DeadArgumentElimination.cpp revision ad9a9e15595bc9d5ba1ed752caf8572957f77a3d
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead arguments in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/ParameterAttributes.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/Support/Compiler.h"
34#include <set>
35using namespace llvm;
36
37STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
38STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
39
40namespace {
41  /// DAE - The dead argument elimination pass.
42  ///
43  class VISIBILITY_HIDDEN DAE : public ModulePass {
44    /// Liveness enum - During our initial pass over the program, we determine
45    /// that things are either definately alive, definately dead, or in need of
46    /// interprocedural analysis (MaybeLive).
47    ///
48    enum Liveness { Live, MaybeLive, Dead };
49
50    /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
51    /// all of the arguments in the program.  The Dead set contains arguments
52    /// which are completely dead (never used in the function).  The MaybeLive
53    /// set contains arguments which are only passed into other function calls,
54    /// thus may be live and may be dead.  The Live set contains arguments which
55    /// are known to be alive.
56    ///
57    std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;
58
59    /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
60    /// functions in the program.  The Dead set contains functions whose return
61    /// value is known to be dead.  The MaybeLive set contains functions whose
62    /// return values are only used by return instructions, and the Live set
63    /// contains functions whose return values are used, functions that are
64    /// external, and functions that already return void.
65    ///
66    std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;
67
68    /// InstructionsToInspect - As we mark arguments and return values
69    /// MaybeLive, we keep track of which instructions could make the values
70    /// live here.  Once the entire program has had the return value and
71    /// arguments analyzed, this set is scanned to promote the MaybeLive objects
72    /// to be Live if they really are used.
73    std::vector<Instruction*> InstructionsToInspect;
74
75    /// CallSites - Keep track of the call sites of functions that have
76    /// MaybeLive arguments or return values.
77    std::multimap<Function*, CallSite> CallSites;
78
79  public:
80    static char ID; // Pass identification, replacement for typeid
81    DAE() : ModulePass((intptr_t)&ID) {}
82    bool runOnModule(Module &M);
83
84    virtual bool ShouldHackArguments() const { return false; }
85
86  private:
87    Liveness getArgumentLiveness(const Argument &A);
88    bool isMaybeLiveArgumentNowLive(Argument *Arg);
89
90    bool DeleteDeadVarargs(Function &Fn);
91    void SurveyFunction(Function &Fn);
92
93    void MarkArgumentLive(Argument *Arg);
94    void MarkRetValLive(Function *F);
95    void MarkReturnInstArgumentLive(ReturnInst *RI);
96
97    void RemoveDeadArgumentsFromFunction(Function *F);
98  };
99  char DAE::ID = 0;
100  RegisterPass<DAE> X("deadargelim", "Dead Argument Elimination");
101
102  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
103  /// deletes arguments to functions which are external.  This is only for use
104  /// by bugpoint.
105  struct DAH : public DAE {
106    static char ID;
107    virtual bool ShouldHackArguments() const { return true; }
108  };
109  char DAH::ID = 0;
110  RegisterPass<DAH> Y("deadarghaX0r",
111                      "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
112}
113
114/// createDeadArgEliminationPass - This pass removes arguments from functions
115/// which are not used by the body of the function.
116///
117ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
118ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
119
120/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
121/// llvm.vastart is never called, the varargs list is dead for the function.
122bool DAE::DeleteDeadVarargs(Function &Fn) {
123  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
124  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
125
126  // Ensure that the function is only directly called.
127  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
128    // If this use is anything other than a call site, give up.
129    CallSite CS = CallSite::get(*I);
130    Instruction *TheCall = CS.getInstruction();
131    if (!TheCall) return false;   // Not a direct call site?
132
133    // The addr of this function is passed to the call.
134    if (I.getOperandNo() != 0) return false;
135  }
136
137  // Okay, we know we can transform this function if safe.  Scan its body
138  // looking for calls to llvm.vastart.
139  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
140    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
141      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
142        if (II->getIntrinsicID() == Intrinsic::vastart)
143          return false;
144      }
145    }
146  }
147
148  // If we get here, there are no calls to llvm.vastart in the function body,
149  // remove the "..." and adjust all the calls.
150
151  // Start by computing a new prototype for the function, which is the same as
152  // the old function, but has fewer arguments.
