DeadArgumentElimination.cpp revision fe15ce4a51f0d83bd2a0bb788af70663fc8713aa
1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constant.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Instructions.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/CallSite.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Support/Compiler.h"
37#include <map>
38#include <set>
39using namespace llvm;
40
41STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
42STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
43
44namespace {
45  /// DAE - The dead argument elimination pass.
46  ///
47  class VISIBILITY_HIDDEN DAE : public ModulePass {
48  public:
49
50    /// Struct that represents (part of) either a return value or a function
51    /// argument.  Used so that arguments and return values can be used
52    /// interchangably.
53    struct RetOrArg {
54      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
55               IsArg(IsArg) {}
56      const Function *F;
57      unsigned Idx;
58      bool IsArg;
59
60      /// Make RetOrArg comparable, so we can put it into a map.
61      bool operator<(const RetOrArg &O) const {
62        if (F != O.F)
63          return F < O.F;
64        else if (Idx != O.Idx)
65          return Idx < O.Idx;
66        else
67          return IsArg < O.IsArg;
68      }
69
70      /// Make RetOrArg comparable, so we can easily iterate the multimap.
71      bool operator==(const RetOrArg &O) const {
72        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73      }
74
75      std::string getDescription() const {
76        return std::string((IsArg ? "Argument #" : "Return value #"))
77               + utostr(Idx) + " of function " + F->getNameStr();
78      }
79    };
80
81    /// Liveness enum - During our initial pass over the program, we determine
82    /// that things are either alive or maybe alive. We don't mark anything
83    /// explicitly dead (even if we know they are), since anything not alive
84    /// with no registered uses (in Uses) will never be marked alive and will
85    /// thus become dead in the end.
86    enum Liveness { Live, MaybeLive };
87
88    /// Convenience wrapper
89    RetOrArg CreateRet(const Function *F, unsigned Idx) {
90      return RetOrArg(F, Idx, false);
91    }
92    /// Convenience wrapper
93    RetOrArg CreateArg(const Function *F, unsigned Idx) {
94      return RetOrArg(F, Idx, true);
95    }
96
97    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98    /// This maps a return value or argument to any MaybeLive return values or
99    /// arguments it uses. This allows the MaybeLive values to be marked live
100    /// when any of its users is marked live.
101    /// For example (indices are left out for clarity):
102    ///  - Uses[ret F] = ret G
103    ///    This means that F calls G, and F returns the value returned by G.
104    ///  - Uses[arg F] = ret G
105    ///    This means that some function calls G and passes its result as an
106    ///    argument to F.
107    ///  - Uses[ret F] = arg F
108    ///    This means that F returns one of its own arguments.
109    ///  - Uses[arg F] = arg G
110    ///    This means that G calls F and passes one of its own (G's) arguments
111    ///    directly to F.
112    UseMap Uses;
113
114    typedef std::set<RetOrArg> LiveSet;
115    typedef std::set<const Function*> LiveFuncSet;
116
117    /// This set contains all values that have been determined to be live.
118    LiveSet LiveValues;
119    /// This set contains all values that are cannot be changed in any way.
120    LiveFuncSet LiveFunctions;
121
122    typedef SmallVector<RetOrArg, 5> UseVector;
123
124  public:
125    static char ID; // Pass identification, replacement for typeid
126    DAE() : ModulePass(&ID) {}
127    bool runOnModule(Module &M);
128
129    virtual bool ShouldHackArguments() const { return false; }
130
131  private:
132    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
133    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
134                       unsigned RetValNum = 0);
135    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
136
137    void SurveyFunction(Function &F);
138    void MarkValue(const RetOrArg &RA, Liveness L,
139                   const UseVector &MaybeLiveUses);
140    void MarkLive(const RetOrArg &RA);
141    void MarkLive(const Function &F);
142    void PropagateLiveness(const RetOrArg &RA);
143    bool RemoveDeadStuffFromFunction(Function *F);
144    bool DeleteDeadVarargs(Function &Fn);
145  };
146}
147
148
149char DAE::ID = 0;
150static RegisterPass<DAE>
151X("deadargelim", "Dead Argument Elimination");
152
153namespace {
154  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
155  /// deletes arguments to functions which are external.  This is only for use
156  /// by bugpoint.
