector &MaybeLiveUses, unsigned RetValNum) {
377    const User *V = *U;
378    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
379      // The value is returned from a function. It's only live when the
380      // function's return value is live. We use RetValNum here, for the case
381      // that U is really a use of an insertvalue instruction that uses the
382      // original Use.
383      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
384      // We might be live, depending on the liveness of Use.
385      return MarkIfNotLive(Use, MaybeLiveUses);
386    }
387    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
388      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
389          && IV->hasIndices())
390        // The use we are examining is inserted into an aggregate. Our liveness
391        // depends on all uses of that aggregate, but if it is used as a return
392        // value, only index at which we were inserted counts.
393        RetValNum = *IV->idx_begin();
394
395      // Note that if we are used as the aggregate operand to the insertvalue,
396      // we don't change RetValNum, but do survey all our uses.
397
398      Liveness Result = MaybeLive;
399      for (Value::const_use_iterator I = IV->use_begin(),
400           E = V->use_end(); I != E; ++I) {
401        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
402        if (Result == Live)
403          break;
404      }
405      return Result;
406    }
407
408    if (ImmutableCallSite CS = V) {
409      const Function *F = CS.getCalledFunction();
410      if (F) {
411        // Used in a direct call.
412
413        // Find the argument number. We know for sure that this use is an
414        // argument, since if it was the function argument this would be an
415        // indirect call and the we know can't be looking at a value of the
416        // label type (for the invoke instruction).
417        unsigned ArgNo = CS.getArgumentNo(U);
418
419        if (ArgNo >= F->getFunctionType()->getNumParams())
420          // The value is passed in through a vararg! Must be live.
421          return Live;
422
423        assert(CS.getArgument(ArgNo)
424               == CS->getOperand(U.getOperandNo())
425               && "Argument is not where we expected it");
426
427        // Value passed to a normal call. It's only live when the corresponding
428        // argument to the called function turns out live.
429        RetOrArg Use = CreateArg(F, ArgNo);
430        return MarkIfNotLive(Use, MaybeLiveUses);
431      }
432    }
433    // Used in any other way? Value must be live.
434    return Live;
435}
436
437/// SurveyUses - This looks at all the uses of the given value
438/// Returns the Liveness deduced from the uses of this value.
439///
440/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
441/// the result is Live, MaybeLiveUses might be modified but its content should
442/// be ignored (since it might not be complete).
443DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
444  // Assume it's dead (which will only hold if there are no uses at all..).
445  Liveness Result = MaybeLive;
446  // Check each use.
447  for (Value::const_use_iterator I = V->use_begin(),
448       E = V->use_end(); I != E; ++I) {
449    Result = SurveyUse(I, MaybeLiveUses);
450    if (Result == Live)
451      break;
452  }
453  return Result;
454}
455
456// SurveyFunction - This performs the initial survey of the specified function,
457// checking out whether or not it uses any of its incoming arguments or whether
458// any callers use the return value.  This fills in the LiveValues set and Uses
459// map.
460//
461// We consider arguments of non-internal functions to be intrinsically alive as
462// well as arguments to functions which have their "address taken".
463//
464void DAE::SurveyFunction(const Function &F) {
465  unsigned RetCount = NumRetVals(&F);
466  // Assume all return values are dead
467  typedef SmallVector<Liveness, 5> RetVals;
468  RetVals RetValLiveness(RetCount, MaybeLive);
469
470  typedef SmallVector<UseVector, 5> RetUses;
471  // These vectors map each return value to the uses that make it MaybeLive, so
472  // we can add those to the Uses map if the return value really turns out to be
473  // MaybeLive. Initialized to a list of RetCount empty lists.
474  RetUses MaybeLiveRetUses(RetCount);
475
476  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
477    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
478      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
479          != F.getFunctionType()->getReturnType()) {
480        // We don't support old style multiple return values.
481        MarkLive(F);
482        return;
483      }
484
485  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
486    MarkLive(F);
487    return;
488  }
489
490  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
491  // Keep track of the number of live retvals, so we can skip checks once all
492  // of them turn out to be live.
493  unsigned NumLiveRetVals = 0;
494  const Type *STy = dyn_cast<StructType>(F.getReturnType());
495  // Loop all uses of the function.
