DeadArgumentElimination.cpp revision d2b97a330bb36c33e6e6ff55d3d24786069a39dc
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringExtras.h"
37#include <map>
38#include <set>
39using namespace llvm;
40
41STATISTIC(NumArgumentsEliminated , "Number of unread args removed");
42STATISTIC(NumRetValsEliminated   , "Number of unused return values removed");
43STATISTIC(NumParametersEliminated, "Number of parameters replaced with undef");
44
45namespace {
46  /// DAE - The dead argument elimination pass.
47  ///
48  class DAE : public ModulePass {
49  public:
50
51    /// Struct that represents (part of) either a return value or a function
52    /// argument.  Used so that arguments and return values can be used
53    /// interchangably.
54    struct RetOrArg {
55      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
56               IsArg(IsArg) {}
57      const Function *F;
58      unsigned Idx;
59      bool IsArg;
60
61      /// Make RetOrArg comparable, so we can put it into a map.
62      bool operator<(const RetOrArg &O) const {
63        if (F != O.F)
64          return F < O.F;
65        else if (Idx != O.Idx)
66          return Idx < O.Idx;
67        else
68          return IsArg < O.IsArg;
69      }
70
71      /// Make RetOrArg comparable, so we can easily iterate the multimap.
72      bool operator==(const RetOrArg &O) const {
73        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
74      }
75
76      std::string getDescription() const {
77        return std::string((IsArg ? "Argument #" : "Return value #"))
78               + utostr(Idx) + " of function " + F->getNameStr();
79      }
80    };
81
82    /// Liveness enum - During our initial pass over the program, we determine
83    /// that things are either alive or maybe alive. We don't mark anything
84    /// explicitly dead (even if we know they are), since anything not alive
85    /// with no registered uses (in Uses) will never be marked alive and will
86    /// thus become dead in the end.
87    enum Liveness { Live, MaybeLive };
88
89    /// Convenience wrapper
90    RetOrArg CreateRet(const Function *F, unsigned Idx) {
91      return RetOrArg(F, Idx, false);
92    }
93    /// Convenience wrapper
94    RetOrArg CreateArg(const Function *F, unsigned Idx) {
95      return RetOrArg(F, Idx, true);
96    }
97
98    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
99    /// This maps a return value or argument to any MaybeLive return values or
100    /// arguments it uses. This allows the MaybeLive values to be marked live
101    /// when any of its users is marked live.
102    /// For example (indices are left out for clarity):
103    ///  - Uses[ret F] = ret G
104    ///    This means that F calls G, and F returns the value returned by G.
105    ///  - Uses[arg F] = ret G
106    ///    This means that some function calls G and passes its result as an
107    ///    argument to F.
108    ///  - Uses[ret F] = arg F
109    ///    This means that F returns one of its own arguments.
110    ///  - Uses[arg F] = arg G
111    ///    This means that G calls F and passes one of its own (G's) arguments
112    ///    directly to F.
113    UseMap Uses;
114
115    typedef std::set<RetOrArg> LiveSet;
116    typedef std::set<const Function*> LiveFuncSet;
117
118    /// This set contains all values that have been determined to be live.
119    LiveSet LiveValues;
120    /// This set contains all values that are cannot be changed in any way.
121    LiveFuncSet LiveFunctions;
122
123    typedef SmallVector<RetOrArg, 5> UseVector;
124
125  public:
126    static char ID; // Pass identification, replacement for typeid
127    DAE() : ModulePass(&ID) {}
128    bool runOnModule(Module &M);
129
130    virtual bool ShouldHackArguments() const { return false; }
131
132  private:
133    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
134    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
135                       unsigned RetValNum = 0);
136    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
137
138    void SurveyFunction(const Function &F);
139    void MarkValue(const RetOrArg &RA, Liveness L,
140                   const UseVector &MaybeLiveUses);
141    void MarkLive(const RetOrArg &RA);
142    void MarkLive(const Function &F);
143    void PropagateLiveness(const RetOrArg &RA);
144    bool RemoveDeadStuffFromFunction(Function *F);
145    bool RemoveDeadParamsFromCallersOf(Function *F);
146    bool DeleteDeadVarargs(Function &Fn);
147  };
148}
149
150
151char DAE::ID = 0;
152static RegisterPass<DAE>
153X("deadargelim", "Dead Argument Elimination");
154
155namespace {
156  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
157  /// deletes arguments to functions which are external.  This is only for use
158  /// by bugpoint.