157  struct DAH : public DAE {
158    static char ID;
159    virtual bool ShouldHackArguments() const { return true; }
160  };
161}
162
163char DAH::ID = 0;
164static RegisterPass<DAH>
165Y("deadarghaX0r", "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)");
166
167/// createDeadArgEliminationPass - This pass removes arguments from functions
168/// which are not used by the body of the function.
169///
170ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
171ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
172
173/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
174/// llvm.vastart is never called, the varargs list is dead for the function.
175bool DAE::DeleteDeadVarargs(Function &Fn) {
176  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
177  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
178
179  // Ensure that the function is only directly called.
180  if (Fn.hasAddressTaken())
181    return false;
182
183  // Okay, we know we can transform this function if safe.  Scan its body
184  // looking for calls to llvm.vastart.
185  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
186    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
187      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
188        if (II->getIntrinsicID() == Intrinsic::vastart)
189          return false;
190      }
191    }
192  }
193
194  // If we get here, there are no calls to llvm.vastart in the function body,
195  // remove the "..." and adjust all the calls.
196
197  // Start by computing a new prototype for the function, which is the same as
198  // the old function, but doesn't have isVarArg set.
199  const FunctionType *FTy = Fn.getFunctionType();
200
201  std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
202  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
203                                                Params, false);
204  unsigned NumArgs = Params.size();
205
206  // Create the new function body and insert it into the module...
207  Function *NF = Function::Create(NFTy, Fn.getLinkage());
208  NF->copyAttributesFrom(&Fn);
209  Fn.getParent()->getFunctionList().insert(&Fn, NF);
210  NF->takeName(&Fn);
211
212  // Loop over all of the callers of the function, transforming the call sites
213  // to pass in a smaller number of arguments into the new function.
214  //
215  std::vector<Value*> Args;
216  while (!Fn.use_empty()) {
217    CallSite CS = CallSite::get(Fn.use_back());
218    Instruction *Call = CS.getInstruction();
219
220    // Pass all the same arguments.
221    Args.assign(CS.arg_begin(), CS.arg_begin()+NumArgs);
222
223    // Drop any attributes that were on the vararg arguments.
224    AttrListPtr PAL = CS.getAttributes();
225    if (!PAL.isEmpty() && PAL.getSlot(PAL.getNumSlots() - 1).Index > NumArgs) {
226      SmallVector<AttributeWithIndex, 8> AttributesVec;
227      for (unsigned i = 0; PAL.getSlot(i).Index <= NumArgs; ++i)
228        AttributesVec.push_back(PAL.getSlot(i));
229      if (Attributes FnAttrs = PAL.getFnAttributes())
230        AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
231      PAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
232    }
233
234    Instruction *New;
235    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
236      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
237                               Args.begin(), Args.end(), "", Call);
238      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
239      cast<InvokeInst>(New)->setAttributes(PAL);
240    } else {
241      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
242      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
243      cast<CallInst>(New)->setAttributes(PAL);
244      if (cast<CallInst>(Call)->isTailCall())
245        cast<CallInst>(New)->setTailCall();
246    }
247    Args.clear();
248
249    if (!Call->use_empty())
250      Call->replaceAllUsesWith(New);
251
252    New->takeName(Call);
253
254    // Finally, remove the old call from the program, reducing the use-count of
255    // F.
256    Call->eraseFromParent();
257  }
258
259  // Since we have now created the new function, splice the body of the old
260  // function right into the new function, leaving the old rotting hulk of the
261  // function empty.
