DeadArgumentElimination.cpp revision cc52ed0c4feec63e7a127462b78fd4a6b217f469
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <map>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
41STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
42
43namespace {
44  /// DAE - The dead argument elimination pass.
45  ///
46  class DAE : public ModulePass {
47  public:
48
49    /// Struct that represents (part of) either a return value or a function
50    /// argument.  Used so that arguments and return values can be used
51    /// interchangably.
52    struct RetOrArg {
53      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
54               IsArg(IsArg) {}
55      const Function *F;
56      unsigned Idx;
57      bool IsArg;
58
59      /// Make RetOrArg comparable, so we can put it into a map.
60      bool operator<(const RetOrArg &O) const {
61        if (F != O.F)
62          return F < O.F;
63        else if (Idx != O.Idx)
64          return Idx < O.Idx;
65        else
66          return IsArg < O.IsArg;
67      }
68
69      /// Make RetOrArg comparable, so we can easily iterate the multimap.
70      bool operator==(const RetOrArg &O) const {
71        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
72      }
73
74      std::string getDescription() const {
75        return std::string((IsArg ? "Argument #" : "Return value #"))
76               + utostr(Idx) + " of function " + F->getNameStr();
77      }
78    };
79
80    /// Liveness enum - During our initial pass over the program, we determine
81    /// that things are either alive or maybe alive. We don't mark anything
82    /// explicitly dead (even if we know they are), since anything not alive
83    /// with no registered uses (in Uses) will never be marked alive and will
84    /// thus become dead in the end.
85    enum Liveness { Live, MaybeLive };
86
87    /// Convenience wrapper
88    RetOrArg CreateRet(const Function *F, unsigned Idx) {
89      return RetOrArg(F, Idx, false);
90    }
91    /// Convenience wrapper
92    RetOrArg CreateArg(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, true);
94    }
95
96    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
97    /// This maps a return value or argument to any MaybeLive return values or
98    /// arguments it uses. This allows the MaybeLive values to be marked live
99    /// when any of its users is marked live.
100    /// For example (indices are left out for clarity):
101    ///  - Uses[ret F] = ret G
102    ///    This means that F calls G, and F returns the value returned by G.
103    ///  - Uses[arg F] = ret G
104    ///    This means that some function calls G and passes its result as an
105    ///    argument to F.
106    ///  - Uses[ret F] = arg F
107    ///    This means that F returns one of its own arguments.
108    ///  - Uses[arg F] = arg G
109    ///    This means that G calls F and passes one of its own (G's) arguments
110    ///    directly to F.
111    UseMap Uses;
112
113    typedef std::set<RetOrArg> LiveSet;
114    typedef std::set<const Function*> LiveFuncSet;
115
116    /// This set contains all values that have been determined to be live.
117    LiveSet LiveValues;
118    /// This set contains all values that are cannot be changed in any way.
119    LiveFuncSet LiveFunctions;
120
121    typedef SmallVector<RetOrArg, 5> UseVector;
122
123  public:
124    static char ID; // Pass identification, replacement for typeid
125    DAE() : ModulePass(&ID) {}
126    bool runOnModule(Module &M);
127
128    virtual bool ShouldHackArguments() const { return false; }
129
130  private:
131    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
132    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
133                       unsigned RetValNum = 0);
134    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
135
136    void SurveyFunction(Function &F);
137    void MarkValue(const RetOrArg &RA, Liveness L,
138                   const UseVector &MaybeLiveUses);
139    void MarkLive(const RetOrArg &RA);
140    void MarkLive(const Function &F);
141    void PropagateLiveness(const RetOrArg &RA);
142    bool RemoveDeadStuffFromFunction(Function *F);
143    bool DeleteDeadVarargs(Function &Fn);
144  };
145}
146
147
148char DAE::ID = 0;
149static RegisterPass<DAE>
150X("deadargelim", "Dead Argument Elimination");
151
152namespace {
153  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
154  /// deletes arguments to functions which are external.  This is only for use
155  /// by bugpoint.
156  struct DAH : public DAE {
157    static char ID;
158    virtual bool ShouldHackArguments() const { return true; }
159  };
160}
161
162char DAH::ID = 0;
163static RegisterPass<DAH>
164Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
165
166/// createDeadArgEliminationPass - This pass removes arguments from functions
167/// which are not used by the body of the function.