153  const FunctionType *FTy = Fn.getFunctionType();
154  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
155  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
156  unsigned NumArgs = Params.size();
157
158  // Create the new function body and insert it into the module...
159  Function *NF = new Function(NFTy, Fn.getLinkage());
160  NF->setCallingConv(Fn.getCallingConv());
161  NF->setParamAttrs(Fn.getParamAttrs());
162  if (Fn.hasCollector())
163    NF->setCollector(Fn.getCollector());
164  Fn.getParent()->getFunctionList().insert(&Fn, NF);
165  NF->takeName(&Fn);
166
167  // Loop over all of the callers of the function, transforming the call sites
168  // to pass in a smaller number of arguments into the new function.
169  //
170  std::vector<Value*> Args;
171  while (!Fn.use_empty()) {
172    CallSite CS = CallSite::get(Fn.use_back());
173    Instruction *Call = CS.getInstruction();
174
175    // Pass all the same arguments.
176    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
177
178    Instruction *New;
179    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
180      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
181                           Args.begin(), Args.end(), "", Call);
182      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
183      cast<InvokeInst>(New)->setParamAttrs(CS.getParamAttrs());
184    } else {
185      New = new CallInst(NF, Args.begin(), Args.end(), "", Call);
186      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
187      cast<CallInst>(New)->setParamAttrs(CS.getParamAttrs());
188      if (cast<CallInst>(Call)->isTailCall())
189        cast<CallInst>(New)->setTailCall();
190    }
191    Args.clear();
192
193    if (!Call->use_empty())
194      Call->replaceAllUsesWith(New);
195
196    New->takeName(Call);
197
198    // Finally, remove the old call from the program, reducing the use-count of
199    // F.
200    Call->eraseFromParent();
201  }
202
203  // Since we have now created the new function, splice the body of the old
204  // function right into the new function, leaving the old rotting hulk of the
205  // function empty.
206  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
207
208  // Loop over the argument list, transfering uses of the old arguments over to
209  // the new arguments, also transfering over the names as well.  While we're at
210  // it, remove the dead arguments from the DeadArguments list.
211  //
212  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
213       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
214    // Move the name and users over to the new version.
215    I->replaceAllUsesWith(I2);
216    I2->takeName(I);
217  }
218
219  // Finally, nuke the old function.
220  Fn.eraseFromParent();
221  return true;
222}
223
224
225static inline bool CallPassesValueThoughVararg(Instruction *Call,
226                                               const Value *Arg) {
227  CallSite CS = CallSite::get(Call);
228  const Type *CalledValueTy = CS.getCalledValue()->getType();
229  const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
230  unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
231  for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
232       AI != CS.arg_end(); ++AI)
233    if (AI->get() == Arg)
234      return true;
235  return false;
236}
237
238// getArgumentLiveness - Inspect an argument, determining if is known Live
239// (used in a computation), MaybeLive (only passed as an argument to a call), or
240// Dead (not used).
241DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
242  const Function *F = A.getParent();
243
244  // If this is the return value of a struct function, it's not really dead.
245  if (F->isStructReturn() && &*(F->arg_begin()) == &A)
246    return Live;
247
248  if (A.use_empty())  // First check, directly dead?
249    return Dead;
250
251  // Scan through all of the uses, looking for non-argument passing uses.
252  for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
253    // Return instructions do not immediately effect liveness.
254    if (isa<ReturnInst>(*I))
255      continue;
256
257    CallSite CS = CallSite::get(const_cast<User*>(*I));
258    if (!CS.getInstruction()) {
259      // If its used by something that is not a call or invoke, it's alive!
260      return Live;
261    }
262    // If it's an indirect call, mark it alive...
263    Function *Callee = CS.getCalledFunction();
264    if (!Callee) return Live;
265
266    // Check to see if it's passed through a va_arg area: if so, we cannot
267    // remove it.
268    if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
269      return Live;   // If passed through va_arg area, we cannot remove it
270  }
271
272  return MaybeLive;  // It must be used, but only as argument to a function
273}
274
275
276// SurveyFunction - This performs the initial survey of the specified function,
277// checking out whether or not it uses any of its incoming arguments or whether
278// any callers use the return value.  This fills in the
279// (Dead|MaybeLive|Live)(Arguments|RetVal) sets.
