DeadArgumentElimination.cpp revision ddd1a79b6d9dafc7ebafea252266438f2b7c876a
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Module.h"
28#include "llvm/Pass.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Support/Compiler.h"
35#include <map>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
40STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
41
42namespace {
43  /// DAE - The dead argument elimination pass.
44  ///
45  class VISIBILITY_HIDDEN DAE : public ModulePass {
46  public:
47
48    /// Struct that represents (part of) either a return value or a function
49    /// argument.  Used so that arguments and return values can be used
50    /// interchangably. Idx == -1 means the entire return value, while other
51    /// indices mean the corresponding element in the struct return type (if
52    /// any).
53    struct RetOrArg {
54      RetOrArg(const Function* F, signed Idx, bool IsArg) : F(F), Idx(Idx),
55               IsArg(IsArg) {}
56      const Function *F;
57      signed Idx;
58      bool IsArg;
59
60      /// Make RetOrArg comparable, so we can put it into a map.
61      bool operator<(const RetOrArg &O) const {
62        if (F != O.F)
63          return F < O.F;
64        else if (Idx != O.Idx)
65          return Idx < O.Idx;
66        else
67          return IsArg < O.IsArg;
68      }
69
70      /// Make RetOrArg comparable, so we can easily iterate the multimap.
71      bool operator==(const RetOrArg &O) const {
72        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73      }
74
75      std::string getDescription() const {
76        return std::string((!IsArg && Idx != -1 ? "partial " : ""))
77               + (IsArg ? "argument #" : "return value")
78               + (!IsArg && Idx == -1 ? "" : " #" + utostr(Idx))
79               + " of function " + F->getName();
80      }
81    };
82
83    /// Liveness enum - During our initial pass over the program, we determine
84    /// that things are either alive or maybe alive. We don't mark anything
85    /// explicitly dead (even if we know they are), since anything not alive
86    /// with no registered uses (in Uses) will never be marked alive and will
87    /// thus become dead in the end.
88    enum Liveness { Live, MaybeLive };
89
90    /// Convenience wrapper
91    RetOrArg CreateRet(const Function *F, signed Idx) {
92      return RetOrArg(F, Idx, false);
93    }
94    /// Convenience wrapper
95    RetOrArg CreateArg(const Function *F, signed Idx) {
96      return RetOrArg(F, Idx, true);
97    }
98
99    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
100    /// This maps a return value or argument to any MaybeLive return values or
101    /// arguments it uses. This allows the MaybeLive values to be marked live
102    /// when any of its users is marked live.
103    /// For example (indices are left out for clarity):
104    ///  - Uses[ret F] = ret G
105    ///    This means that F calls G, and F returns the value returned by G.
106    ///  - Uses[arg F] = ret G
107    ///    This means that some function calls G and passes its result as an
108    ///    argument to F.
109    ///  - Uses[ret F] = arg F
110    ///    This means that F returns one of its own arguments.
111    ///  - Uses[arg F] = arg G
112    ///    This means that G calls F and passes one of its own (G's) arguments
113    ///    directly to F.
114    UseMap Uses;
115
116    typedef std::set<RetOrArg> LiveSet;
117    typedef std::set<const Function*> LiveFuncSet;
118
119    /// This set contains all values that have been determined to be live.
120    LiveSet LiveValues;
121    /// This set contains all values that are cannot be changed in any way.
122    LiveFuncSet LiveFunctions;
123
124    typedef SmallVector<RetOrArg, 5> UseVector;
125
126  public:
127    static char ID; // Pass identification, replacement for typeid
128    DAE() : ModulePass((intptr_t)&ID) {}
129    bool runOnModule(Module &M);
130
131    virtual bool ShouldHackArguments() const { return false; }
132
133  private:
134    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
135    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
136                       signed RetValNum = -1);
137    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
138
139    void SurveyFunction(Function &F);
140    void MarkValue(const RetOrArg &RA, Liveness L,
141                   const UseVector &MaybeLiveUses);
142    void MarkLive(const RetOrArg &RA);
143    void MarkLive(const Function &F);
144    void PropagateLiveness(const RetOrArg &RA);
145    bool RemoveDeadStuffFromFunction(Function *F);
146    bool DeleteDeadVarargs(Function &Fn);
147  };
148}
149
150
151char DAE::ID = 0;
152static RegisterPass<DAE>
153X("deadargelim", "Dead Argument Elimination");
154
155namespace {
156  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
157  /// deletes arguments to functions which are external.  This is only for use
158  /// by bugpoint.