159  struct DAH : public DAE {
160    static char ID;
161    virtual bool ShouldHackArguments() const { return true; }
162  };
163}
164
165char DAH::ID = 0;
166static RegisterPass<DAH>
167Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
168
169/// createDeadArgEliminationPass - This pass removes arguments from functions
170/// which are not used by the body of the function.
171///
172ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
173ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
174
175/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
176/// llvm.vastart is never called, the varargs list is dead for the function.
177bool DAE::DeleteDeadVarargs(Function &Fn) {
178  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
179  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
180
181  // Ensure that the function is only directly called.
182  if (Fn.hasAddressTaken())
183    return false;
184
185  // Okay, we know we can transform this function if safe.  Scan its body
186  // looking for calls to llvm.vastart.
187  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
188    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
189      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
190        if (II->getIntrinsicID() == Intrinsic::vastart)
191          return false;
192      }
193    }
194  }
195
196  // If we get here, there are no calls to llvm.vastart in the function body,
197  // remove the "..." and adjust all the calls.
198
199  // Start by computing a new prototype for the function, which is the same as
200  // the old function, but doesn't have isVarArg set.
201  const FunctionType *FTy = Fn.getFunctionType();
202
203  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
204  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
205                                                Params, false);
206  unsigned NumArgs = Params.size();
207
208  // Create the new function body and insert it into the module...
209  Function *NF = Function::Create(NFTy, Fn.getLinkage());
210  NF->copyAttributesFrom(&Fn);
211  Fn.getParent()->getFunctionList().insert(&Fn, NF);
212  NF->takeName(&Fn);
213
214  // Loop over all of the callers of the function, transforming the call sites
215  // to pass in a smaller number of arguments into the new function.
216  //
217  std::vector<Value*> Args;
218  while (!Fn.use_empty()) {
219    CallSite CS = CallSite::get(Fn.use_back());
220    Instruction *Call = CS.getInstruction();
221
222    // Pass all the same arguments.
223    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
224
225    // Drop any attributes that were on the vararg arguments.
226    AttrListPtr PAL = CS.getAttributes();
227    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
228      SmallVector<AttributeWithIndex, 8> AttributesVec;
229      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
230        AttributesVec.push_back(PAL.getSlot(i));
231      if (Attributes FnAttrs = PAL.getFnAttributes())
232        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
233      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
234    }
235
236    Instruction *New;
237    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
238      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
239                               Args.begin(), Args.end(), "", Call);
240      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
241      cast<InvokeInst>(New)->setAttributes(PAL);
242    } else {
243      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
244      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
245      cast<CallInst>(New)->setAttributes(PAL);
246      if (cast<CallInst>(Call)->isTailCall())
247        cast<CallInst>(New)->setTailCall();
248    }
249    Args.clear();
250
251    if (!Call->use_empty())
252      Call->replaceAllUsesWith(New);
253
254    New->takeName(Call);
255
256    // Finally, remove the old call from the program, reducing the use-count of
257    // F.
258    Call->eraseFromParent();
259  }
260
261  // Since we have now created the new function, splice the body of the old
262  // function right into the new function, leaving the old rotting hulk of the
263  // function empty.
264  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
265
266  // Loop over the argument list, transfering uses of the old arguments over to
267  // the new arguments, also transfering over the names as well.  While we're at
268  // it, remove the dead arguments from the DeadArguments list.
269  //
270  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
271       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
272    // Move the name and users over to the new version.
273    I->replaceAllUsesWith(I2);
274    I2->takeName(I);
275  }
276
277  // Finally, nuke the old function.