168///
169ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
170ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
171
172/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
173/// llvm.vastart is never called, the varargs list is dead for the function.
174bool DAE::DeleteDeadVarargs(Function &Fn) {
175  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
176  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
177
178  // Ensure that the function is only directly called.
179  if (Fn.hasAddressTaken())
180    return false;
181
182  // Okay, we know we can transform this function if safe.  Scan its body
183  // looking for calls to llvm.vastart.
184  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
185    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
186      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
187        if (II->getIntrinsicID() == Intrinsic::vastart)
188          return false;
189      }
190    }
191  }
192
193  // If we get here, there are no calls to llvm.vastart in the function body,
194  // remove the "..." and adjust all the calls.
195
196  // Start by computing a new prototype for the function, which is the same as
197  // the old function, but doesn't have isVarArg set.
198  const FunctionType *FTy = Fn.getFunctionType();
199
200  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
201  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
202                                                Params, false);
203  unsigned NumArgs = Params.size();
204
205  // Create the new function body and insert it into the module...
206  Function *NF = Function::Create(NFTy, Fn.getLinkage());
207  NF->copyAttributesFrom(&Fn);
208  Fn.getParent()->getFunctionList().insert(&Fn, NF);
209  NF->takeName(&Fn);
210
211  // Loop over all of the callers of the function, transforming the call sites
212  // to pass in a smaller number of arguments into the new function.
213  //
214  std::vector<Value*> Args;
215  while (!Fn.use_empty()) {
216    CallSite CS = CallSite::get(Fn.use_back());
217    Instruction *Call = CS.getInstruction();
218
219    // Pass all the same arguments.
220    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
221
222    // Drop any attributes that were on the vararg arguments.
223    AttrListPtr PAL = CS.getAttributes();
224    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
225      SmallVector<AttributeWithIndex, 8> AttributesVec;
226      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
227        AttributesVec.push_back(PAL.getSlot(i));
228      if (Attributes FnAttrs = PAL.getFnAttributes())
229        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
230      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
231    }
232
233    Instruction *New;
234    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
235      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
236                               Args.begin(), Args.end(), "", Call);
237      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
238      cast<InvokeInst>(New)->setAttributes(PAL);
239    } else {
240      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
241      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
242      cast<CallInst>(New)->setAttributes(PAL);
243      if (cast<CallInst>(Call)->isTailCall())
244        cast<CallInst>(New)->setTailCall();
245    }
246    Args.clear();
247
248    if (!Call->use_empty())
249      Call->replaceAllUsesWith(New);
250
251    New->takeName(Call);
252
253    // Finally, remove the old call from the program, reducing the use-count of
254    // F.
255    Call->eraseFromParent();
256  }
257
258  // Since we have now created the new function, splice the body of the old
259  // function right into the new function, leaving the old rotting hulk of the
260  // function empty.
261  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
262
263  // Loop over the argument list, transfering uses of the old arguments over to
264  // the new arguments, also transfering over the names as well.  While we're at
265  // it, remove the dead arguments from the DeadArguments list.
266  //
267  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
268       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
269    // Move the name and users over to the new version.
270    I->replaceAllUsesWith(I2);
271    I2->takeName(I);
272  }
273
274  // Finally, nuke the old function.
275  Fn.eraseFromParent();
276  return true;
277}
278
279/// Convenience function that returns the number of return values. It returns 0
280/// for void functions and 1 for functions not returning a struct. It returns
281/// the number of struct elements for functions returning a struct.
282static unsigned NumRetVals(const Function *F) {
283  if (F->getReturnType() == Type::getVoidTy(F->getContext()))
284    return 0;
285  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
286    return STy->getNumElements();
287  else
288    return 1;
289}
290
291/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
292/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
293/// liveness of Use.
294DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
295  // We're live if our use or its Function is already marked as live.
296  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
297    return Live;
298
299  // We're maybe live otherwise, but remember that we must become live if
300  // Use becomes live.
301  MaybeLiveUses.push_back(Use);
302  return MaybeLive;
303}
304
305
306/// SurveyUse - This looks at a single use of an argument or return value
307/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
308/// if it causes the used value to become MaybeAlive.