159  struct DAH : public DAE {
160    static char ID;
161    virtual bool ShouldHackArguments() const { return true; }
162  };
163}
164
165char DAH::ID = 0;
166static RegisterPass<DAH>
167Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
168
169/// createDeadArgEliminationPass - This pass removes arguments from functions
170/// which are not used by the body of the function.
171///
172ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
173ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
174
175/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
176/// llvm.vastart is never called, the varargs list is dead for the function.
177bool DAE::DeleteDeadVarargs(Function &Fn) {
178  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
179  if (Fn.isDeclaration() || !Fn.hasInternalLinkage()) return false;
180
181  // Ensure that the function is only directly called.
182  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ++I) {
183    // If this use is anything other than a call site, give up.
184    CallSite CS = CallSite::get(*I);
185    Instruction *TheCall = CS.getInstruction();
186    if (!TheCall) return false;   // Not a direct call site?
187
188    // The addr of this function is passed to the call.
189    if (I.getOperandNo() != 0) return false;
190  }
191
192  // Okay, we know we can transform this function if safe.  Scan its body
193  // looking for calls to llvm.vastart.
194  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
195    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
196      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
197        if (II->getIntrinsicID() == Intrinsic::vastart)
198          return false;
199      }
200    }
201  }
202
203  // If we get here, there are no calls to llvm.vastart in the function body,
204  // remove the "..." and adjust all the calls.
205
206  // Start by computing a new prototype for the function, which is the same as
207  // the old function, but doesn't have isVarArg set.
208  const FunctionType *FTy = Fn.getFunctionType();
209  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
210  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
211  unsigned NumArgs = Params.size();
212
213  // Create the new function body and insert it into the module...
214  Function *NF = Function::Create(NFTy, Fn.getLinkage());
215  NF->copyAttributesFrom(&Fn);
216  Fn.getParent()->getFunctionList().insert(&Fn, NF);
217  NF->takeName(&Fn);
218
219  // Loop over all of the callers of the function, transforming the call sites
220  // to pass in a smaller number of arguments into the new function.
221  //
222  std::vector<Value*> Args;
223  while (!Fn.use_empty()) {
224    CallSite CS = CallSite::get(Fn.use_back());
225    Instruction *Call = CS.getInstruction();
226
227    // Pass all the same arguments.
228    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
229
230    // Drop any attributes that were on the vararg arguments.
231    PAListPtr PAL = CS.getParamAttrs();
232    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
233      SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
234      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
235        ParamAttrsVec.push_back(PAL.getSlot(i));
236      PAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
237    }
238
239    Instruction *New;
240    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
241      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
242                               Args.begin(), Args.end(), "", Call);
243      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
244      cast<InvokeInst>(New)->setParamAttrs(PAL);
245    } else {
246      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
247      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
248      cast<CallInst>(New)->setParamAttrs(PAL);
249      if (cast<CallInst>(Call)->isTailCall())
250        cast<CallInst>(New)->setTailCall();
251    }
252    Args.clear();
253
254    if (!Call->use_empty())
255      Call->replaceAllUsesWith(New);
256
257    New->takeName(Call);
258
259    // Finally, remove the old call from the program, reducing the use-count of
260    // F.
261    Call->eraseFromParent();
262  }
263
264  // Since we have now created the new function, splice the body of the old
265  // function right into the new function, leaving the old rotting hulk of the
266  // function empty.
267  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
268
269  // Loop over the argument list, transfering uses of the old arguments over to
270  // the new arguments, also transfering over the names as well.  While we're at
271  // it, remove the dead arguments from the DeadArguments list.
