DeadArgumentElimination.cpp revision a65d6a686e6ad865c61aec70c5bdfb30bf6f5b22
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42
43namespace {
44  /// DAE - The dead argument elimination pass.
45  ///
46  class DAE : public ModulePass {
47  public:
48
49    /// Struct that represents (part of) either a return value or a function
50    /// argument.  Used so that arguments and return values can be used
51    /// interchangably.
52    struct RetOrArg {
53      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54               IsArg(IsArg) {}
55      const Function *F;
56      unsigned Idx;
57      bool IsArg;
58
59      /// Make RetOrArg comparable, so we can put it into a map.
60      bool operator<(const RetOrArg &O) const {
61        if (F != O.F)
62          return F < O.F;
63        else if (Idx != O.Idx)
64          return Idx < O.Idx;
65        else
66          return IsArg < O.IsArg;
67      }
68
69      /// Make RetOrArg comparable, so we can easily iterate the multimap.
70      bool operator==(const RetOrArg &O) const {
71        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
72      }
73
74      std::string getDescription() const {
75        return std::string((IsArg ? "Argument #" : "Return value #"))
76               + utostr(Idx) + " of function " + F->getNameStr();
77      }
78    };
79
80    /// Liveness enum - During our initial pass over the program, we determine
81    /// that things are either alive or maybe alive. We don't mark anything
82    /// explicitly dead (even if we know they are), since anything not alive
83    /// with no registered uses (in Uses) will never be marked alive and will
84    /// thus become dead in the end.
85    enum Liveness { Live, MaybeLive };
86
87    /// Convenience wrapper
88    RetOrArg CreateRet(const Function *F, unsigned Idx) {
89      return RetOrArg(F, Idx, false);
90    }
91    /// Convenience wrapper
92    RetOrArg CreateArg(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, true);
94    }
95
96    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97    /// This maps a return value or argument to any MaybeLive return values or
98    /// arguments it uses. This allows the MaybeLive values to be marked live
99    /// when any of its users is marked live.
100    /// For example (indices are left out for clarity):
101    ///  - Uses[ret F] = ret G
102    ///    This means that F calls G, and F returns the value returned by G.
103    ///  - Uses[arg F] = ret G
104    ///    This means that some function calls G and passes its result as an
105    ///    argument to F.
106    ///  - Uses[ret F] = arg F
107    ///    This means that F returns one of its own arguments.
108    ///  - Uses[arg F] = arg G
109    ///    This means that G calls F and passes one of its own (G's) arguments
110    ///    directly to F.
111    UseMap Uses;
112
113    typedef std::set<RetOrArg> LiveSet;
114    typedef std::set<const Function*> LiveFuncSet;
115
116    /// This set contains all values that have been determined to be live.
117    LiveSet LiveValues;
118    /// This set contains all values that are cannot be changed in any way.
119    LiveFuncSet LiveFunctions;
120
121    typedef SmallVector<RetOrArg, 5> UseVector;
122
123  protected:
124    // DAH uses this to specify a different ID.
125    explicit DAE(char &ID) : ModulePass(ID) {}
126
127  public:
128    static char ID; // Pass identification, replacement for typeid
129    DAE() : ModulePass(ID) {
130      initializeDAEPass(*PassRegistry::getPassRegistry());
131    }
132
133    bool runOnModule(Module &M);
134
135    virtual bool ShouldHackArguments() const { return false; }
136
137  private:
138    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
139    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
140                       unsigned RetValNum = 0);
141    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
142
143    void SurveyFunction(const Function &F);
144    void MarkValue(const RetOrArg &RA, Liveness L,
145                   const UseVector &MaybeLiveUses);
146    void MarkLive(const RetOrArg &RA);
147    void MarkLive(const Function &F);
148    void PropagateLiveness(const RetOrArg &RA);
149    bool RemoveDeadStuffFromFunction(Function *F);
150    bool DeleteDeadVarargs(Function &Fn);
151  };
152}
153
154
155char DAE::ID = 0;
156INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
157
158namespace {
159  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
160  /// deletes arguments to functions which are external.  This is only for use
161  /// by bugpoint.