309///
310/// RetValNum is the return value number to use when this use is used in a
311/// return instruction. This is used in the recursion, you should always leave
312/// it at 0.
313DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
314                             unsigned RetValNum) {
315    Value *V = *U;
316    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
317      // The value is returned from a function. It's only live when the
318      // function's return value is live. We use RetValNum here, for the case
319      // that U is really a use of an insertvalue instruction that uses the
320      // orginal Use.
321      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
322      // We might be live, depending on the liveness of Use.
323      return MarkIfNotLive(Use, MaybeLiveUses);
324    }
325    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
326      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
327          && IV->hasIndices())
328        // The use we are examining is inserted into an aggregate. Our liveness
329        // depends on all uses of that aggregate, but if it is used as a return
330        // value, only index at which we were inserted counts.
331        RetValNum = *IV->idx_begin();
332
333      // Note that if we are used as the aggregate operand to the insertvalue,
334      // we don't change RetValNum, but do survey all our uses.
335
336      Liveness Result = MaybeLive;
337      for (Value::use_iterator I = IV->use_begin(),
338           E = V->use_end(); I != E; ++I) {
339        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
340        if (Result == Live)
341          break;
342      }
343      return Result;
344    }
345    CallSite CS = CallSite::get(V);
346    if (CS.getInstruction()) {
347      Function *F = CS.getCalledFunction();
348      if (F) {
349        // Used in a direct call.
350
351        // Find the argument number. We know for sure that this use is an
352        // argument, since if it was the function argument this would be an
353        // indirect call and the we know can't be looking at a value of the
354        // label type (for the invoke instruction).
355        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
356
357        if (ArgNo >= F->getFunctionType()->getNumParams())
358          // The value is passed in through a vararg! Must be live.
359          return Live;
360
361        assert(CS.getArgument(ArgNo)
362               == CS.getInstruction()->getOperand(U.getOperandNo())
363               && "Argument is not where we expected it");
364
365        // Value passed to a normal call. It's only live when the corresponding
366        // argument to the called function turns out live.
367        RetOrArg Use = CreateArg(F, ArgNo);
368        return MarkIfNotLive(Use, MaybeLiveUses);
369      }
370    }
371    // Used in any other way? Value must be live.
372    return Live;
373}
374
375/// SurveyUses - This looks at all the uses of the given value
376/// Returns the Liveness deduced from the uses of this value.
377///
378/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
379/// the result is Live, MaybeLiveUses might be modified but its content should
380/// be ignored (since it might not be complete).
381DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
382  // Assume it's dead (which will only hold if there are no uses at all..).
383  Liveness Result = MaybeLive;
384  // Check each use.
385  for (Value::use_iterator I = V->use_begin(),
386       E = V->use_end(); I != E; ++I) {
387    Result = SurveyUse(I, MaybeLiveUses);
388    if (Result == Live)
389      break;
390  }
391  return Result;
392}
393
394// SurveyFunction - This performs the initial survey of the specified function,
395// checking out whether or not it uses any of its incoming arguments or whether
396// any callers use the return value.  This fills in the LiveValues set and Uses
397// map.
398//
399// We consider arguments of non-internal functions to be intrinsically alive as
400// well as arguments to functions which have their "address taken".
401//
402void DAE::SurveyFunction(Function &F) {
403  unsigned RetCount = NumRetVals(&F);
404  // Assume all return values are dead
405  typedef SmallVector<Liveness, 5> RetVals;
406  RetVals RetValLiveness(RetCount, MaybeLive);
407
408  typedef SmallVector<UseVector, 5> RetUses;
409  // These vectors map each return value to the uses that make it MaybeLive, so
410  // we can add those to the Uses map if the return value really turns out to be
411  // MaybeLive. Initialized to a list of RetCount empty lists.
412  RetUses MaybeLiveRetUses(RetCount);
413
414  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
415    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
416      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
417          != F.getFunctionType()->getReturnType()) {
418        // We don't support old style multiple return values.
419        MarkLive(F);
420        return;
421      }
422
423  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
424    MarkLive(F);
425    return;
426  }
427
428  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
429  // Keep track of the number of live retvals, so we can skip checks once all
430  // of them turn out to be live.
431  unsigned NumLiveRetVals = 0;
432  const Type *STy = dyn_cast<StructType>(F.getReturnType());
433  // Loop all uses of the function.