272  //
273  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
274       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
275    // Move the name and users over to the new version.
276    I->replaceAllUsesWith(I2);
277    I2->takeName(I);
278  }
279
280  // Finally, nuke the old function.
281  Fn.eraseFromParent();
282  return true;
283}
284
285/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
286/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
287/// liveness of Use.
288DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
289  // We're live if our use or its Function is already marked as live.
290  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
291    return Live;
292
293  // We're maybe live otherwise, but remember that we must become live if
294  // Use becomes live.
295  MaybeLiveUses.push_back(Use);
296  return MaybeLive;
297}
298
299/// SurveyUse - This looks at a single use of an argument or return value
300/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
301/// if it causes the used value to become MaybeAlive.
302///
303/// RetValNum is the return value number to use when this use is used in a
304/// return instruction. This is used in the recursion, you should always leave
305/// it at -1.
306DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
307                             signed RetValNum) {
308    Value *V = *U;
309    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
310      // The value is returned from a function. It's only live when the
311      // function's return value is live. We use RetValNum here, for the case
312      // that U is really a use of an insertvalue instruction that uses the
313      // orginal Use.
314      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
315      // We might be live, depending on the liveness of Use.
316      return MarkIfNotLive(Use, MaybeLiveUses);
317    }
318    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
319      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
320          && IV->hasIndices())
321        // The use we are examining is inserted into an aggregate. Our liveness
322        // depends on all uses of that aggregate, but if it is used as a return
323        // value, only index at which we were inserted counts.
324        RetValNum = *IV->idx_begin();
325
326      // Note that if we are used as the aggregate operand to the insertvalue,
327      // we don't change RetValNum, but do survey all our uses.
328
329      Liveness Result = MaybeLive;
330      for (Value::use_iterator I = IV->use_begin(),
331           E = V->use_end(); I != E; ++I) {
332        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
333        if (Result == Live)
334          break;
335      }
336      return Result;
337    }
338    CallSite CS = CallSite::get(V);
339    if (CS.getInstruction()) {
340      Function *F = CS.getCalledFunction();
341      if (F) {
342        // Used in a direct call.
343
344        // Find the argument number. We know for sure that this use is an
345        // argument, since if it was the function argument this would be an
346        // indirect call and the we know can't be looking at a value of the
347        // label type (for the invoke instruction).
348        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
349
350        if (ArgNo >= F->getFunctionType()->getNumParams())
351          // The value is passed in through a vararg! Must be live.
352          return Live;
353
354        assert(CS.getArgument(ArgNo)
355               == CS.getInstruction()->getOperand(U.getOperandNo())
356               && "Argument is not where we expected it");
357
358        // Value passed to a normal call. It's only live when the corresponding
359        // argument to the called function turns out live.
360        RetOrArg Use = CreateArg(F, ArgNo);
361        return MarkIfNotLive(Use, MaybeLiveUses);
362      }
363    }
364    // Used in any other way? Value must be live.
365    return Live;
366}
367
368/// SurveyUses - This looks at all the uses of the given value
369/// Returns the Liveness deduced from the uses of this value.
370///
371/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
372/// the result is Live, MaybeLiveUses might be modified but its content should
373/// be ignored (since it might not be complete).
374DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
375  // Assume it's dead (which will only hold if there are no uses at all..).
376  Liveness Result = MaybeLive;
377  // Check each use.
378  for (Value::use_iterator I = V->use_begin(),
379       E = V->use_end(); I != E; ++I) {
380    Result = SurveyUse(I, MaybeLiveUses);
381    if (Result == Live)
382      break;
383  }
384  return Result;
385}
386
387// SurveyFunction - This performs the initial survey of the specified function,
388// checking out whether or not it uses any of its incoming arguments or whether
389// any callers use the return value.  This fills in the LiveValues set and Uses
390// map.
391//
392// We consider arguments of non-internal functions to be intrinsically alive as
393// well as arguments to functions which have their "address taken".