278  Fn.eraseFromParent();
279  return true;
280}
281
282/// Convenience function that returns the number of return values. It returns 0
283/// for void functions and 1 for functions not returning a struct. It returns
284/// the number of struct elements for functions returning a struct.
285static unsigned NumRetVals(const Function *F) {
286  if (F->getReturnType()->isVoidTy())
287    return 0;
288  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
289    return STy->getNumElements();
290  else
291    return 1;
292}
293
294/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
295/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
296/// liveness of Use.
297DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
298  // We're live if our use or its Function is already marked as live.
299  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
300    return Live;
301
302  // We're maybe live otherwise, but remember that we must become live if
303  // Use becomes live.
304  MaybeLiveUses.push_back(Use);
305  return MaybeLive;
306}
307
308
309/// SurveyUse - This looks at a single use of an argument or return value
310/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
311/// if it causes the used value to become MaybeLive.
312///
313/// RetValNum is the return value number to use when this use is used in a
314/// return instruction. This is used in the recursion, you should always leave
315/// it at 0.
316DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
317                             UseVector &MaybeLiveUses, unsigned RetValNum) {
318    const User *V = *U;
319    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
320      // The value is returned from a function. It's only live when the
321      // function's return value is live. We use RetValNum here, for the case
322      // that U is really a use of an insertvalue instruction that uses the
323      // orginal Use.
324      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
325      // We might be live, depending on the liveness of Use.
326      return MarkIfNotLive(Use, MaybeLiveUses);
327    }
328    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
329      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
330          && IV->hasIndices())
331        // The use we are examining is inserted into an aggregate. Our liveness
332        // depends on all uses of that aggregate, but if it is used as a return
333        // value, only index at which we were inserted counts.
334        RetValNum = *IV->idx_begin();
335
336      // Note that if we are used as the aggregate operand to the insertvalue,
337      // we don't change RetValNum, but do survey all our uses.
338
339      Liveness Result = MaybeLive;
340      for (Value::const_use_iterator I = IV->use_begin(),
341           E = V->use_end(); I != E; ++I) {
342        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
343        if (Result == Live)
344          break;
345      }
346      return Result;
347    }
348
349    if (ImmutableCallSite CS = V) {
350      const Function *F = CS.getCalledFunction();
351      if (F) {
352        // Used in a direct call.
353
354        // Find the argument number. We know for sure that this use is an
355        // argument, since if it was the function argument this would be an
356        // indirect call and the we know can't be looking at a value of the
357        // label type (for the invoke instruction).
358        unsigned ArgNo = CS.getArgumentNo(U);
359
360        if (ArgNo >= F->getFunctionType()->getNumParams())
361          // The value is passed in through a vararg! Must be live.
362          return Live;
363
364        assert(CS.getArgument(ArgNo)
365               == CS->getOperand(U.getOperandNo())
366               && "Argument is not where we expected it");
367
368        // Value passed to a normal call. It's only live when the corresponding
369        // argument to the called function turns out live.
370        RetOrArg Use = CreateArg(F, ArgNo);
371        return MarkIfNotLive(Use, MaybeLiveUses);
372      }
373    }
374    // Used in any other way? Value must be live.
375    return Live;
376}
377
378/// SurveyUses - This looks at all the uses of the given value
379/// Returns the Liveness deduced from the uses of this value.
380///
381/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
382/// the result is Live, MaybeLiveUses might be modified but its content should
383/// be ignored (since it might not be complete).
384DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
385  // Assume it's dead (which will only hold if there are no uses at all..).
386  Liveness Result = MaybeLive;
387  // Check each use.
388  for (Value::const_use_iterator I = V->use_begin(),
389       E = V->use_end(); I != E; ++I) {
390    Result = SurveyUse(I, MaybeLiveUses);
391    if (Result == Live)
392      break;
393  }
394  return Result;
395}
396
397// SurveyFunction - This performs the initial survey of the specified function,
398// checking out whether or not it uses any of its incoming arguments or whether
399// any callers use the return value.  This fills in the LiveValues set and Uses
400// map.