434  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
435    // If the function is PASSED IN as an argument, its address has been
436    // taken.
437    CallSite CS = CallSite::get(*I);
438    if (!CS.getInstruction() || !CS.isCallee(I)) {
439      MarkLive(F);
440      return;
441    }
442
443    // If this use is anything other than a call site, the function is alive.
444    Instruction *TheCall = CS.getInstruction();
445    if (!TheCall) {   // Not a direct call site?
446      MarkLive(F);
447      return;
448    }
449
450    // If we end up here, we are looking at a direct call to our function.
451
452    // Now, check how our return value(s) is/are used in this caller. Don't
453    // bother checking return values if all of them are live already.
454    if (NumLiveRetVals != RetCount) {
455      if (STy) {
456        // Check all uses of the return value.
457        for (Value::use_iterator I = TheCall->use_begin(),
458             E = TheCall->use_end(); I != E; ++I) {
459          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
460          if (Ext && Ext->hasIndices()) {
461            // This use uses a part of our return value, survey the uses of
462            // that part and store the results for this index only.
463            unsigned Idx = *Ext->idx_begin();
464            if (RetValLiveness[Idx] != Live) {
465              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
466              if (RetValLiveness[Idx] == Live)
467                NumLiveRetVals++;
468            }
469          } else {
470            // Used by something else than extractvalue. Mark all return
471            // values as live.
472            for (unsigned i = 0; i != RetCount; ++i )
473              RetValLiveness[i] = Live;
474            NumLiveRetVals = RetCount;
475            break;
476          }
477        }
478      } else {
479        // Single return value
480        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
481        if (RetValLiveness[0] == Live)
482          NumLiveRetVals = RetCount;
483      }
484    }
485  }
486
487  // Now we've inspected all callers, record the liveness of our return values.
488  for (unsigned i = 0; i != RetCount; ++i)
489    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
490
491  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
492
493  // Now, check all of our arguments.
494  unsigned i = 0;
495  UseVector MaybeLiveArgUses;
496  for (Function::arg_iterator AI = F.arg_begin(),
497       E = F.arg_end(); AI != E; ++AI, ++i) {
498    // See what the effect of this use is (recording any uses that cause
499    // MaybeLive in MaybeLiveArgUses).
500    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
501    // Mark the result.
502    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
503    // Clear the vector again for the next iteration.
504    MaybeLiveArgUses.clear();
505  }
506}
507
508/// MarkValue - This function marks the liveness of RA depending on L. If L is
509/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
510/// such that RA will be marked live if any use in MaybeLiveUses gets marked
511/// live later on.
512void DAE::MarkValue(const RetOrArg &RA, Liveness L,
513                    const UseVector &MaybeLiveUses) {
514  switch (L) {
515    case Live: MarkLive(RA); break;
516    case MaybeLive:
517    {
518      // Note any uses of this value, so this return value can be
519      // marked live whenever one of the uses becomes live.
520      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
521           UE = MaybeLiveUses.end(); UI != UE; ++UI)
522        Uses.insert(std::make_pair(*UI, RA));
523      break;
524    }
525  }
526}
527
528/// MarkLive - Mark the given Function as alive, meaning that it cannot be
529/// changed in any way. Additionally,
530/// mark any values that are used as this function's parameters or by its return
531/// values (according to Uses) live as well.
532void DAE::MarkLive(const Function &F) {
533  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
534    // Mark the function as live.
535    LiveFunctions.insert(&F);
536    // Mark all arguments as live.
537    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
538      PropagateLiveness(CreateArg(&F, i));
539    // Mark all return values as live.
540    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
541      PropagateLiveness(CreateRet(&F, i));
542}
543
544/// MarkLive - Mark the given return value or argument as live. Additionally,
545/// mark any values that are used by this value (according to Uses) live as
546/// well.
547void DAE::MarkLive(const RetOrArg &RA) {
548  if (LiveFunctions.count(RA.F))
549    return; // Function was already marked Live.
550
551  if (!LiveValues.insert(RA).second)
552    return; // We were already marked Live.
553
554  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
555  PropagateLiveness(RA);
556}
557
558/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
559/// to any other values it uses (according to Uses).