162  struct DAH : public DAE {
163    static char ID;
164    DAH() : DAE(ID) {}
165
166    virtual bool ShouldHackArguments() const { return true; }
167  };
168}
169
170char DAH::ID = 0;
171INITIALIZE_PASS(DAH, "deadarghaX0r",
172                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
173                false, false)
174
175/// createDeadArgEliminationPass - This pass removes arguments from functions
176/// which are not used by the body of the function.
177///
178ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
179ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
180
181/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
182/// llvm.vastart is never called, the varargs list is dead for the function.
183bool DAE::DeleteDeadVarargs(Function &Fn) {
184  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
185  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
186
187  // Ensure that the function is only directly called.
188  if (Fn.hasAddressTaken())
189    return false;
190
191  // Okay, we know we can transform this function if safe.  Scan its body
192  // looking for calls to llvm.vastart.
193  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
194    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
195      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
196        if (II->getIntrinsicID() == Intrinsic::vastart)
197          return false;
198      }
199    }
200  }
201
202  // If we get here, there are no calls to llvm.vastart in the function body,
203  // remove the "..." and adjust all the calls.
204
205  // Start by computing a new prototype for the function, which is the same as
206  // the old function, but doesn't have isVarArg set.
207  const FunctionType *FTy = Fn.getFunctionType();
208
209  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
210  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
211                                                Params, false);
212  unsigned NumArgs = Params.size();
213
214  // Create the new function body and insert it into the module...
215  Function *NF = Function::Create(NFTy, Fn.getLinkage());
216  NF->copyAttributesFrom(&Fn);
217  Fn.getParent()->getFunctionList().insert(&Fn, NF);
218  NF->takeName(&Fn);
219
220  // Loop over all of the callers of the function, transforming the call sites
221  // to pass in a smaller number of arguments into the new function.
222  //
223  std::vector<Value*> Args;
224  while (!Fn.use_empty()) {
225    CallSite CS(Fn.use_back());
226    Instruction *Call = CS.getInstruction();
227
228    // Pass all the same arguments.
229    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
230
231    // Drop any attributes that were on the vararg arguments.
232    AttrListPtr PAL = CS.getAttributes();
233    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
234      SmallVector<AttributeWithIndex, 8> AttributesVec;
235      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
236        AttributesVec.push_back(PAL.getSlot(i));
237      if (Attributes FnAttrs = PAL.getFnAttributes())
238        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
239      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
240    }
241
242    Instruction *New;
243    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
244      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
245                               Args.begin(), Args.end(), "", Call);
246      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
247      cast<InvokeInst>(New)->setAttributes(PAL);
248    } else {
249      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
250      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
251      cast<CallInst>(New)->setAttributes(PAL);
252      if (cast<CallInst>(Call)->isTailCall())
253        cast<CallInst>(New)->setTailCall();
254    }
255    New->setDebugLoc(Call->getDebugLoc());
256
257    Args.clear();
258
259    if (!Call->use_empty())
260      Call->replaceAllUsesWith(New);
261
262    New->takeName(Call);
263
264    // Finally, remove the old call from the program, reducing the use-count of
265    // F.
266    Call->eraseFromParent();
267  }
268
269  // Since we have now created the new function, splice the body of the old
270  // function right into the new function, leaving the old rotting hulk of the
271  // function empty.
272  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
273
274  // Loop over the argument list, transfering uses of the old arguments over to
275  // the new arguments, also transfering over the names as well.  While we're at
276  // it, remove the dead arguments from the DeadArguments list.
277  //
278  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
279       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
280    // Move the name and users over to the new version.
281    I->replaceAllUsesWith(I2);
282    I2->takeName(I);
283  }
284
285  // Finally, nuke the old function.
286  Fn.eraseFromParent();
287  return true;
288}
289
290/// Convenience function that returns the number of return values. It returns 0
291/// for void functions and 1 for functions not returning a struct. It returns
292/// the number of struct elements for functions returning a struct.
293static unsigned NumRetVals(const Function *F) {
294  if (F->getReturnType()->isVoidTy())
295    return 0;
296  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
297    return STy->getNumElements();
298  else
299    return 1;
300}
301
302/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
303/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
304/// liveness of Use.
305DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
306  // We're live if our use or its Function is already marked as live.
307  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
308    return Live;
309
310  // We're maybe live otherwise, but remember that we must become live if
311  // Use becomes live.