280//
281// We consider arguments of non-internal functions to be intrinsically alive as
282// well as arguments to functions which have their "address taken".
283//
284void DAE::SurveyFunction(Function &F) {
285  bool FunctionIntrinsicallyLive = false;
286  Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;
287
288  if (!F.hasInternalLinkage() &&
289      (!ShouldHackArguments() || F.isIntrinsic()))
290    FunctionIntrinsicallyLive = true;
291  else
292    for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
293      // If this use is anything other than a call site, the function is alive.
294      CallSite CS = CallSite::get(*I);
295      Instruction *TheCall = CS.getInstruction();
296      if (!TheCall) {   // Not a direct call site?
297        FunctionIntrinsicallyLive = true;
298        break;
299      }
300
301      // Check to see if the return value is used...
302      if (RetValLiveness != Live)
303        for (Value::use_iterator I = TheCall->use_begin(),
304               E = TheCall->use_end(); I != E; ++I)
305          if (isa<ReturnInst>(cast<Instruction>(*I))) {
306            RetValLiveness = MaybeLive;
307          } else if (isa<CallInst>(cast<Instruction>(*I)) ||
308                     isa<InvokeInst>(cast<Instruction>(*I))) {
309            if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
310                !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
311              RetValLiveness = Live;
312              break;
313            } else {
314              RetValLiveness = MaybeLive;
315            }
316          } else {
317            RetValLiveness = Live;
318            break;
319          }
320
321      // If the function is PASSED IN as an argument, its address has been taken
322      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
323           AI != E; ++AI)
324        if (AI->get() == &F) {
325          FunctionIntrinsicallyLive = true;
326          break;
327        }
328      if (FunctionIntrinsicallyLive) break;
329    }
330
331  if (FunctionIntrinsicallyLive) {
332    DOUT << "  Intrinsically live fn: " << F.getName() << "\n";
333    for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
334         AI != E; ++AI)
335      LiveArguments.insert(AI);
336    LiveRetVal.insert(&F);
337    return;
338  }
339
340  switch (RetValLiveness) {
341  case Live:      LiveRetVal.insert(&F); break;
342  case MaybeLive: MaybeLiveRetVal.insert(&F); break;
343  case Dead:      DeadRetVal.insert(&F); break;
344  }
345
346  DOUT << "  Inspecting args for fn: " << F.getName() << "\n";
347
348  // If it is not intrinsically alive, we know that all users of the
349  // function are call sites.  Mark all of the arguments live which are
350  // directly used, and keep track of all of the call sites of this function
351  // if there are any arguments we assume that are dead.
352  //
353  bool AnyMaybeLiveArgs = false;
354  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
355       AI != E; ++AI)
356    switch (getArgumentLiveness(*AI)) {
357    case Live:
358      DOUT << "    Arg live by use: " << AI->getName() << "\n";
359      LiveArguments.insert(AI);
360      break;
361    case Dead:
362      DOUT << "    Arg definitely dead: " << AI->getName() <<"\n";
363      DeadArguments.insert(AI);
364      break;
365    case MaybeLive:
366      DOUT << "    Arg only passed to calls: " << AI->getName() << "\n";
367      AnyMaybeLiveArgs = true;
368      MaybeLiveArguments.insert(AI);
369      break;
370    }
371
372  // If there are any "MaybeLive" arguments, we need to check callees of
373  // this function when/if they become alive.  Record which functions are
374  // callees...
375  if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
376    for (Value::use_iterator I = F.use_begin(), E = F.use_end();
377         I != E; ++I) {
378      if (AnyMaybeLiveArgs)
379        CallSites.insert(std::make_pair(&F, CallSite::get(*I)));
380
381      if (RetValLiveness == MaybeLive)
382        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
383             UI != E; ++UI)
384          InstructionsToInspect.push_back(cast<Instruction>(*UI));
385    }
386}
387
388// isMaybeLiveArgumentNowLive - Check to see if Arg is alive.  At this point, we
389// know that the only uses of Arg are to be passed in as an argument to a
390// function call or return.  Check to see if the formal argument passed in is in
391// the LiveArguments set.  If so, return true.
392//
393bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
394  for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
395    if (isa<ReturnInst>(*I)) {
396      if (LiveRetVal.count(Arg->getParent())) return true;
397      continue;
398    }
399
400    CallSite CS = CallSite::get(*I);
401
402    // We know that this can only be used for direct calls...