394//
395void DAE::SurveyFunction(Function &F) {
396  const StructType *STy = dyn_cast<StructType>(F.getFunctionType()->getReturnType());
397  // Store the number of partial return values, which we only have if the return
398  // type is a struct.
399  unsigned PartialRetVals = (STy ? STy->getNumElements() : 0);
400  // Assume all return values are dead
401  typedef SmallVector<Liveness, 5> RetVals;
402  // Allocate one slot for the entire return value (index 0) and one for each
403  // partial return value.
404  RetVals RetValLiveness(PartialRetVals + 1, MaybeLive);
405
406  typedef SmallVector<UseVector, 5> RetUses;
407  // These vectors map each return value to the uses that make it MaybeLive, so
408  // we can add those to the Uses map if the return value really turns out to be
409  // MaybeLive.
410  // Allocate one slot for the entire return value (index 0) and one for each
411  // partial return value.
412  RetUses MaybeLiveRetUses(PartialRetVals + 1);
413
414  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
415    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
416      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
417          != F.getFunctionType()->getReturnType()) {
418        // We don't support old style multiple return values.
419        MarkLive(F);
420        return;
421      }
422
423  if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
424    MarkLive(F);
425    return;
426  }
427
428  DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
429  // Loop all uses of the function.
430  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
431    // If the function is PASSED IN as an argument, its address has been
432    // taken.
433    if (I.getOperandNo() != 0) {
434      MarkLive(F);
435      return;
436    }
437
438    // If this use is anything other than a call site, the function is alive.
439    CallSite CS = CallSite::get(*I);
440    Instruction *TheCall = CS.getInstruction();
441    if (!TheCall) {   // Not a direct call site?
442      MarkLive(F);
443      return;
444    }
445
446    // If we end up here, we are looking at a direct call to our function.
447
448    // Now, check how our return value(s) is/are used in this caller. Don't
449    // bother checking return values if the entire value is live already.
450    if (RetValLiveness[0] != Live) {
451      // Check all uses of the return value.
452      for (Value::use_iterator I = TheCall->use_begin(),
453           E = TheCall->use_end(); I != E; ++I) {
454        ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
455        if (Ext && Ext->hasIndices()) {
456          // This use uses a part of our return value, survey the uses of
457          // that part and store the results for this index only.
458          unsigned Idx = *Ext->idx_begin();
459          // + 1 to skip the "entire retval" index (0)
460          Liveness &IsLive = RetValLiveness[Idx + 1];
461          if (IsLive != Live) {
462            // Don't bother checking if this retval was already live
463            // Survey all uses of the extractvalue
464            // + 1 to skip the "entire retval" index (0)
465            IsLive = SurveyUses(Ext, MaybeLiveRetUses[Idx + 1]);
466          }
467        } else {
468          // Survey this use
469          RetValLiveness[0] = SurveyUse(I, MaybeLiveRetUses[0]);
470          if (RetValLiveness[0] == Live)
471            break;
472        }
473      }
474    }
475  }
476
477  // Now we've inspected all callers, record the liveness of our return values.
478  MarkValue(CreateRet(&F, -1), RetValLiveness[0], MaybeLiveRetUses[0]);
479  if (RetValLiveness[0] != Live)
480    // If the entire retval (0) is Live, MarkValue will have marked all other retvals live
481    // as well, so we can skip this.
482    for (unsigned i = 0; i != PartialRetVals; ++i)
483      // + 1 to skip the "entire retval" index (0)
484      MarkValue(CreateRet(&F, i), RetValLiveness[i + 1], MaybeLiveRetUses[i + 1]);
485
486  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
487
488  // Now, check all of our arguments.
489  unsigned i = 0;
490  UseVector MaybeLiveArgUses;
491  for (Function::arg_iterator AI = F.arg_begin(),
492       E = F.arg_end(); AI != E; ++AI, ++i) {
493    // See what the effect of this use is (recording any uses that cause
494    // MaybeLive in MaybeLiveArgUses).
495    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
496    // Mark the result.
497    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
498    // Clear the vector again for the next iteration.