496  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
497       I != E; ++I) {
498    // If the function is PASSED IN as an argument, its address has been
499    // taken.
500    ImmutableCallSite CS(*I);
501    if (!CS || !CS.isCallee(I)) {
502      MarkLive(F);
503      return;
504    }
505
506    // If this use is anything other than a call site, the function is alive.
507    const Instruction *TheCall = CS.getInstruction();
508    if (!TheCall) {   // Not a direct call site?
509      MarkLive(F);
510      return;
511    }
512
513    // If we end up here, we are looking at a direct call to our function.
514
515    // Now, check how our return value(s) is/are used in this caller. Don't
516    // bother checking return values if all of them are live already.
517    if (NumLiveRetVals != RetCount) {
518      if (STy) {
519        // Check all uses of the return value.
520        for (Value::const_use_iterator I = TheCall->use_begin(),
521             E = TheCall->use_end(); I != E; ++I) {
522          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
523          if (Ext && Ext->hasIndices()) {
524            // This use uses a part of our return value, survey the uses of
525            // that part and store the results for this index only.
526            unsigned Idx = *Ext->idx_begin();
527            if (RetValLiveness[Idx] != Live) {
528              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
529              if (RetValLiveness[Idx] == Live)
530                NumLiveRetVals++;
531            }
532          } else {
533            // Used by something else than extractvalue. Mark all return
534            // values as live.
535            for (unsigned i = 0; i != RetCount; ++i )
536              RetValLiveness[i] = Live;
537            NumLiveRetVals = RetCount;
538            break;
539          }
540        }
541      } else {
542        // Single return value
543        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
544        if (RetValLiveness[0] == Live)
545          NumLiveRetVals = RetCount;
546      }
547    }
548  }
549
550  // Now we've inspected all callers, record the liveness of our return values.
551  for (unsigned i = 0; i != RetCount; ++i)
552    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
553
554  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
555
556  // Now, check all of our arguments.
557  unsigned i = 0;
558  UseVector MaybeLiveArgUses;
559  for (Function::const_arg_iterator AI = F.arg_begin(),
560       E = F.arg_end(); AI != E; ++AI, ++i) {
561    // See what the effect of this use is (recording any uses that cause
562    // MaybeLive in MaybeLiveArgUses).
563    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
564    // Mark the result.
565    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
566    // Clear the vector again for the next iteration.
567    MaybeLiveArgUses.clear();
568  }
569}
570
571/// MarkValue - This function marks the liveness of RA depending on L. If L is
572/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
573/// such that RA will be marked live if any use in MaybeLiveUses gets marked
574/// live later on.
575void DAE::MarkValue(const RetOrArg &RA, Liveness L,
576                    const UseVector &MaybeLiveUses) {
577  switch (L) {
578    case Live: MarkLive(RA); break;
579    case MaybeLive:
580    {
581      // Note any uses of this value, so this return value can be
582      // marked live whenever one of the uses becomes live.
583      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
584           UE = MaybeLiveUses.end(); UI != UE; ++UI)
585        Uses.insert(std::make_pair(*UI, RA));
586      break;
587    }
588  }
589}
590
591/// MarkLive - Mark the given Function as alive, meaning that it cannot be
592/// changed in any way. Additionally,
593/// mark any values that are used as this function's parameters or by its return
594/// values (according to Uses) live as well.
595void DAE::MarkLive(const Function &F) {
596  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
597  // Mark the function as live.
598  LiveFunctions.insert(&F);
599  // Mark all arguments as live.
600  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
601    PropagateLiveness(CreateArg(&F, i));
602  // Mark all return values as live.
603  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
604    PropagateLiveness(CreateRet(&F, i));
605}
606
607/// MarkLive - Mark the given return value or argument as live. Additionally,
608/// mark any values that are used by this value (according to Uses) live as
609/// well.
610void DAE::MarkLive(const RetOrArg &RA) {
611  if (LiveFunctions.count(RA.F))
612    return; // Function was already marked Live.
613
614  if (!LiveValues.insert(RA).second)
615    return; // We were already marked Live.
616
617  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
618  PropagateLiveness(RA);
619}
620
621/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
622/// to any other values it uses (according to Uses).