312  MaybeLiveUses.push_back(Use);
313  return MaybeLive;
314}
315
316
317/// SurveyUse - This looks at a single use of an argument or return value
318/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
319/// if it causes the used value to become MaybeLive.
320///
321/// RetValNum is the return value number to use when this use is used in a
322/// return instruction. This is used in the recursion, you should always leave
323/// it at 0.
324DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
325                             UseVector &MaybeLiveUses, unsigned RetValNum) {
326    const User *V = *U;
327    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
328      // The value is returned from a function. It's only live when the
329      // function's return value is live. We use RetValNum here, for the case
330      // that U is really a use of an insertvalue instruction that uses the
331      // orginal Use.
332      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
333      // We might be live, depending on the liveness of Use.
334      return MarkIfNotLive(Use, MaybeLiveUses);
335    }
336    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
337      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
338          && IV->hasIndices())
339        // The use we are examining is inserted into an aggregate. Our liveness
340        // depends on all uses of that aggregate, but if it is used as a return
341        // value, only index at which we were inserted counts.
342        RetValNum = *IV->idx_begin();
343
344      // Note that if we are used as the aggregate operand to the insertvalue,
345      // we don't change RetValNum, but do survey all our uses.
346
347      Liveness Result = MaybeLive;
348      for (Value::const_use_iterator I = IV->use_begin(),
349           E = V->use_end(); I != E; ++I) {
350        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
351        if (Result == Live)
352          break;
353      }
354      return Result;
355    }
356
357    if (ImmutableCallSite CS = V) {
358      const Function *F = CS.getCalledFunction();
359      if (F) {
360        // Used in a direct call.
361
362        // Find the argument number. We know for sure that this use is an
363        // argument, since if it was the function argument this would be an
364        // indirect call and the we know can't be looking at a value of the
365        // label type (for the invoke instruction).
366        unsigned ArgNo = CS.getArgumentNo(U);
367
368        if (ArgNo >= F->getFunctionType()->getNumParams())
369          // The value is passed in through a vararg! Must be live.
370          return Live;
371
372        assert(CS.getArgument(ArgNo)
373               == CS->getOperand(U.getOperandNo())
374               && "Argument is not where we expected it");
375
376        // Value passed to a normal call. It's only live when the corresponding
377        // argument to the called function turns out live.
378        RetOrArg Use = CreateArg(F, ArgNo);
379        return MarkIfNotLive(Use, MaybeLiveUses);
380      }
381    }
382    // Used in any other way? Value must be live.
383    return Live;
384}
385
386/// SurveyUses - This looks at all the uses of the given value
387/// Returns the Liveness deduced from the uses of this value.
388///
389/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
390/// the result is Live, MaybeLiveUses might be modified but its content should
391/// be ignored (since it might not be complete).
392DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
393  // Assume it's dead (which will only hold if there are no uses at all..).
394  Liveness Result = MaybeLive;
395  // Check each use.
396  for (Value::const_use_iterator I = V->use_begin(),
397       E = V->use_end(); I != E; ++I) {
398    Result = SurveyUse(I, MaybeLiveUses);
399    if (Result == Live)
400      break;
401  }
402  return Result;
403}
404
405// SurveyFunction - This performs the initial survey of the specified function,
406// checking out whether or not it uses any of its incoming arguments or whether
407// any callers use the return value.  This fills in the LiveValues set and Uses
408// map.
409//
410// We consider arguments of non-internal functions to be intrinsically alive as
411// well as arguments to functions which have their "address taken".
412//
413void DAE::SurveyFunction(const Function &F) {
414  unsigned RetCount = NumRetVals(&F);
415  // Assume all return values are dead
416  typedef SmallVector<Liveness, 5> RetVals;
417  RetVals RetValLiveness(RetCount, MaybeLive);
418
419  typedef SmallVector<UseVector, 5> RetUses;
420  // These vectors map each return value to the uses that make it MaybeLive, so
421  // we can add those to the Uses map if the return value really turns out to be
422  // MaybeLive. Initialized to a list of RetCount empty lists.
423  RetUses MaybeLiveRetUses(RetCount);
424
425  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
426    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
427      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
428          != F.getFunctionType()->getReturnType()) {
429        // We don't support old style multiple return values.