401//
402// We consider arguments of non-internal functions to be intrinsically alive as
403// well as arguments to functions which have their "address taken". Externally
404// visible functions are assumed to only have their return values intrinsically
405// alive, permitting removal of parameters to unused arguments in callers.
406//
407void DAE::SurveyFunction(const Function &F) {
408  unsigned RetCount = NumRetVals(&F);
409  // Assume all return values are dead
410  typedef SmallVector<Liveness, 5> RetVals;
411  RetVals RetValLiveness(RetCount, MaybeLive);
412
413  typedef SmallVector<UseVector, 5> RetUses;
414  // These vectors map each return value to the uses that make it MaybeLive, so
415  // we can add those to the Uses map if the return value really turns out to be
416  // MaybeLive. Initialized to a list of RetCount empty lists.
417  RetUses MaybeLiveRetUses(RetCount);
418
419  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
420    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
421      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
422          != F.getFunctionType()->getReturnType()) {
423        // We don't support old style multiple return values.
424        MarkLive(F);
425        return;
426      }
427
428  if (F.hasExternalLinkage() && !F.isDeclaration()) {
429    DEBUG(dbgs() << "DAE - Intrinsically live return from " << F.getName()
430                 << "\n");
431    // Mark the return values alive.
432    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
433      MarkLive(CreateRet(&F, i));
434  } else if (!F.hasLocalLinkage() &&
435             (!ShouldHackArguments() || F.isIntrinsic())) {
436    MarkLive(F);
437    return;
438  }
439
440  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
441  // Keep track of the number of live retvals, so we can skip checks once all
442  // of them turn out to be live.
443  unsigned NumLiveRetVals = 0;
444  const Type *STy = dyn_cast<StructType>(F.getReturnType());
445  // Loop all uses of the function.
446  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
447       I != E; ++I) {
448    // If the function is PASSED IN as an argument, its address has been
449    // taken.
450    ImmutableCallSite CS(*I);
451    if (!CS || !CS.isCallee(I)) {
452      MarkLive(F);
453      return;
454    }
455
456    // If this use is anything other than a call site, the function is alive.
457    const Instruction *TheCall = CS.getInstruction();
458    if (!TheCall) {   // Not a direct call site?
459      MarkLive(F);
460      return;
461    }
462
463    // If we end up here, we are looking at a direct call to our function.
464
465    // Now, check how our return value(s) is/are used in this caller. Don't
466    // bother checking return values if all of them are live already.
467    if (NumLiveRetVals != RetCount) {
468      if (STy) {
469        // Check all uses of the return value.
470        for (Value::const_use_iterator I = TheCall->use_begin(),
471             E = TheCall->use_end(); I != E; ++I) {
472          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
473          if (Ext && Ext->hasIndices()) {
474            // This use uses a part of our return value, survey the uses of
475            // that part and store the results for this index only.
476            unsigned Idx = *Ext->idx_begin();
477            if (RetValLiveness[Idx] != Live) {
478              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
479              if (RetValLiveness[Idx] == Live)
480                NumLiveRetVals++;
481            }
482          } else {
483            // Used by something else than extractvalue. Mark all return
484            // values as live.
485            for (unsigned i = 0; i != RetCount; ++i )
486              RetValLiveness[i] = Live;
487            NumLiveRetVals = RetCount;
488            break;
489          }
490        }
491      } else {
492        // Single return value
493        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
494        if (RetValLiveness[0] == Live)
495          NumLiveRetVals = RetCount;
496      }
497    }
498  }
499
500  // Now we've inspected all callers, record the liveness of our return values.
501  for (unsigned i = 0; i != RetCount; ++i)
502    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
503
504  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
505
506  // Now, check all of our arguments.