560void DAE::PropagateLiveness(const RetOrArg &RA) {
561  // We don't use upper_bound (or equal_range) here, because our recursive call
562  // to ourselves is likely to cause the upper_bound (which is the first value
563  // not belonging to RA) to become erased and the iterator invalidated.
564  UseMap::iterator Begin = Uses.lower_bound(RA);
565  UseMap::iterator E = Uses.end();
566  UseMap::iterator I;
567  for (I = Begin; I != E && I->first == RA; ++I)
568    MarkLive(I->second);
569
570  // Erase RA from the Uses map (from the lower bound to wherever we ended up
571  // after the loop).
572  Uses.erase(Begin, I);
573}
574
575// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
576// that are not in LiveValues. Transform the function and all of the callees of
577// the function to not have these arguments and return values.
578//
579bool DAE::RemoveDeadStuffFromFunction(Function *F) {
580  // Don't modify fully live functions
581  if (LiveFunctions.count(F))
582    return false;
583
584  // Start by computing a new prototype for the function, which is the same as
585  // the old function, but has fewer arguments and a different return type.
586  const FunctionType *FTy = F->getFunctionType();
587  std::vector<const Type*> Params;
588
589  // Set up to build a new list of parameter attributes.
590  SmallVector<AttributeWithIndex, 8> AttributesVec;
591  const AttrListPtr &PAL = F->getAttributes();
592
593  // The existing function return attributes.
594  Attributes RAttrs = PAL.getRetAttributes();
595  Attributes FnAttrs = PAL.getFnAttributes();
596
597  // Find out the new return value.
598
599  const Type *RetTy = FTy->getReturnType();
600  const Type *NRetTy = NULL;
601  unsigned RetCount = NumRetVals(F);
602
603  // -1 means unused, other numbers are the new index
604  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
605  std::vector<const Type*> RetTypes;
606  if (RetTy == Type::getVoidTy(F->getContext())) {
607    NRetTy = Type::getVoidTy(F->getContext());
608  } else {
609    const StructType *STy = dyn_cast<StructType>(RetTy);
610    if (STy)
611      // Look at each of the original return values individually.
612      for (unsigned i = 0; i != RetCount; ++i) {
613        RetOrArg Ret = CreateRet(F, i);
614        if (LiveValues.erase(Ret)) {
615          RetTypes.push_back(STy->getElementType(i));
616          NewRetIdxs[i] = RetTypes.size() - 1;
617        } else {
618          ++NumRetValsEliminated;
619          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
620                << F->getName() << "\n");
621        }
622      }
623    else
624      // We used to return a single value.
625      if (LiveValues.erase(CreateRet(F, 0))) {
626        RetTypes.push_back(RetTy);
627        NewRetIdxs[0] = 0;
628      } else {
629        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
630              << "\n");
631        ++NumRetValsEliminated;
632      }
633    if (RetTypes.size() > 1)
634      // More than one return type? Return a struct with them. Also, if we used
635      // to return a struct and didn't change the number of return values,
636      // return a struct again. This prevents changing {something} into
637      // something and {} into void.
638      // Make the new struct packed if we used to return a packed struct
639      // already.
640      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
641    else if (RetTypes.size() == 1)
642      // One return type? Just a simple value then, but only if we didn't use to
643      // return a struct with that simple value before.
644      NRetTy = RetTypes.front();
645    else if (RetTypes.size() == 0)
646      // No return types? Make it void, but only if we didn't use to return {}.
647      NRetTy = Type::getVoidTy(F->getContext());
648  }
649
650  assert(NRetTy && "No new return type found?");
651
652  // Remove any incompatible attributes, but only if we removed all return
653  // values. Otherwise, ensure that we don't have any conflicting attributes
654  // here. Currently, this should not be possible, but special handling might be
655  // required when new return value attributes are added.
656  if (NRetTy == Type::getVoidTy(F->getContext()))
657    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
658  else
659    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
660           && "Return attributes no longer compatible?");
661
662  if (RAttrs)
663    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
664
665  // Remember which arguments are still alive.
666  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
667  // Construct the new parameter list from non-dead arguments. Also construct
668  // a new set of parameter attributes to correspond. Skip the first parameter
669  // attribute, since that belongs to the return value.