499    MaybeLiveArgUses.clear();
500  }
501}
502
503/// MarkValue - This function marks the liveness of RA depending on L. If L is
504/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
505/// such that RA will be marked live if any use in MaybeLiveUses gets marked
506/// live later on.
507void DAE::MarkValue(const RetOrArg &RA, Liveness L,
508                    const UseVector &MaybeLiveUses) {
509  switch (L) {
510    case Live: MarkLive(RA); break;
511    case MaybeLive:
512    {
513      // Note any uses of this value, so this return value can be
514      // marked live whenever one of the uses becomes live.
515      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
516           UE = MaybeLiveUses.end(); UI != UE; ++UI)
517        Uses.insert(std::make_pair(*UI, RA));
518      break;
519    }
520  }
521}
522
523/// MarkLive - Mark the given Function as alive, meaning that it cannot be
524/// changed in any way. Additionally,
525/// mark any values that are used as this function's parameters or by its return
526/// values (according to Uses) live as well.
527void DAE::MarkLive(const Function &F) {
528    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
529    // Mark the function as live.
530    LiveFunctions.insert(&F);
531    // Mark all arguments as live.
532    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
533      PropagateLiveness(CreateArg(&F, i));
534    // Mark all return values as live.
535    const Type *RTy = F.getFunctionType()->getReturnType();
536    if (const StructType *STy = dyn_cast<StructType>(RTy))
537      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
538        PropagateLiveness(CreateRet(&F, i));
539    PropagateLiveness(CreateRet(&F, -1));
540}
541
542/// MarkLive - Mark the given return value or argument as live. Additionally,
543/// mark any values that are used by this value (according to Uses) live as
544/// well.
545void DAE::MarkLive(const RetOrArg &RA) {
546  if (LiveFunctions.count(RA.F))
547    return; // Function was already marked Live.
548
549  if (!LiveValues.insert(RA).second)
550    return; // We were already marked Live.
551
552  DOUT << "DAE - Marking " << RA.getDescription() << " live\n";
553  PropagateLiveness(RA);
554
555  if (!RA.IsArg && RA.Idx == -1) {
556    // Entire return value live?
557    const Type *RTy = RA.F->getFunctionType()->getReturnType();
558    if (const StructType *STy = dyn_cast<StructType>(RTy))
559      // And the function returns a struct?
560      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
561        // Mark all partial return values live as well then
562        MarkLive(CreateRet(RA.F, i));
563  }
564}
565
566/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
567/// to any other values it uses (according to Uses).
568void DAE::PropagateLiveness(const RetOrArg &RA) {
569  // We don't use upper_bound (or equal_range) here, because our recursive call
570  // to ourselves is likely to cause the upper_bound (which is the first value
571  // not belonging to RA) to become erased and the iterator invalidated.
572  UseMap::iterator Begin = Uses.lower_bound(RA);
573  UseMap::iterator E = Uses.end();
574  UseMap::iterator I;
575  for (I = Begin; I != E && I->first == RA; ++I)
576    MarkLive(I->second);
577
578  // Erase RA from the Uses map (from the lower bound to wherever we ended up
579  // after the loop).
580  Uses.erase(Begin, I);
581}
582
583// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
584// that are not in LiveValues. Transform the function and all of the callees of
585// the function to not have these arguments and return values.
586//
587bool DAE::RemoveDeadStuffFromFunction(Function *F) {
588  // Don't modify fully live functions
589  if (LiveFunctions.count(F))
590    return false;
591
592  // Start by computing a new prototype for the function, which is the same as
593  // the old function, but has fewer arguments and a different return type.
594  const FunctionType *FTy = F->getFunctionType();
595  std::vector<const Type*> Params;
596
597  // Set up to build a new list of parameter attributes.
598  SmallVector<ParamAttrsWithIndex, 8> ParamAttrsVec;
599  const PAListPtr &PAL = F->getParamAttrs();
600
601  // The existing function return attributes.
602  ParameterAttributes RAttrs = PAL.getParamAttrs(0);
603
604
605  // Find out the new return value.