623void DAE::PropagateLiveness(const RetOrArg &RA) {
624  // We don't use upper_bound (or equal_range) here, because our recursive call
625  // to ourselves is likely to cause the upper_bound (which is the first value
626  // not belonging to RA) to become erased and the iterator invalidated.
627  UseMap::iterator Begin = Uses.lower_bound(RA);
628  UseMap::iterator E = Uses.end();
629  UseMap::iterator I;
630  for (I = Begin; I != E && I->first == RA; ++I)
631    MarkLive(I->second);
632
633  // Erase RA from the Uses map (from the lower bound to wherever we ended up
634  // after the loop).
635  Uses.erase(Begin, I);
636}
637
638// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
639// that are not in LiveValues. Transform the function and all of the callees of
640// the function to not have these arguments and return values.
641//
642bool DAE::RemoveDeadStuffFromFunction(Function *F) {
643  // Don't modify fully live functions
644  if (LiveFunctions.count(F))
645    return false;
646
647  // Start by computing a new prototype for the function, which is the same as
648  // the old function, but has fewer arguments and a different return type.
649  const FunctionType *FTy = F->getFunctionType();
650  std::vector<Type*> Params;
651
652  // Set up to build a new list of parameter attributes.
653  SmallVector<AttributeWithIndex, 8> AttributesVec;
654  const AttrListPtr &PAL = F->getAttributes();
655
656  // The existing function return attributes.
657  Attributes RAttrs = PAL.getRetAttributes();
658  Attributes FnAttrs = PAL.getFnAttributes();
659
660  // Find out the new return value.
661
662  Type *RetTy = FTy->getReturnType();
663  const Type *NRetTy = NULL;
664  unsigned RetCount = NumRetVals(F);
665
666  // -1 means unused, other numbers are the new index
667  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
668  std::vector<Type*> RetTypes;
669  if (RetTy->isVoidTy()) {
670    NRetTy = RetTy;
671  } else {
672    const StructType *STy = dyn_cast<StructType>(RetTy);
673    if (STy)
674      // Look at each of the original return values individually.
675      for (unsigned i = 0; i != RetCount; ++i) {
676        RetOrArg Ret = CreateRet(F, i);
677        if (LiveValues.erase(Ret)) {
678          RetTypes.push_back(STy->getElementType(i));
679          NewRetIdxs[i] = RetTypes.size() - 1;
680        } else {
681          ++NumRetValsEliminated;
682          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
683                << F->getName() << "\n");
684        }
685      }
686    else
687      // We used to return a single value.
688      if (LiveValues.erase(CreateRet(F, 0))) {
689        RetTypes.push_back(RetTy);
690        NewRetIdxs[0] = 0;
691      } else {
692        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
693              << "\n");
694        ++NumRetValsEliminated;
695      }
696    if (RetTypes.size() > 1)
697      // More than one return type? Return a struct with them. Also, if we used
698      // to return a struct and didn't change the number of return values,
699      // return a struct again. This prevents changing {something} into
700      // something and {} into void.
701      // Make the new struct packed if we used to return a packed struct
702      // already.
703      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
704    else if (RetTypes.size() == 1)
705      // One return type? Just a simple value then, but only if we didn't use to
706      // return a struct with that simple value before.
707      NRetTy = RetTypes.front();
708    else if (RetTypes.size() == 0)
709      // No return types? Make it void, but only if we didn't use to return {}.
710      NRetTy = Type::getVoidTy(F->getContext());
711  }
712
713  assert(NRetTy && "No new return type found?");
714
715  // Remove any incompatible attributes, but only if we removed all return
716  // values. Otherwise, ensure that we don't have any conflicting attributes
717  // here. Currently, this should not be possible, but special handling might be
718  // required when new return value attributes are added.
719  if (NRetTy->isVoidTy())
720    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
721  else
722    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
723           && "Return attributes no longer compatible?");
724
725  if (RAttrs)
726    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
727
728  // Remember which arguments are still alive.
729  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
730  // Construct the new parameter list from non-dead arguments. Also construct
731  // a new set of parameter attributes to correspond. Skip the first parameter
732  // attribute, since that belongs to the return value.