430        MarkLive(F);
431        return;
432      }
433
434  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
435    MarkLive(F);
436    return;
437  }
438
439  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
440  // Keep track of the number of live retvals, so we can skip checks once all
441  // of them turn out to be live.
442  unsigned NumLiveRetVals = 0;
443  const Type *STy = dyn_cast<StructType>(F.getReturnType());
444  // Loop all uses of the function.
445  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
446       I != E; ++I) {
447    // If the function is PASSED IN as an argument, its address has been
448    // taken.
449    ImmutableCallSite CS(*I);
450    if (!CS || !CS.isCallee(I)) {
451      MarkLive(F);
452      return;
453    }
454
455    // If this use is anything other than a call site, the function is alive.
456    const Instruction *TheCall = CS.getInstruction();
457    if (!TheCall) {   // Not a direct call site?
458      MarkLive(F);
459      return;
460    }
461
462    // If we end up here, we are looking at a direct call to our function.
463
464    // Now, check how our return value(s) is/are used in this caller. Don't
465    // bother checking return values if all of them are live already.
466    if (NumLiveRetVals != RetCount) {
467      if (STy) {
468        // Check all uses of the return value.
469        for (Value::const_use_iterator I = TheCall->use_begin(),
470             E = TheCall->use_end(); I != E; ++I) {
471          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
472          if (Ext && Ext->hasIndices()) {
473            // This use uses a part of our return value, survey the uses of
474            // that part and store the results for this index only.
475            unsigned Idx = *Ext->idx_begin();
476            if (RetValLiveness[Idx] != Live) {
477              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
478              if (RetValLiveness[Idx] == Live)
479                NumLiveRetVals++;
480            }
481          } else {
482            // Used by something else than extractvalue. Mark all return
483            // values as live.
484            for (unsigned i = 0; i != RetCount; ++i )
485              RetValLiveness[i] = Live;
486            NumLiveRetVals = RetCount;
487            break;
488          }
489        }
490      } else {
491        // Single return value
492        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
493        if (RetValLiveness[0] == Live)
494          NumLiveRetVals = RetCount;
495      }
496    }
497  }
498
499  // Now we've inspected all callers, record the liveness of our return values.
500  for (unsigned i = 0; i != RetCount; ++i)
501    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
502
503  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
504
505  // Now, check all of our arguments.
506  unsigned i = 0;
507  UseVector MaybeLiveArgUses;
508  for (Function::const_arg_iterator AI = F.arg_begin(),
509       E = F.arg_end(); AI != E; ++AI, ++i) {
510    // See what the effect of this use is (recording any uses that cause
511    // MaybeLive in MaybeLiveArgUses).
512    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
513    // Mark the result.
514    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
515    // Clear the vector again for the next iteration.
516    MaybeLiveArgUses.clear();
517  }
518}
519
520/// MarkValue - This function marks the liveness of RA depending on L. If L is
521/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
522/// such that RA will be marked live if any use in MaybeLiveUses gets marked
523/// live later on.
524void DAE::MarkValue(const RetOrArg &RA, Liveness L,
525                    const UseVector &MaybeLiveUses) {
526  switch (L) {
527    case Live: MarkLive(RA); break;
528    case MaybeLive:
529    {
530      // Note any uses of this value, so this return value can be
531      // marked live whenever one of the uses becomes live.
532      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
533           UE = MaybeLiveUses.end(); UI != UE; ++UI)
534        Uses.insert(std::make_pair(*UI, RA));
535      break;
536    }
537  }
538}
539
540/// MarkLive - Mark the given Function as alive, meaning that it cannot be
541/// changed in any way. Additionally,
542/// mark any values that are used as this function's parameters or by its return
543/// values (according to Uses) live as well.
544void DAE::MarkLive(const Function &F) {
545  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
546  // Mark the function as live.
547  LiveFunctions.insert(&F);
548  // Mark all arguments as live.
549  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
550    PropagateLiveness(CreateArg(&F, i));
551  // Mark all return values as live.
552  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
553    PropagateLiveness(CreateRet(&F, i));
554}
555
556/// MarkLive - Mark the given return value or argument as live. Additionally,
557/// mark any values that are used by this value (according to Uses) live as
558/// well.
559void DAE::MarkLive(const RetOrArg &RA) {
560  if (LiveFunctions.count(RA.F))
561    return; // Function was already marked Live.