670  unsigned i = 0;
671  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
672       I != E; ++I, ++i) {
673    RetOrArg Arg = CreateArg(F, i);
674    if (LiveValues.erase(Arg)) {
675      Params.push_back(I->getType());
676      ArgAlive[i] = true;
677
678      // Get the original parameter attributes (skipping the first one, that is
679      // for the return value.
680      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
681        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
682    } else {
683      ++NumArgumentsEliminated;
684      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
685            << ") from " << F->getName() << "\n");
686    }
687  }
688
689  if (FnAttrs != Attribute::None)
690    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
691
692  // Reconstruct the AttributesList based on the vector we constructed.
693  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
694
695  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
696  // have zero fixed arguments.
697  //
698  // Note that we apply this hack for a vararg fuction that does not have any
699  // arguments anymore, but did have them before (so don't bother fixing
700  // functions that were already broken wrt CWriter).
701  bool ExtraArgHack = false;
702  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
703    ExtraArgHack = true;
704    Params.push_back(Type::getInt32Ty(F->getContext()));
705  }
706
707  // Create the new function type based on the recomputed parameters.
708  FunctionType *NFTy = FunctionType::get(NRetTy, Params,
709                                                FTy->isVarArg());
710
711  // No change?
712  if (NFTy == FTy)
713    return false;
714
715  // Create the new function body and insert it into the module...
716  Function *NF = Function::Create(NFTy, F->getLinkage());
717  NF->copyAttributesFrom(F);
718  NF->setAttributes(NewPAL);
719  // Insert the new function before the old function, so we won't be processing
720  // it again.
721  F->getParent()->getFunctionList().insert(F, NF);
722  NF->takeName(F);
723
724  // Loop over all of the callers of the function, transforming the call sites
725  // to pass in a smaller number of arguments into the new function.
726  //
727  std::vector<Value*> Args;
728  while (!F->use_empty()) {
729    CallSite CS = CallSite::get(F->use_back());
730    Instruction *Call = CS.getInstruction();
731
732    AttributesVec.clear();
733    const AttrListPtr &CallPAL = CS.getAttributes();
734
735    // The call return attributes.
736    Attributes RAttrs = CallPAL.getRetAttributes();
737    Attributes FnAttrs = CallPAL.getFnAttributes();
738    // Adjust in case the function was changed to return void.
739    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
740    if (RAttrs)
741      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
742
743    // Declare these outside of the loops, so we can reuse them for the second
744    // loop, which loops the varargs.
745    CallSite::arg_iterator I = CS.arg_begin();
746    unsigned i = 0;
747    // Loop over those operands, corresponding to the normal arguments to the
748    // original function, and add those that are still alive.
749    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
750      if (ArgAlive[i]) {
751        Args.push_back(*I);
752        // Get original parameter attributes, but skip return attributes.
753        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
754          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
755      }
756
757    if (ExtraArgHack)
758      Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
759
760    // Push any varargs arguments on the list. Don't forget their attributes.
761    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
762      Args.push_back(*I);
763      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
764        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
765    }
766
767    if (FnAttrs != Attribute::None)
768      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
769
770    // Reconstruct the AttributesList based on the vector we constructed.
771    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
772                                              AttributesVec.end());
773
774    Instruction *New;
775    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
776      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
777                               Args.begin(), Args.end(), "", Call);
778      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
779      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
780    } else {
781      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
782      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
783      cast<CallInst>(New)->setAttributes(NewCallPAL);
784      if (cast<CallInst>(Call)->isTailCall())
785        cast<CallInst>(New)->setTailCall();
786    }
787    Args.clear();
788
789    if (!Call->use_empty()) {
790      if (New->getType() == Call->getType()) {
791        // Return type not changed? Just replace users then.
792        Call->replaceAllUsesWith(New);
793        New->takeName(Call);
794      } else if (New->getType() == Type::getVoidTy(F->getContext())) {
795        // Our return value has uses, but they will get removed later on.
796        // Replace by null for now.
797        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
798      } else {
799        assert(RetTy->isStructTy() &&
800               "Return type changed, but not into a void. The old return type"
801               " must have been a struct!");
802        Instruction *InsertPt = Call;
803        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
804          BasicBlock::iterator IP = II->getNormalDest()->begin();
805          while (isa<PHINode>(IP)) ++IP;
806          InsertPt = IP;
807        }
808
809        // We used to return a struct. Instead of doing smart stuff with all the
810        // uses of this struct, we will just rebuild it using
811        // extract/insertvalue chaining and let instcombine clean that up.