733  unsigned i = 0;
734  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
735       I != E; ++I, ++i) {
736    RetOrArg Arg = CreateArg(F, i);
737    if (LiveValues.erase(Arg)) {
738      Params.push_back(I->getType());
739      ArgAlive[i] = true;
740
741      // Get the original parameter attributes (skipping the first one, that is
742      // for the return value.
743      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
744        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
745    } else {
746      ++NumArgumentsEliminated;
747      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
748            << ") from " << F->getName() << "\n");
749    }
750  }
751
752  if (FnAttrs != Attribute::None)
753    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
754
755  // Reconstruct the AttributesList based on the vector we constructed.
756  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
757                                        AttributesVec.end());
758
759  // Create the new function type based on the recomputed parameters.
760  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
761
762  // No change?
763  if (NFTy == FTy)
764    return false;
765
766  // Create the new function body and insert it into the module...
767  Function *NF = Function::Create(NFTy, F->getLinkage());
768  NF->copyAttributesFrom(F);
769  NF->setAttributes(NewPAL);
770  // Insert the new function before the old function, so we won't be processing
771  // it again.
772  F->getParent()->getFunctionList().insert(F, NF);
773  NF->takeName(F);
774
775  // Loop over all of the callers of the function, transforming the call sites
776  // to pass in a smaller number of arguments into the new function.
777  //
778  std::vector<Value*> Args;
779  while (!F->use_empty()) {
780    CallSite CS(F->use_back());
781    Instruction *Call = CS.getInstruction();
782
783    AttributesVec.clear();
784    const AttrListPtr &CallPAL = CS.getAttributes();
785
786    // The call return attributes.
787    Attributes RAttrs = CallPAL.getRetAttributes();
788    Attributes FnAttrs = CallPAL.getFnAttributes();
789    // Adjust in case the function was changed to return void.
790    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
791    if (RAttrs)
792      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
793
794    // Declare these outside of the loops, so we can reuse them for the second
795    // loop, which loops the varargs.
796    CallSite::arg_iterator I = CS.arg_begin();
797    unsigned i = 0;
798    // Loop over those operands, corresponding to the normal arguments to the
799    // original function, and add those that are still alive.
800    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
801      if (ArgAlive[i]) {
802        Args.push_back(*I);
803        // Get original parameter attributes, but skip return attributes.
804        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
805          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
806      }
807
808    // Push any varargs arguments on the list. Don't forget their attributes.
809    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
810      Args.push_back(*I);
811      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
812        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
813    }
814
815    if (FnAttrs != Attribute::None)
816      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
817
818    // Reconstruct the AttributesList based on the vector we constructed.
819    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
820                                              AttributesVec.end());
821
822    Instruction *New;
823    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
824      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
825                               Args, "", Call);
826      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
827      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
828    } else {
829      New = CallInst::Create(NF, Args, "", Call);
830      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
831      cast<CallInst>(New)->setAttributes(NewCallPAL);
832      if (cast<CallInst>(Call)->isTailCall())
833        cast<CallInst>(New)->setTailCall();
834    }
835    New->setDebugLoc(Call->getDebugLoc());
836
837    Args.clear();
838
839    if (!Call->use_empty()) {
840      if (New->getType() == Call->getType()) {
841        // Return type not changed? Just replace users then.
842        Call->replaceAllUsesWith(New);
843        New->takeName(Call);
844      } else if (New->getType()->isVoidTy()) {
845        // Our return value has uses, but they will get removed later on.
846        // Replace by null for now.
847        if (!Call->getType()->isX86_MMXTy())
848          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
849      } else {
850        assert(RetTy->isStructTy() &&
851               "Return type changed, but not into a void. The old return type"
852               " must have been a struct!");
853        Instruction *InsertPt = Call;
854        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
855          BasicBlock::iterator IP = II->getNormalDest()->begin();
856          while (isa<PHINode>(IP)) ++IP;
857          InsertPt = IP;
858        }
859
860        // We used to return a struct. Instead of doing smart stuff with all the
861        // uses of this struct, we will just rebuild it using
862        // extract/insertvalue chaining and let instcombine clean that up.