562
563  if (!LiveValues.insert(RA).second)
564    return; // We were already marked Live.
565
566  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
567  PropagateLiveness(RA);
568}
569
570/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
571/// to any other values it uses (according to Uses).
572void DAE::PropagateLiveness(const RetOrArg &RA) {
573  // We don't use upper_bound (or equal_range) here, because our recursive call
574  // to ourselves is likely to cause the upper_bound (which is the first value
575  // not belonging to RA) to become erased and the iterator invalidated.
576  UseMap::iterator Begin = Uses.lower_bound(RA);
577  UseMap::iterator E = Uses.end();
578  UseMap::iterator I;
579  for (I = Begin; I != E && I->first == RA; ++I)
580    MarkLive(I->second);
581
582  // Erase RA from the Uses map (from the lower bound to wherever we ended up
583  // after the loop).
584  Uses.erase(Begin, I);
585}
586
587// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
588// that are not in LiveValues. Transform the function and all of the callees of
589// the function to not have these arguments and return values.
590//
591bool DAE::RemoveDeadStuffFromFunction(Function *F) {
592  // Don't modify fully live functions
593  if (LiveFunctions.count(F))
594    return false;
595
596  // Start by computing a new prototype for the function, which is the same as
597  // the old function, but has fewer arguments and a different return type.
598  const FunctionType *FTy = F->getFunctionType();
599  std::vector<const Type*> Params;
600
601  // Set up to build a new list of parameter attributes.
602  SmallVector<AttributeWithIndex, 8> AttributesVec;
603  const AttrListPtr &PAL = F->getAttributes();
604
605  // The existing function return attributes.
606  Attributes RAttrs = PAL.getRetAttributes();
607  Attributes FnAttrs = PAL.getFnAttributes();
608
609  // Find out the new return value.
610
611  const Type *RetTy = FTy->getReturnType();
612  const Type *NRetTy = NULL;
613  unsigned RetCount = NumRetVals(F);
614
615  // -1 means unused, other numbers are the new index
616  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
617  std::vector<const Type*> RetTypes;
618  if (RetTy->isVoidTy()) {
619    NRetTy = RetTy;
620  } else {
621    const StructType *STy = dyn_cast<StructType>(RetTy);
622    if (STy)
623      // Look at each of the original return values individually.
624      for (unsigned i = 0; i != RetCount; ++i) {
625        RetOrArg Ret = CreateRet(F, i);
626        if (LiveValues.erase(Ret)) {
627          RetTypes.push_back(STy->getElementType(i));
628          NewRetIdxs[i] = RetTypes.size() - 1;
629        } else {
630          ++NumRetValsEliminated;
631          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
632                << F->getName() << "\n");
633        }
634      }
635    else
636      // We used to return a single value.
637      if (LiveValues.erase(CreateRet(F, 0))) {
638        RetTypes.push_back(RetTy);
639        NewRetIdxs[0] = 0;
640      } else {
641        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
642              << "\n");
643        ++NumRetValsEliminated;
644      }
645    if (RetTypes.size() > 1)
646      // More than one return type? Return a struct with them. Also, if we used
647      // to return a struct and didn't change the number of return values,
648      // return a struct again. This prevents changing {something} into
649      // something and {} into void.
650      // Make the new struct packed if we used to return a packed struct
651      // already.
652      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
653    else if (RetTypes.size() == 1)
654      // One return type? Just a simple value then, but only if we didn't use to
655      // return a struct with that simple value before.
656      NRetTy = RetTypes.front();
657    else if (RetTypes.size() == 0)
658      // No return types? Make it void, but only if we didn't use to return {}.
659      NRetTy = Type::getVoidTy(F->getContext());
660  }
661
662  assert(NRetTy && "No new return type found?");
663
664  // Remove any incompatible attributes, but only if we removed all return
665  // values. Otherwise, ensure that we don't have any conflicting attributes
666  // here. Currently, this should not be possible, but special handling might be
667  // required when new return value attributes are added.
668  if (NRetTy->isVoidTy())
669    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
670  else
671    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
672           && "Return attributes no longer compatible?");
673
674  if (RAttrs)
675    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
676
677  // Remember which arguments are still alive.