507  unsigned i = 0;
508  UseVector MaybeLiveArgUses;
509  for (Function::const_arg_iterator AI = F.arg_begin(),
510       E = F.arg_end(); AI != E; ++AI, ++i) {
511    // See what the effect of this use is (recording any uses that cause
512    // MaybeLive in MaybeLiveArgUses).
513    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
514    // Mark the result.
515    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
516    // Clear the vector again for the next iteration.
517    MaybeLiveArgUses.clear();
518  }
519}
520
521/// MarkValue - This function marks the liveness of RA depending on L. If L is
522/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
523/// such that RA will be marked live if any use in MaybeLiveUses gets marked
524/// live later on.
525void DAE::MarkValue(const RetOrArg &RA, Liveness L,
526                    const UseVector &MaybeLiveUses) {
527  switch (L) {
528    case Live: MarkLive(RA); break;
529    case MaybeLive:
530    {
531      // Note any uses of this value, so this return value can be
532      // marked live whenever one of the uses becomes live.
533      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
534           UE = MaybeLiveUses.end(); UI != UE; ++UI)
535        Uses.insert(std::make_pair(*UI, RA));
536      break;
537    }
538  }
539}
540
541/// MarkLive - Mark the given Function as alive, meaning that it cannot be
542/// changed in any way. Additionally,
543/// mark any values that are used as this function's parameters or by its return
544/// values (according to Uses) live as well.
545void DAE::MarkLive(const Function &F) {
546  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
547  // Mark the function as live.
548  LiveFunctions.insert(&F);
549  // Mark all arguments as live.
550  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
551    PropagateLiveness(CreateArg(&F, i));
552  // Mark all return values as live.
553  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
554    PropagateLiveness(CreateRet(&F, i));
555}
556
557/// MarkLive - Mark the given return value or argument as live. Additionally,
558/// mark any values that are used by this value (according to Uses) live as
559/// well.
560void DAE::MarkLive(const RetOrArg &RA) {
561  if (LiveFunctions.count(RA.F))
562    return; // Function was already marked Live.
563
564  if (!LiveValues.insert(RA).second)
565    return; // We were already marked Live.
566
567  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
568  PropagateLiveness(RA);
569}
570
571/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
572/// to any other values it uses (according to Uses).
573void DAE::PropagateLiveness(const RetOrArg &RA) {
574  // We don't use upper_bound (or equal_range) here, because our recursive call
575  // to ourselves is likely to cause the upper_bound (which is the first value
576  // not belonging to RA) to become erased and the iterator invalidated.
577  UseMap::iterator Begin = Uses.lower_bound(RA);
578  UseMap::iterator E = Uses.end();
579  UseMap::iterator I;
580  for (I = Begin; I != E && I->first == RA; ++I)
581    MarkLive(I->second);
582
583  // Erase RA from the Uses map (from the lower bound to wherever we ended up
584  // after the loop).
585  Uses.erase(Begin, I);
586}
587
588// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
589// that are not in LiveValues. Transform the function and all of the callees of
590// the function to not have these arguments and return values.
591//
592bool DAE::RemoveDeadStuffFromFunction(Function *F) {
593  // Don't modify fully live functions
594  if (LiveFunctions.count(F))
595    return false;
596
597  // Start by computing a new prototype for the function, which is the same as
598  // the old function, but has fewer arguments and a different return type.
599  const FunctionType *FTy = F->getFunctionType();
600  std::vector<const Type*> Params;
601
602  // Set up to build a new list of parameter attributes.
603  SmallVector<AttributeWithIndex, 8> AttributesVec;
604  const AttrListPtr &PAL = F->getAttributes();
605
606  // The existing function return attributes.
607  Attributes RAttrs = PAL.getRetAttributes();
608  Attributes FnAttrs = PAL.getFnAttributes();
609
610  // Find out the new return value.
611
612  const Type *RetTy = FTy->getReturnType();
613  const Type *NRetTy = NULL;
614  unsigned RetCount = NumRetVals(F);
615
616  // -1 means unused, other numbers are the new index
617  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
618  std::vector<const Type*> RetTypes;
619  if (RetTy->isVoidTy()) {
620    NRetTy = RetTy;
621  } else {
622    const StructType *STy = dyn_cast<StructType>(RetTy);
623    if (STy)
624      // Look at each of the original return values individually.