812        //
813        // Start out building up our return value from undef
814        Value *RetVal = UndefValue::get(RetTy);
815        for (unsigned i = 0; i != RetCount; ++i)
816          if (NewRetIdxs[i] != -1) {
817            Value *V;
818            if (RetTypes.size() > 1)
819              // We are still returning a struct, so extract the value from our
820              // return value
821              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
822                                           InsertPt);
823            else
824              // We are now returning a single element, so just insert that
825              V = New;
826            // Insert the value at the old position
827            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
828          }
829        // Now, replace all uses of the old call instruction with the return
830        // struct we built
831        Call->replaceAllUsesWith(RetVal);
832        New->takeName(Call);
833      }
834    }
835
836    // Finally, remove the old call from the program, reducing the use-count of
837    // F.
838    Call->eraseFromParent();
839  }
840
841  // Since we have now created the new function, splice the body of the old
842  // function right into the new function, leaving the old rotting hulk of the
843  // function empty.
844  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
845
846  // Loop over the argument list, transfering uses of the old arguments over to
847  // the new arguments, also transfering over the names as well.
848  i = 0;
849  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
850       I2 = NF->arg_begin(); I != E; ++I, ++i)
851    if (ArgAlive[i]) {
852      // If this is a live argument, move the name and users over to the new
853      // version.
854      I->replaceAllUsesWith(I2);
855      I2->takeName(I);
856      ++I2;
857    } else {
858      // If this argument is dead, replace any uses of it with null constants
859      // (these are guaranteed to become unused later on).
860      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
861    }
862
863  // If we change the return value of the function we must rewrite any return
864  // instructions.  Check this now.
865  if (F->getReturnType() != NF->getReturnType())
866    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
867      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
868        Value *RetVal;
869
870        if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
871          RetVal = 0;
872        } else {
873          assert (RetTy->isStructTy());
874          // The original return value was a struct, insert
875          // extractvalue/insertvalue chains to extract only the values we need
876          // to return and insert them into our new result.
877          // This does generate messy code, but we'll let it to instcombine to
878          // clean that up.
879          Value *OldRet = RI->getOperand(0);
880          // Start out building up our return value from undef
881          RetVal = UndefValue::get(NRetTy);
882          for (unsigned i = 0; i != RetCount; ++i)
883            if (NewRetIdxs[i] != -1) {
884              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
885                                                              "oldret", RI);
886              if (RetTypes.size() > 1) {
887                // We're still returning a struct, so reinsert the value into
888                // our new return value at the new index
889
890                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
891                                                 "newret", RI);
892              } else {
893                // We are now only returning a simple value, so just return the
894                // extracted value.
895                RetVal = EV;
896              }
897            }
898        }
899        // Replace the return instruction with one returning the new return
900        // value (possibly 0 if we became void).
901        ReturnInst::Create(F->getContext(), RetVal, RI);
902        BB->getInstList().erase(RI);
903      }
904
905  // Now that the old function is dead, delete it.
906  F->eraseFromParent();
907
908  return true;
909}
910
911bool DAE::runOnModule(Module &M) {
912  bool Changed = false;
913
914  // First pass: Do a simple check to see if any functions can have their "..."
915  // removed.  We can do this if they never call va_start.  This loop cannot be
916  // fused with the next loop, because deleting a function invalidates
917  // information computed while surveying other functions.
918  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
919  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
920    Function &F = *I++;
921    if (F.getFunctionType()->isVarArg())
922      Changed |= DeleteDeadVarargs(F);
923  }
924
925  // Second phase:loop through the module, determining which arguments are live.
926  // We assume all arguments are dead unless proven otherwise (allowing us to
927  // determine that dead arguments passed into recursive functions are dead).
928  //
929  DEBUG(dbgs() << "DAE - Determining liveness\n");
930  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
931    SurveyFunction(*I);
932
933  // Now, remove all dead arguments and return values from each function in
934  // turn
935  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
936    // Increment now, because the function will probably get removed (ie
937    // replaced by a new one).
938    Function *F = I++;
939    Changed |= RemoveDeadStuffFromFunction(F);
940  }
941  return Changed;
942}
943