678  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
679  // Construct the new parameter list from non-dead arguments. Also construct
680  // a new set of parameter attributes to correspond. Skip the first parameter
681  // attribute, since that belongs to the return value.
682  unsigned i = 0;
683  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
684       I != E; ++I, ++i) {
685    RetOrArg Arg = CreateArg(F, i);
686    if (LiveValues.erase(Arg)) {
687      Params.push_back(I->getType());
688      ArgAlive[i] = true;
689
690      // Get the original parameter attributes (skipping the first one, that is
691      // for the return value.
692      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
693        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
694    } else {
695      ++NumArgumentsEliminated;
696      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
697            << ") from " << F->getName() << "\n");
698    }
699  }
700
701  if (FnAttrs != Attribute::None)
702    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
703
704  // Reconstruct the AttributesList based on the vector we constructed.
705  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
706                                        AttributesVec.end());
707
708  // Create the new function type based on the recomputed parameters.
709  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
710
711  // No change?
712  if (NFTy == FTy)
713    return false;
714
715  // Create the new function body and insert it into the module...
716  Function *NF = Function::Create(NFTy, F->getLinkage());
717  NF->copyAttributesFrom(F);
718  NF->setAttributes(NewPAL);
719  // Insert the new function before the old function, so we won't be processing
720  // it again.
721  F->getParent()->getFunctionList().insert(F, NF);
722  NF->takeName(F);
723
724  // Loop over all of the callers of the function, transforming the call sites
725  // to pass in a smaller number of arguments into the new function.
726  //
727  std::vector<Value*> Args;
728  while (!F->use_empty()) {
729    CallSite CS(F->use_back());
730    Instruction *Call = CS.getInstruction();
731
732    AttributesVec.clear();
733    const AttrListPtr &CallPAL = CS.getAttributes();
734
735    // The call return attributes.
736    Attributes RAttrs = CallPAL.getRetAttributes();
737    Attributes FnAttrs = CallPAL.getFnAttributes();
738    // Adjust in case the function was changed to return void.
739    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
740    if (RAttrs)
741      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
742
743    // Declare these outside of the loops, so we can reuse them for the second
744    // loop, which loops the varargs.
745    CallSite::arg_iterator I = CS.arg_begin();
746    unsigned i = 0;
747    // Loop over those operands, corresponding to the normal arguments to the
748    // original function, and add those that are still alive.
749    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
750      if (ArgAlive[i]) {
751        Args.push_back(*I);
752        // Get original parameter attributes, but skip return attributes.
753        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
754          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
755      }
756
757    // Push any varargs arguments on the list. Don't forget their attributes.
758    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
759      Args.push_back(*I);
760      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
761        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
762    }
763
764    if (FnAttrs != Attribute::None)
765      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
766
767    // Reconstruct the AttributesList based on the vector we constructed.
768    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
769                                              AttributesVec.end());
770
771    Instruction *New;
772    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
773      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
774                               Args.begin(), Args.end(), "", Call);
775      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
776      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
777    } else {
778      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
779      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
780      cast<CallInst>(New)->setAttributes(NewCallPAL);
781      if (cast<CallInst>(Call)->isTailCall())
782        cast<CallInst>(New)->setTailCall();
783    }
784    New->setDebugLoc(Call->getDebugLoc());
785
786    Args.clear();
787
788    if (!Call->use_empty()) {
789      if (New->getType() == Call->getType()) {
790        // Return type not changed? Just replace users then.
791        Call->replaceAllUsesWith(New);
792        New->takeName(Call);
793      } else if (New->getType()->isVoidTy()) {
794        // Our return value has uses, but they will get removed later on.
795        // Replace by null for now.
796        if (!Call->getType()->isX86_MMXTy())
797          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
798      } else {
799        assert(RetTy->isStructTy() &&
800               "Return type changed, but not into a void. The old return type"
801               " must have been a struct!");
802        Instruction *InsertPt = Call;
803        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
804          BasicBlock::iterator IP = II->getNormalDest()->begin();
805          while (isa<PHINode>(IP)) ++IP;
806          InsertPt = IP;
807        }
808
809        // We used to return a struct. Instead of doing smart stuff with all the
810        // uses of this struct, we will just rebuild it using
811        // extract/insertvalue chaining and let instcombine clean that up.