403    Function *Callee = CS.getCalledFunction();
404
405    // Loop over all of the arguments (because Arg may be passed into the call
406    // multiple times) and check to see if any are now alive...
407    CallSite::arg_iterator CSAI = CS.arg_begin();
408    for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
409         AI != E; ++AI, ++CSAI)
410      // If this is the argument we are looking for, check to see if it's alive
411      if (*CSAI == Arg && LiveArguments.count(AI))
412        return true;
413  }
414  return false;
415}
416
417/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
418/// Mark it live in the specified sets and recursively mark arguments in callers
419/// live that are needed to pass in a value.
420///
421void DAE::MarkArgumentLive(Argument *Arg) {
422  std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
423  if (It == MaybeLiveArguments.end() || *It != Arg) return;
424
425  DOUT << "  MaybeLive argument now live: " << Arg->getName() <<"\n";
426  MaybeLiveArguments.erase(It);
427  LiveArguments.insert(Arg);
428
429  // Loop over all of the call sites of the function, making any arguments
430  // passed in to provide a value for this argument live as necessary.
431  //
432  Function *Fn = Arg->getParent();
433  unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));
434
435  std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
436  for (; I != CallSites.end() && I->first == Fn; ++I) {
437    CallSite CS = I->second;
438    Value *ArgVal = *(CS.arg_begin()+ArgNo);
439    if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
440      MarkArgumentLive(ActualArg);
441    } else {
442      // If the value passed in at this call site is a return value computed by
443      // some other call site, make sure to mark the return value at the other
444      // call site as being needed.
445      CallSite ArgCS = CallSite::get(ArgVal);
446      if (ArgCS.getInstruction())
447        if (Function *Fn = ArgCS.getCalledFunction())
448          MarkRetValLive(Fn);
449    }
450  }
451}
452
453/// MarkArgumentLive - The MaybeLive return value for the specified function is
454/// now known to be alive.  Propagate this fact to the return instructions which
455/// produce it.
456void DAE::MarkRetValLive(Function *F) {
457  assert(F && "Shame shame, we can't have null pointers here!");
458
459  // Check to see if we already knew it was live
460  std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
461  if (I == MaybeLiveRetVal.end() || *I != F) return;  // It's already alive!
462
463  DOUT << "  MaybeLive retval now live: " << F->getName() << "\n";
464
465  MaybeLiveRetVal.erase(I);
466  LiveRetVal.insert(F);        // It is now known to be live!
467
468  // Loop over all of the functions, noticing that the return value is now live.
469  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
470    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
471      MarkReturnInstArgumentLive(RI);
472}
473
474void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
475  Value *Op = RI->getOperand(0);
476  if (Argument *A = dyn_cast<Argument>(Op)) {
477    MarkArgumentLive(A);
478  } else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
479    if (Function *F = CI->getCalledFunction())
480      MarkRetValLive(F);
481  } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
482    if (Function *F = II->getCalledFunction())
483      MarkRetValLive(F);
484  }
485}
486
487// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
488// specified by the DeadArguments list.  Transform the function and all of the
489// callees of the function to not have these arguments.
490//
491void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
492  // Start by computing a new prototype for the function, which is the same as
493  // the old function, but has fewer arguments.
494  const FunctionType *FTy = F->getFunctionType();
495  std::vector<const Type*> Params;
496
497  // Set up to build a new list of parameter attributes
498  ParamAttrsVector ParamAttrsVec;
499  const ParamAttrsList *PAL = F->getParamAttrs();
500
501  // The existing function return attributes.
502  uint16_t RAttrs = PAL ? PAL->getParamAttrs(0) : 0;
503
504  // Make the function return void if the return value is dead.
505  const Type *RetTy = FTy->getReturnType();
506  if (DeadRetVal.count(F)) {
507    RetTy = Type::VoidTy;
508    RAttrs &= ~ParamAttr::incompatibleWithType(RetTy, RAttrs);
509    DeadRetVal.erase(F);
510  }
511
512  if (RAttrs)
513    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
514
515  // Construct the new parameter list from non-dead arguments. Also construct
516  // a new set of parameter attributes to correspond.