625      for (unsigned i = 0; i != RetCount; ++i) {
626        RetOrArg Ret = CreateRet(F, i);
627        if (LiveValues.erase(Ret)) {
628          RetTypes.push_back(STy->getElementType(i));
629          NewRetIdxs[i] = RetTypes.size() - 1;
630        } else {
631          ++NumRetValsEliminated;
632          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
633                << F->getName() << "\n");
634        }
635      }
636    else
637      // We used to return a single value.
638      if (LiveValues.erase(CreateRet(F, 0))) {
639        RetTypes.push_back(RetTy);
640        NewRetIdxs[0] = 0;
641      } else {
642        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
643              << "\n");
644        ++NumRetValsEliminated;
645      }
646    if (RetTypes.size() > 1)
647      // More than one return type? Return a struct with them. Also, if we used
648      // to return a struct and didn't change the number of return values,
649      // return a struct again. This prevents changing {something} into
650      // something and {} into void.
651      // Make the new struct packed if we used to return a packed struct
652      // already.
653      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
654    else if (RetTypes.size() == 1)
655      // One return type? Just a simple value then, but only if we didn't use to
656      // return a struct with that simple value before.
657      NRetTy = RetTypes.front();
658    else if (RetTypes.size() == 0)
659      // No return types? Make it void, but only if we didn't use to return {}.
660      NRetTy = Type::getVoidTy(F->getContext());
661  }
662
663  assert(NRetTy && "No new return type found?");
664
665  // Remove any incompatible attributes, but only if we removed all return
666  // values. Otherwise, ensure that we don't have any conflicting attributes
667  // here. Currently, this should not be possible, but special handling might be
668  // required when new return value attributes are added.
669  if (NRetTy->isVoidTy())
670    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
671  else
672    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
673           && "Return attributes no longer compatible?");
674
675  if (RAttrs)
676    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
677
678  // Remember which arguments are still alive.
679  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
680  // Construct the new parameter list from non-dead arguments. Also construct
681  // a new set of parameter attributes to correspond. Skip the first parameter
682  // attribute, since that belongs to the return value.
683  unsigned i = 0;
684  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
685       I != E; ++I, ++i) {
686    RetOrArg Arg = CreateArg(F, i);
687    if (LiveValues.erase(Arg)) {
688      Params.push_back(I->getType());
689      ArgAlive[i] = true;
690
691      // Get the original parameter attributes (skipping the first one, that is
692      // for the return value.
693      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
694        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
695    } else {
696      ++NumArgumentsEliminated;
697      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
698            << ") from " << F->getName() << "\n");
699    }
700  }
701
702  if (FnAttrs != Attribute::None)
703    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
704
705  // Reconstruct the AttributesList based on the vector we constructed.
706  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(),
707                                        AttributesVec.end());
708
709  // Create the new function type based on the recomputed parameters.
710  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
711
712  // No change?
713  if (NFTy == FTy)
714    return false;
715
716  // Create the new function body and insert it into the module...
717  Function *NF = Function::Create(NFTy, F->getLinkage());
718  NF->copyAttributesFrom(F);
719  NF->setAttributes(NewPAL);
720  // Insert the new function before the old function, so we won't be processing
721  // it again.
722  F->getParent()->getFunctionList().insert(F, NF);
723  NF->takeName(F);
724
725  // Loop over all of the callers of the function, transforming the call sites
726  // to pass in a smaller number of arguments into the new function.
727  //
728  std::vector<Value*> Args;
729  while (!F->use_empty()) {
730    CallSite CS = CallSite::get(F->use_back());
731    Instruction *Call = CS.getInstruction();
732
733    AttributesVec.clear();
734    const AttrListPtr &CallPAL = CS.getAttributes();
735
736    // The call return attributes.