812        //
813        // Start out building up our return value from undef
814        Value *RetVal = UndefValue::get(RetTy);
815        for (unsigned i = 0; i != RetCount; ++i)
816          if (NewRetIdxs[i] != -1) {
817            Value *V;
818            if (RetTypes.size() > 1)
819              // We are still returning a struct, so extract the value from our
820              // return value
821              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
822                                           InsertPt);
823            else
824              // We are now returning a single element, so just insert that
825              V = New;
826            // Insert the value at the old position
827            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
828          }
829        // Now, replace all uses of the old call instruction with the return
830        // struct we built
831        Call->replaceAllUsesWith(RetVal);
832        New->takeName(Call);
833      }
834    }
835
836    // Finally, remove the old call from the program, reducing the use-count of
837    // F.
838    Call->eraseFromParent();
839  }
840
841  // Since we have now created the new function, splice the body of the old
842  // function right into the new function, leaving the old rotting hulk of the
843  // function empty.
844  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
845
846  // Loop over the argument list, transfering uses of the old arguments over to
847  // the new arguments, also transfering over the names as well.
848  i = 0;
849  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
850       I2 = NF->arg_begin(); I != E; ++I, ++i)
851    if (ArgAlive[i]) {
852      // If this is a live argument, move the name and users over to the new
853      // version.
854      I->replaceAllUsesWith(I2);
855      I2->takeName(I);
856      ++I2;
857    } else {
858      // If this argument is dead, replace any uses of it with null constants
859      // (these are guaranteed to become unused later on).
860      if (!I->getType()->isX86_MMXTy())
861        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
862    }
863
864  // If we change the return value of the function we must rewrite any return
865  // instructions.  Check this now.
866  if (F->getReturnType() != NF->getReturnType())
867    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
868      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
869        Value *RetVal;
870
871        if (NFTy->getReturnType()->isVoidTy()) {
872          RetVal = 0;
873        } else {
874          assert (RetTy->isStructTy());
875          // The original return value was a struct, insert
876          // extractvalue/insertvalue chains to extract only the values we need
877          // to return and insert them into our new result.
878          // This does generate messy code, but we'll let it to instcombine to
879          // clean that up.
880          Value *OldRet = RI->getOperand(0);
881          // Start out building up our return value from undef
882          RetVal = UndefValue::get(NRetTy);
883          for (unsigned i = 0; i != RetCount; ++i)
884            if (NewRetIdxs[i] != -1) {
885              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
886                                                              "oldret", RI);
887              if (RetTypes.size() > 1) {
888                // We're still returning a struct, so reinsert the value into
889                // our new return value at the new index
890
891                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
892                                                 "newret", RI);
893              } else {
894                // We are now only returning a simple value, so just return the
895                // extracted value.
896                RetVal = EV;
897              }
898            }
899        }
900        // Replace the return instruction with one returning the new return
901        // value (possibly 0 if we became void).
902        ReturnInst::Create(F->getContext(), RetVal, RI);
903        BB->getInstList().erase(RI);
904      }
905
906  // Now that the old function is dead, delete it.
907  F->eraseFromParent();
908
909  return true;
910}
911
912bool DAE::runOnModule(Module &M) {
913  bool Changed = false;
914
915  // First pass: Do a simple check to see if any functions can have their "..."
916  // removed.  We can do this if they never call va_start.  This loop cannot be
917  // fused with the next loop, because deleting a function invalidates
918  // information computed while surveying other functions.
919  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
920  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
921    Function &F = *I++;
922    if (F.getFunctionType()->isVarArg())
923      Changed |= DeleteDeadVarargs(F);
924  }
925
926  // Second phase:loop through the module, determining which arguments are live.
927  // We assume all arguments are dead unless proven otherwise (allowing us to
928  // determine that dead arguments passed into recursive functions are dead).
929  //
930  DEBUG(dbgs() << "DAE - Determining liveness\n");
931  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
932    SurveyFunction(*I);
933
934  // Now, remove all dead arguments and return values from each function in
935  // turn.
936  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
937    // Increment now, because the function will probably get removed (ie.
938    // replaced by a new one).
939    Function *F = I++;
940    Changed |= RemoveDeadStuffFromFunction(F);
941  }
942  return Changed;
943}
944