863        //
864        // Start out building up our return value from undef
865        Value *RetVal = UndefValue::get(RetTy);
866        for (unsigned i = 0; i != RetCount; ++i)
867          if (NewRetIdxs[i] != -1) {
868            Value *V;
869            if (RetTypes.size() > 1)
870              // We are still returning a struct, so extract the value from our
871              // return value
872              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
873                                           InsertPt);
874            else
875              // We are now returning a single element, so just insert that
876              V = New;
877            // Insert the value at the old position
878            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
879          }
880        // Now, replace all uses of the old call instruction with the return
881        // struct we built
882        Call->replaceAllUsesWith(RetVal);
883        New->takeName(Call);
884      }
885    }
886
887    // Finally, remove the old call from the program, reducing the use-count of
888    // F.
889    Call->eraseFromParent();
890  }
891
892  // Since we have now created the new function, splice the body of the old
893  // function right into the new function, leaving the old rotting hulk of the
894  // function empty.
895  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
896
897  // Loop over the argument list, transferring uses of the old arguments over to
898  // the new arguments, also transferring over the names as well.
899  i = 0;
900  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
901       I2 = NF->arg_begin(); I != E; ++I, ++i)
902    if (ArgAlive[i]) {
903      // If this is a live argument, move the name and users over to the new
904      // version.
905      I->replaceAllUsesWith(I2);
906      I2->takeName(I);
907      ++I2;
908    } else {
909      // If this argument is dead, replace any uses of it with null constants
910      // (these are guaranteed to become unused later on).
911      if (!I->getType()->isX86_MMXTy())
912        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
913    }
914
915  // If we change the return value of the function we must rewrite any return
916  // instructions.  Check this now.
917  if (F->getReturnType() != NF->getReturnType())
918    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
919      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
920        Value *RetVal;
921
922        if (NFTy->getReturnType()->isVoidTy()) {
923          RetVal = 0;
924        } else {
925          assert (RetTy->isStructTy());
926          // The original return value was a struct, insert
927          // extractvalue/insertvalue chains to extract only the values we need
928          // to return and insert them into our new result.
929          // This does generate messy code, but we'll let it to instcombine to
930          // clean that up.
931          Value *OldRet = RI->getOperand(0);
932          // Start out building up our return value from undef
933          RetVal = UndefValue::get(NRetTy);
934          for (unsigned i = 0; i != RetCount; ++i)
935            if (NewRetIdxs[i] != -1) {
936              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
937                                                              "oldret", RI);
938              if (RetTypes.size() > 1) {
939                // We're still returning a struct, so reinsert the value into
940                // our new return value at the new index
941
942                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
943                                                 "newret", RI);
944              } else {
945                // We are now only returning a simple value, so just return the
946                // extracted value.
947                RetVal = EV;
948              }
949            }
950        }
951        // Replace the return instruction with one returning the new return
952        // value (possibly 0 if we became void).
953        ReturnInst::Create(F->getContext(), RetVal, RI);
954        BB->getInstList().erase(RI);
955      }
956
957  // Now that the old function is dead, delete it.
958  F->eraseFromParent();
959
960  return true;
961}
962
963bool DAE::runOnModule(Module &M) {
964  bool Changed = false;
965
966  // First pass: Do a simple check to see if any functions can have their "..."
967  // removed.  We can do this if they never call va_start.  This loop cannot be
968  // fused with the next loop, because deleting a function invalidates
969  // information computed while surveying other functions.
970  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
971  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
972    Function &F = *I++;
973    if (F.getFunctionType()->isVarArg())
974      Changed |= DeleteDeadVarargs(F);
975  }
976
977  // Second phase:loop through the module, determining which arguments are live.
978  // We assume all arguments are dead unless proven otherwise (allowing us to
979  // determine that dead arguments passed into recursive functions are dead).
980  //
981  DEBUG(dbgs() << "DAE - Determining liveness\n");
982  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
983    SurveyFunction(*I);
984
985  // Now, remove all dead arguments and return values from each function in
986  // turn.
987  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
988    // Increment now, because the function will probably get removed (ie.
989    // replaced by a new one).
990    Function *F = I++;
991    Changed |= RemoveDeadStuffFromFunction(F);
992  }
993
994  // Finally, look for any unused parameters in functions with non-local
995  // linkage and replace the passed in parameters with undef.
996  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
997    Function& F = *I;
998
999    Changed |= RemoveDeadArgumentsFromCallers(F);
1000  }
1001
1002  return Changed;
1003}
1004