517  unsigned index = 1;
518  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
519       ++I, ++index)
520    if (!DeadArguments.count(I)) {
521      Params.push_back(I->getType());
522      uint16_t Attrs = PAL ? PAL->getParamAttrs(index) : 0;
523      if (Attrs)
524        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
525    }
526
527  // Reconstruct the ParamAttrsList based on the vector we constructed.
528  PAL = ParamAttrsList::get(ParamAttrsVec);
529
530  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
531  // have zero fixed arguments.
532  //
533  bool ExtraArgHack = false;
534  if (Params.empty() && FTy->isVarArg()) {
535    ExtraArgHack = true;
536    Params.push_back(Type::Int32Ty);
537  }
538
539  // Create the new function type based on the recomputed parameters.
540  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
541
542  // Create the new function body and insert it into the module...
543  Function *NF = new Function(NFTy, F->getLinkage());
544  NF->setCallingConv(F->getCallingConv());
545  NF->setParamAttrs(PAL);
546  if (F->hasCollector())
547    NF->setCollector(F->getCollector());
548  F->getParent()->getFunctionList().insert(F, NF);
549  NF->takeName(F);
550
551  // Loop over all of the callers of the function, transforming the call sites
552  // to pass in a smaller number of arguments into the new function.
553  //
554  std::vector<Value*> Args;
555  while (!F->use_empty()) {
556    CallSite CS = CallSite::get(F->use_back());
557    Instruction *Call = CS.getInstruction();
558    ParamAttrsVec.clear();
559    PAL = CS.getParamAttrs();
560
561    // The call return attributes.
562    uint16_t RAttrs = PAL ? PAL->getParamAttrs(0) : 0;
563    // Adjust in case the function was changed to return void.
564    RAttrs &= ~ParamAttr::incompatibleWithType(NF->getReturnType(), RAttrs);
565    if (RAttrs)
566      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
567
568    // Loop over the operands, deleting dead ones...
569    CallSite::arg_iterator AI = CS.arg_begin();
570    index = 1;
571    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
572         I != E; ++I, ++AI, ++index)
573      if (!DeadArguments.count(I)) {    // Remove operands for dead arguments
574        Args.push_back(*AI);
575        uint16_t Attrs = PAL ? PAL->getParamAttrs(index) : 0;
576        if (Attrs)
577          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
578      }
579
580    // Reconstruct the ParamAttrsList based on the vector we constructed.
581    PAL = ParamAttrsList::get(ParamAttrsVec);
582
583    if (ExtraArgHack)
584      Args.push_back(UndefValue::get(Type::Int32Ty));
585
586    // Push any varargs arguments on the list
587    for (; AI != CS.arg_end(); ++AI)
588      Args.push_back(*AI);
589
590    Instruction *New;
591    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
592      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
593                           Args.begin(), Args.end(), "", Call);
594      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
595      cast<InvokeInst>(New)->setParamAttrs(PAL);
596    } else {
597      New = new CallInst(NF, Args.begin(), Args.end(), "", Call);
598      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
599      cast<CallInst>(New)->setParamAttrs(PAL);
600      if (cast<CallInst>(Call)->isTailCall())
601        cast<CallInst>(New)->setTailCall();
602    }
603    Args.clear();
604
605    if (!Call->use_empty()) {
606      if (New->getType() == Type::VoidTy)
607        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
608      else {
609        Call->replaceAllUsesWith(New);
610        New->takeName(Call);
611      }
612    }
613
614    // Finally, remove the old call from the program, reducing the use-count of
615    // F.
616    Call->getParent()->getInstList().erase(Call);
617  }
618
619  // Since we have now created the new function, splice the body of the old
620  // function right into the new function, leaving the old rotting hulk of the
621  // function empty.
622  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
623
624  // Loop over the argument list, transfering uses of the old arguments over to
625  // the new arguments, also transfering over the names as well.  While we're at
626  // it, remove the dead arguments from the DeadArguments list.
627  //
628  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
629         I2 = NF->arg_begin();
630       I != E; ++I)
631    if (!DeadArguments.count(I)) {
632      // If this is a live argument, move the name and users over to the new
633      // version.
634      I->replaceAllUsesWith(I2);
635      I2->takeName(I);
636      ++I2;
637    } else {
638      // If this argument is dead, replace any uses of it with null constants
639      // (these are guaranteed to only be operands to call instructions which
640      // will later be simplified).