606
607  const Type *RetTy = FTy->getReturnType();
608  const StructType *STy = dyn_cast<StructType>(RetTy);
609  const unsigned PartialRetVals = (STy ? STy->getNumElements() : 0);
610  const Type *NRetTy = NULL;
611  // -1 means unused, other numbers are the new index. Initialized to -1 for
612  // every partial return value we have.
613  SmallVector<int, 5> NewRetIdxs(PartialRetVals, -1);
614  std::vector<const Type*> RetTypes;
615  if (LiveValues.count(CreateRet(F, -1))) {
616    // If the entire return value is live, leave it unchanged.
617    NRetTy = RetTy;
618  } else {
619    if (STy) {
620      // Look at each of the partial return values individually.
621      for (unsigned i = 0; i != PartialRetVals; ++i) {
622        RetOrArg Ret = CreateRet(F, i);
623        if (LiveValues.erase(Ret)) {
624          RetTypes.push_back(STy->getElementType(i));
625          NewRetIdxs[i] = RetTypes.size() - 1;
626        } else {
627          ++NumRetValsEliminated;
628          DOUT << "DAE - Removing return value " << i << " from "
629               << F->getNameStart() << "\n";
630          // We remove the value by not adding anything to RetTypes.
631        }
632      }
633    } else if (RetTy != Type::VoidTy) {
634      // We used to return a single value, which is now dead (already checked in
635      // the if above)
636      DOUT << "DAE - Removing return value from " << F->getNameStart()
637           << "\n";
638      ++NumRetValsEliminated;
639      // We remove the value by not adding anything to RetTypes.
640    }
641
642    if (RetTypes.size() > 1)
643      // More than one return type? Return a struct with them.
644      // Make the new struct packed if we used to return a packed struct
645      // already.
646      NRetTy = StructType::get(RetTypes, STy->isPacked());
647    else if (RetTypes.size() == 1)
648      // One return type? Just a simple value then, but only if we didn't use to
649      // return a struct with that simple value before.
650      NRetTy = RetTypes.front();
651    else if (RetTypes.size() == 0)
652      // No return types? Make it void.
653      NRetTy = Type::VoidTy;
654  }
655
656  assert(NRetTy && "No new return type found?");
657
658  // Remove any incompatible attributes, but only if we removed all return
659  // values. Otherwise, ensure that we don't have any conflicting attributes
660  // here. Currently, this should not be possible, but special handling might be
661  // required when new return value attributes are added.
662  if (NRetTy == Type::VoidTy)
663    RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
664  else
665    assert((RAttrs & ParamAttr::typeIncompatible(NRetTy)) == 0
666           && "Return attributes no longer compatible?");
667
668  if (RAttrs)
669    ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
670
671  // Remember which arguments are still alive.
672  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
673  // Construct the new parameter list from non-dead arguments. Also construct
674  // a new set of parameter attributes to correspond. Skip the first parameter
675  // attribute, since that belongs to the return value.
676  unsigned i = 0;
677  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
678       I != E; ++I, ++i) {
679    RetOrArg Arg = CreateArg(F, i);
680    if (LiveValues.erase(Arg)) {
681      Params.push_back(I->getType());
682      ArgAlive[i] = true;
683
684      // Get the original parameter attributes (skipping the first one, that is
685      // for the return value.
686      if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
687        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
688    } else {
689      ++NumArgumentsEliminated;
690      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
691           << ") from " << F->getNameStart() << "\n";
692    }
693  }
694
695  // Reconstruct the ParamAttrsList based on the vector we constructed.
696  PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
697
698  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
699  // have zero fixed arguments.
700  //
701  // Note that we apply this hack for a vararg fuction that does not have any
702  // arguments anymore, but did have them before (so don't bother fixing
703  // functions that were already broken wrt CWriter).
704  bool ExtraArgHack = false;
705  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
706    ExtraArgHack = true;
707    Params.push_back(Type::Int32Ty);
708  }
709
710  // Create the new function type based on the recomputed parameters.