737    Attributes RAttrs = CallPAL.getRetAttributes();
738    Attributes FnAttrs = CallPAL.getFnAttributes();
739    // Adjust in case the function was changed to return void.
740    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
741    if (RAttrs)
742      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
743
744    // Declare these outside of the loops, so we can reuse them for the second
745    // loop, which loops the varargs.
746    CallSite::arg_iterator I = CS.arg_begin();
747    unsigned i = 0;
748    // Loop over those operands, corresponding to the normal arguments to the
749    // original function, and add those that are still alive.
750    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
751      if (ArgAlive[i]) {
752        Args.push_back(*I);
753        // Get original parameter attributes, but skip return attributes.
754        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
755          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
756      }
757
758    // Push any varargs arguments on the list. Don't forget their attributes.
759    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
760      Args.push_back(*I);
761      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
762        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
763    }
764
765    if (FnAttrs != Attribute::None)
766      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
767
768    // Reconstruct the AttributesList based on the vector we constructed.
769    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
770                                              AttributesVec.end());
771
772    Instruction *New;
773    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
774      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
775                               Args.begin(), Args.end(), "", Call);
776      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
777      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
778    } else {
779      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
780      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
781      cast<CallInst>(New)->setAttributes(NewCallPAL);
782      if (cast<CallInst>(Call)->isTailCall())
783        cast<CallInst>(New)->setTailCall();
784    }
785    Args.clear();
786
787    if (!Call->use_empty()) {
788      if (New->getType() == Call->getType()) {
789        // Return type not changed? Just replace users then.
790        Call->replaceAllUsesWith(New);
791        New->takeName(Call);
792      } else if (New->getType()->isVoidTy()) {
793        // Our return value has uses, but they will get removed later on.
794        // Replace by null for now.
795        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
796      } else {
797        assert(RetTy->isStructTy() &&
798               "Return type changed, but not into a void. The old return type"
799               " must have been a struct!");
800        Instruction *InsertPt = Call;
801        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
802          BasicBlock::iterator IP = II->getNormalDest()->begin();
803          while (isa<PHINode>(IP)) ++IP;
804          InsertPt = IP;
805        }
806
807        // We used to return a struct. Instead of doing smart stuff with all the
808        // uses of this struct, we will just rebuild it using
809        // extract/insertvalue chaining and let instcombine clean that up.
810        //
811        // Start out building up our return value from undef
812        Value *RetVal = UndefValue::get(RetTy);
813        for (unsigned i = 0; i != RetCount; ++i)
814          if (NewRetIdxs[i] != -1) {
815            Value *V;
816            if (RetTypes.size() > 1)
817              // We are still returning a struct, so extract the value from our
818              // return value
819              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
820                                           InsertPt);
821            else
822              // We are now returning a single element, so just insert that
823              V = New;
824            // Insert the value at the old position
825            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
826          }
827        // Now, replace all uses of the old call instruction with the return
828        // struct we built
829        Call->replaceAllUsesWith(RetVal);
830        New->takeName(Call);
831      }
832    }
833
834    // Finally, remove the old call from the program, reducing the use-count of
835    // F.
836    Call->eraseFromParent();
837  }
838
839  // Since we have now created the new function, splice the body of the old
840  // function right into the new function, leaving the old rotting hulk of the
841  // function empty.
842  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
843
844  // Loop over the argument list, transfering uses of the old arguments over to
845  // the new arguments, also transfering over the names as well.
846  i = 0;
847  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
848       I2 = NF->arg_begin(); I != E; ++I, ++i)
849    if (ArgAlive[i]) {
850      // If this is a live argument, move the name and users over to the new
851      // version.
852      I->replaceAllUsesWith(I2);
853      I2->takeName(I);
854      ++I2;
855    } else {
856      // If this argument is dead, replace any uses of it with null constants
857      // (these are guaranteed to become unused later on).
858      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
859    }
860
861  // If we change the return value of the function we must rewrite any return
862  // instructions.  Check this now.