641      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
642      DeadArguments.erase(I);
643    }
644
645  // If we change the return value of the function we must rewrite any return
646  // instructions.  Check this now.
647  if (F->getReturnType() != NF->getReturnType())
648    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
649      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
650        new ReturnInst(0, RI);
651        BB->getInstList().erase(RI);
652      }
653
654  // Now that the old function is dead, delete it.
655  F->getParent()->getFunctionList().erase(F);
656}
657
658bool DAE::runOnModule(Module &M) {
659  bool Changed = false;
660  // First pass: Do a simple check to see if any functions can have their "..."
661  // removed.  We can do this if they never call va_start.  This loop cannot be
662  // fused with the next loop, because deleting a function invalidates
663  // information computed while surveying other functions.
664  DOUT << "DAE - Deleting dead varargs\n";
665  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
666    Function &F = *I++;
667    if (F.getFunctionType()->isVarArg())
668      Changed |= DeleteDeadVarargs(F);
669  }
670
671  // Second phase:loop through the module, determining which arguments are live.
672  // We assume all arguments are dead unless proven otherwise (allowing us to
673  // determine that dead arguments passed into recursive functions are dead).
674  //
675  DOUT << "DAE - Determining liveness\n";
676  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
677    SurveyFunction(*I);
678
679  // Loop over the instructions to inspect, propagating liveness among arguments
680  // and return values which are MaybeLive.
681  while (!InstructionsToInspect.empty()) {
682    Instruction *I = InstructionsToInspect.back();
683    InstructionsToInspect.pop_back();
684
685    if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
686      // For return instructions, we just have to check to see if the return
687      // value for the current function is known now to be alive.  If so, any
688      // arguments used by it are now alive, and any call instruction return
689      // value is alive as well.
690      if (LiveRetVal.count(RI->getParent()->getParent()))
691        MarkReturnInstArgumentLive(RI);
692
693    } else {
694      CallSite CS = CallSite::get(I);
695      assert(CS.getInstruction() && "Unknown instruction for the I2I list!");
696
697      Function *Callee = CS.getCalledFunction();
698
699      // If we found a call or invoke instruction on this list, that means that
700      // an argument of the function is a call instruction.  If the argument is
701      // live, then the return value of the called instruction is now live.
702      //
703      CallSite::arg_iterator AI = CS.arg_begin();  // ActualIterator
704      for (Function::arg_iterator FI = Callee->arg_begin(),
705             E = Callee->arg_end(); FI != E; ++AI, ++FI) {
706        // If this argument is another call...
707        CallSite ArgCS = CallSite::get(*AI);
708        if (ArgCS.getInstruction() && LiveArguments.count(FI))
709          if (Function *Callee = ArgCS.getCalledFunction())
710            MarkRetValLive(Callee);
711      }
712    }
713  }
714
715  // Now we loop over all of the MaybeLive arguments, promoting them to be live
716  // arguments if one of the calls that uses the arguments to the calls they are
717  // passed into requires them to be live.  Of course this could make other
718  // arguments live, so process callers recursively.
719  //
720  // Because elements can be removed from the MaybeLiveArguments set, copy it to
721  // a temporary vector.
722  //
723  std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
724                                    MaybeLiveArguments.end());
725  for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
726    Argument *MLA = TmpArgList[i];
727    if (MaybeLiveArguments.count(MLA) &&
728        isMaybeLiveArgumentNowLive(MLA))
729      MarkArgumentLive(MLA);
730  }
731
732  // Recover memory early...
733  CallSites.clear();
734
735  // At this point, we know that all arguments in DeadArguments and
736  // MaybeLiveArguments are dead.  If the two sets are empty, there is nothing
737  // to do.
738  if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
739      MaybeLiveRetVal.empty() && DeadRetVal.empty())
740    return Changed;
741
742  // Otherwise, compact into one set, and start eliminating the arguments from
743  // the functions.
744  DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
745  MaybeLiveArguments.clear();
746  DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
747  MaybeLiveRetVal.clear();
748
749  LiveArguments.clear();
750  LiveRetVal.clear();
751
752  NumArgumentsEliminated += DeadArguments.size();
753  NumRetValsEliminated   += DeadRetVal.size();
754  while (!DeadArguments.empty())
755    RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());
756
757  while (!DeadRetVal.empty())
758    RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
759  return true;
760}
761