711  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
712
713  // No change?
714  if (NFTy == FTy)
715    return false;
716
717  // Create the new function body and insert it into the module...
718  Function *NF = Function::Create(NFTy, F->getLinkage());
719  NF->copyAttributesFrom(F);
720  NF->setParamAttrs(NewPAL);
721  // Insert the new function before the old function, so we won't be processing
722  // it again.
723  F->getParent()->getFunctionList().insert(F, NF);
724  NF->takeName(F);
725
726  // Loop over all of the callers of the function, transforming the call sites
727  // to pass in a smaller number of arguments into the new function.
728  //
729  std::vector<Value*> Args;
730  while (!F->use_empty()) {
731    CallSite CS = CallSite::get(F->use_back());
732    Instruction *Call = CS.getInstruction();
733
734    ParamAttrsVec.clear();
735    const PAListPtr &CallPAL = CS.getParamAttrs();
736
737    // The call return attributes.
738    ParameterAttributes RAttrs = CallPAL.getParamAttrs(0);
739    // Adjust in case the function was changed to return void.
740    RAttrs &= ~ParamAttr::typeIncompatible(NF->getReturnType());
741    if (RAttrs)
742      ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
743
744    // Declare these outside of the loops, so we can reuse them for the second
745    // loop, which loops the varargs.
746    CallSite::arg_iterator I = CS.arg_begin();
747    unsigned i = 0;
748    // Loop over those operands, corresponding to the normal arguments to the
749    // original function, and add those that are still alive.
750    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
751      if (ArgAlive[i]) {
752        Args.push_back(*I);
753        // Get original parameter attributes, but skip return attributes.
754        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
755          ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
756      }
757
758    if (ExtraArgHack)
759      Args.push_back(UndefValue::get(Type::Int32Ty));
760
761    // Push any varargs arguments on the list. Don't forget their attributes.
762    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
763      Args.push_back(*I);
764      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
765        ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
766    }
767
768    // Reconstruct the ParamAttrsList based on the vector we constructed.
769    PAListPtr NewCallPAL = PAListPtr::get(ParamAttrsVec.begin(),
770                                          ParamAttrsVec.end());
771
772    Instruction *New;
773    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
774      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
775                               Args.begin(), Args.end(), "", Call);
776      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
777      cast<InvokeInst>(New)->setParamAttrs(NewCallPAL);
778    } else {
779      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
780      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
781      cast<CallInst>(New)->setParamAttrs(NewCallPAL);
782      if (cast<CallInst>(Call)->isTailCall())
783        cast<CallInst>(New)->setTailCall();
784    }
785    Args.clear();
786
787    if (!Call->use_empty()) {
788      if (New->getType() == Call->getType()) {
789        // Return type not changed? Just replace users then.
790        Call->replaceAllUsesWith(New);
791        New->takeName(Call);
792      } else if (New->getType() == Type::VoidTy) {
793        // Our return value has uses, but they will get removed later on.
794        // Replace by null for now.
795        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
796      } else {
797        assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
798                                         "void. The old return type must have"
799                                         "been a struct!");
800        // The original return value was a struct, update all uses (which are
801        // all extractvalue instructions, or uses that are unused themselves).
802        for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
803             I != E;) {
804          if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(*I)) {
805            // Increment now, since we're about to throw away this use.
806            ++I;
807            assert(EV->hasIndices() && "Return value used by extractvalue without"
808                                       "indices?");
809            unsigned Idx = *EV->idx_begin();
810            if (NewRetIdxs[Idx] != -1) {
811              if (RetTypes.size() > 1) {
812                // We're still returning a struct, create a new extractvalue
813                // instruction with the first index updated
814                std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
815                NewIdxs[0] = NewRetIdxs[Idx];
816                Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
817                                                      NewIdxs.end(), "retval",
818                                                      EV);
819                EV->replaceAllUsesWith(NEV);
820                EV->eraseFromParent();
821              } else {
822                // We are now only returning a simple value, remove the
823                // extractvalue.