863  if (F->getReturnType() != NF->getReturnType())
864    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
865      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
866        Value *RetVal;
867
868        if (NFTy->getReturnType()->isVoidTy()) {
869          RetVal = 0;
870        } else {
871          assert (RetTy->isStructTy());
872          // The original return value was a struct, insert
873          // extractvalue/insertvalue chains to extract only the values we need
874          // to return and insert them into our new result.
875          // This does generate messy code, but we'll let it to instcombine to
876          // clean that up.
877          Value *OldRet = RI->getOperand(0);
878          // Start out building up our return value from undef
879          RetVal = UndefValue::get(NRetTy);
880          for (unsigned i = 0; i != RetCount; ++i)
881            if (NewRetIdxs[i] != -1) {
882              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
883                                                              "oldret", RI);
884              if (RetTypes.size() > 1) {
885                // We're still returning a struct, so reinsert the value into
886                // our new return value at the new index
887
888                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
889                                                 "newret", RI);
890              } else {
891                // We are now only returning a simple value, so just return the
892                // extracted value.
893                RetVal = EV;
894              }
895            }
896        }
897        // Replace the return instruction with one returning the new return
898        // value (possibly 0 if we became void).
899        ReturnInst::Create(F->getContext(), RetVal, RI);
900        BB->getInstList().erase(RI);
901      }
902
903  // Now that the old function is dead, delete it.
904  F->eraseFromParent();
905
906  return true;
907}
908
909bool DAE::RemoveDeadParamsFromCallersOf(Function *F) {
910  // Don't modify fully live functions
911  if (LiveFunctions.count(F))
912    return false;
913
914  // Make a list of the dead arguments.
915  SmallVector<int, 10> ArgDead;
916  unsigned i = 0;
917  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
918       I != E; ++I, ++i) {
919    RetOrArg Arg = CreateArg(F, i);
920    if (!LiveValues.count(Arg))
921      ArgDead.push_back(i);
922  }
923  if (ArgDead.empty())
924    return false;
925
926  bool MadeChange = false;
927  for (Function::use_iterator I = F->use_begin(), E = F->use_end();
928       I != E; ++I) {
929    CallSite CS = CallSite::get(*I);
930    if (CS.getInstruction() && CS.isCallee(I)) {
931      for (unsigned i = 0, e = ArgDead.size(); i != e; ++i) {
932        Value *A = CS.getArgument(ArgDead[i]);
933        if (!isa<UndefValue>(A)) {
934          ++NumParametersEliminated;
935          MadeChange = true;
936          CS.setArgument(ArgDead[i], UndefValue::get(A->getType()));
937          RecursivelyDeleteTriviallyDeadInstructions(A);
938        }
939      }
940    }
941  }
942
943  return MadeChange;
944}
945
946bool DAE::runOnModule(Module &M) {
947  bool Changed = false;
948
949  // First pass: Do a simple check to see if any functions can have their "..."
950  // removed.  We can do this if they never call va_start.  This loop cannot be
951  // fused with the next loop, because deleting a function invalidates
952  // information computed while surveying other functions.
953  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
954  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
955    Function &F = *I++;
956    if (F.getFunctionType()->isVarArg())
957      Changed |= DeleteDeadVarargs(F);
958  }
959
960  // Second phase:loop through the module, determining which arguments are live.
961  // We assume all arguments are dead unless proven otherwise (allowing us to
962  // determine that dead arguments passed into recursive functions are dead).
963  //
964  DEBUG(dbgs() << "DAE - Determining liveness\n");
965  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
966    SurveyFunction(*I);
967
968  // Now, remove all dead arguments and return values from each function in
969  // turn.
970  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
971    // Increment now, because the function will probably get removed (ie.
972    // replaced by a new one).
973    Function *F = I++;
974    if (F->hasExternalLinkage() && !F->isDeclaration())
975      Changed |= RemoveDeadParamsFromCallersOf(F);
976    else
977      Changed |= RemoveDeadStuffFromFunction(F);
978  }
979  return Changed;
980}
981