824                EV->replaceAllUsesWith(New);
825                EV->eraseFromParent();
826              }
827            } else {
828              // Value unused, replace uses by null for now, they will get removed
829              // later on.
830              EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
831              EV->eraseFromParent();
832            }
833          } else {
834            // Not an extractvalue, so this use will become dead soon. Just
835            // replace it with null.
836            I.getUse().set(Constant::getNullValue(I.getUse().get()->getType()));
837          }
838        }
839        New->takeName(Call);
840      }
841    }
842
843    // Finally, remove the old call from the program, reducing the use-count of
844    // F.
845    Call->eraseFromParent();
846  }
847
848  // Since we have now created the new function, splice the body of the old
849  // function right into the new function, leaving the old rotting hulk of the
850  // function empty.
851  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
852
853  // Loop over the argument list, transfering uses of the old arguments over to
854  // the new arguments, also transfering over the names as well.
855  i = 0;
856  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
857       I2 = NF->arg_begin(); I != E; ++I, ++i)
858    if (ArgAlive[i]) {
859      // If this is a live argument, move the name and users over to the new
860      // version.
861      I->replaceAllUsesWith(I2);
862      I2->takeName(I);
863      ++I2;
864    } else {
865      // If this argument is dead, replace any uses of it with null constants
866      // (these are guaranteed to become unused later on).
867      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
868    }
869
870  // If we change the return value of the function we must rewrite any return
871  // instructions.  Check this now.
872  if (F->getReturnType() != NF->getReturnType())
873    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
874      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
875        Value *RetVal;
876
877        if (NFTy->getReturnType() == Type::VoidTy) {
878          RetVal = 0;
879        } else {
880          assert (isa<StructType>(RetTy));
881          // The original return value was a struct, insert
882          // extractvalue/insertvalue chains to extract only the values we need
883          // to return and insert them into our new result.
884          // This does generate messy code, but we'll let it to instcombine to
885          // clean that up.
886          Value *OldRet = RI->getOperand(0);
887          // Start out building up our return value from undef
888          RetVal = llvm::UndefValue::get(NRetTy);
889          for (unsigned i = 0; i != PartialRetVals; ++i)
890            if (NewRetIdxs[i] != -1) {
891              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
892                                                              "oldret", RI);
893              if (RetTypes.size() > 1) {
894                // We're still returning a struct, so reinsert the value into
895                // our new return value at the new index
896
897                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
898                                                 "newret", RI);
899              } else {
900                // We are now only returning a simple value, so just return the
901                // extracted value.
902                RetVal = EV;
903              }
904            }
905        }
906        // Replace the return instruction with one returning the new return
907        // value (possibly 0 if we became void).
908        ReturnInst::Create(RetVal, RI);
909        BB->getInstList().erase(RI);
910      }
911
912  // Now that the old function is dead, delete it.
913  F->eraseFromParent();
914
915  return true;
916}
917
918bool DAE::runOnModule(Module &M) {
919  bool Changed = false;
920
921  // First pass: Do a simple check to see if any functions can have their "..."
922  // removed.  We can do this if they never call va_start.  This loop cannot be
923  // fused with the next loop, because deleting a function invalidates
924  // information computed while surveying other functions.
925  DOUT << "DAE - Deleting dead varargs\n";
926  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
927    Function &F = *I++;
928    if (F.getFunctionType()->isVarArg())
929      Changed |= DeleteDeadVarargs(F);
930  }
931
932  // Second phase:loop through the module, determining which arguments are live.
933  // We assume all arguments are dead unless proven otherwise (allowing us to
934  // determine that dead arguments passed into recursive functions are dead).
935  //
936  DOUT << "DAE - Determining liveness\n";
937  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
938    SurveyFunction(*I);
939
940  // Now, remove all dead arguments and return values from each function in
941  // turn
942  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
943    // Increment now, because the function will probably get removed (ie
944    // replaced by a new one).
945    Function *F = I++;
946    Changed |= RemoveDeadStuffFromFunction(F);
947  }
948  return Changed;
949}
950