262  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
263
264  // Loop over the argument list, transfering uses of the old arguments over to
265  // the new arguments, also transfering over the names as well.  While we're at
266  // it, remove the dead arguments from the DeadArguments list.
267  //
268  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
269       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
270    // Move the name and users over to the new version.
271    I->replaceAllUsesWith(I2);
272    I2->takeName(I);
273  }
274
275  // Finally, nuke the old function.
276  Fn.eraseFromParent();
277  return true;
278}
279
280/// Convenience function that returns the number of return values. It returns 0
281/// for void functions and 1 for functions not returning a struct. It returns
282/// the number of struct elements for functions returning a struct.
283static unsigned NumRetVals(const Function *F) {
284  if (F->getReturnType() == Type::getVoidTy(F->getContext()))
285    return 0;
286  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
287    return STy->getNumElements();
288  else
289    return 1;
290}
291
292/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
293/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
294/// liveness of Use.
295DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
296  // We're live if our use or its Function is already marked as live.
297  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
298    return Live;
299
300  // We're maybe live otherwise, but remember that we must become live if
301  // Use becomes live.
302  MaybeLiveUses.push_back(Use);
303  return MaybeLive;
304}
305
306
307/// SurveyUse - This looks at a single use of an argument or return value
308/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
309/// if it causes the used value to become MaybeAlive.
310///
311/// RetValNum is the return value number to use when this use is used in a
312/// return instruction. This is used in the recursion, you should always leave
313/// it at 0.
314DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
315                             unsigned RetValNum) {
316    Value *V = *U;
317    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
318      // The value is returned from a function. It's only live when the
319      // function's return value is live. We use RetValNum here, for the case
320      // that U is really a use of an insertvalue instruction that uses the
321      // orginal Use.
322      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
323      // We might be live, depending on the liveness of Use.
324      return MarkIfNotLive(Use, MaybeLiveUses);
325    }
326    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
327      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
328          && IV->hasIndices())
329        // The use we are examining is inserted into an aggregate. Our liveness
330        // depends on all uses of that aggregate, but if it is used as a return
331        // value, only index at which we were inserted counts.
332        RetValNum = *IV->idx_begin();
333
334      // Note that if we are used as the aggregate operand to the insertvalue,
335      // we don't change RetValNum, but do survey all our uses.
336
337      Liveness Result = MaybeLive;
338      for (Value::use_iterator I = IV->use_begin(),
339           E = V->use_end(); I != E; ++I) {
340        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
341        if (Result == Live)
342          break;
343      }
344      return Result;
345    }
346    CallSite CS = CallSite::get(V);
347    if (CS.getInstruction()) {
348      Function *F = CS.getCalledFunction();
349      if (F) {
350        // Used in a direct call.
351
352        // Find the argument number. We know for sure that this use is an
353        // argument, since if it was the function argument this would be an
354        // indirect call and the we know can't be looking at a value of the
355        // label type (for the invoke instruction).
356        unsigned ArgNo = CS.getArgumentNo(U);
357
358        if (ArgNo >= F->getFunctionType()->getNumParams())
359          // The value is passed in through a vararg! Must be live.
360          return Live;
361
362        assert(CS.getArgument(ArgNo)
363               == CS.getInstruction()->getOperand(U.getOperandNo())
364               && "Argument is not where we expected it");
365
366        // Value passed to a normal call. It's only live when the corresponding
367        // argument to the called function turns out live.
368        RetOrArg Use = CreateArg(F, ArgNo);
369        return MarkIfNotLive(Use, MaybeLiveUses);
370      }
371    }
372    // Used in any other way? Value must be live.
373    return Live;
374}
375
376/// SurveyUses - This looks at all the uses of the given value
377/// Returns the Liveness deduced from the uses of this value.
378///
379/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
380/// the result is Live, MaybeLiveUses might be modified but its content should
381/// be ignored (since it might not be complete).
382DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
383  // Assume it's dead (which will only hold if there are no uses at all..).
384  Liveness Result = MaybeLive;
385  // Check each use.
386  for (Value::use_iterator I = V->use_begin(),
387       E = V->use_end(); I != E; ++I) {
388    Result = SurveyUse(I, MaybeLiveUses);
389    if (Result == Live)
390      break;
391  }
392  return Result;
393}
394
395// SurveyFunction - This performs the initial survey of the specified function,
396// checking out whether or not it uses any of its incoming arguments or whether
397// any callers use the return value.  This fills in the LiveValues set and Uses
398// map.
399//
400// We consider arguments of non-internal functions to be intrinsically alive as
401// well as arguments to functions which have their "address taken".
402//
403void DAE::SurveyFunction(Function &F) {
404  unsigned RetCount = NumRetVals(&F);
405  // Assume all return values are dead
406  typedef SmallVector<Liveness, 5> RetVals;
407  RetVals RetValLiveness(RetCount, MaybeLive);
408
409  typedef SmallVector<UseVector, 5> RetUses;
410  // These vectors map each return value to the uses that make it MaybeLive, so
411  // we can add those to the Uses map if the return value really turns out to be
412  // MaybeLive. Initialized to a list of RetCount empty lists.
413  RetUses MaybeLiveRetUses(RetCount);
414
415  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
416    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
417      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
418          != F.getFunctionType()->getReturnType()) {
419        // We don't support old style multiple return values.
420        MarkLive(F);
421        return;
422      }
423
424  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
425    MarkLive(F);
426    return;
427  }
428
429  DEBUG(errs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
430  // Keep track of the number of live retvals, so we can skip checks once all
431  // of them turn out to be live.
432  unsigned NumLiveRetVals = 0;
433  const Type *STy = dyn_cast<StructType>(F.getReturnType());
434  // Loop all uses of the function.
435  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
436    // If the function is PASSED IN as an argument, its address has been
437    // taken.
438    CallSite CS = CallSite::get(*I);
439    if (!CS.getInstruction() || !CS.isCallee(I)) {
440      MarkLive(F);
441      return;
442    }
443
444    // If this use is anything other than a call site, the function is alive.
445    Instruction *TheCall = CS.getInstruction();
446    if (!TheCall) {   // Not a direct call site?
447      MarkLive(F);
448      return;
449    }
450
451    // If we end up here, we are looking at a direct call to our function.
452
453    // Now, check how our return value(s) is/are used in this caller. Don't
454    // bother checking return values if all of them are live already.
455    if (NumLiveRetVals != RetCount) {
456      if (STy) {
457        // Check all uses of the return value.
458        for (Value::use_iterator I = TheCall->use_begin(),
459             E = TheCall->use_end(); I != E; ++I) {
460          ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
461          if (Ext && Ext->hasIndices()) {
462            // This use uses a part of our return value, survey the uses of
463            // that part and store the results for this index only.
464            unsigned Idx = *Ext->idx_begin();
465            if (RetValLiveness[Idx] != Live) {
466              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
467              if (RetValLiveness[Idx] == Live)
468                NumLiveRetVals++;
469            }
470          } else {
471            // Used by something else than extractvalue. Mark all return
472            // values as live.
473            for (unsigned i = 0; i != RetCount; ++i )
474              RetValLiveness[i] = Live;
475            NumLiveRetVals = RetCount;
476            break;
477          }
478        }
479      } else {
480        // Single return value
481        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
482        if (RetValLiveness[0] == Live)
483          NumLiveRetVals = RetCount;
484      }
485    }
486  }
487
488  // Now we've inspected all callers, record the liveness of our return values.
489  for (unsigned i = 0; i != RetCount; ++i)
490    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
491
492  DEBUG(errs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
493
494  // Now, check all of our arguments.
495  unsigned i = 0;
496  UseVector MaybeLiveArgUses;
497  for (Function::arg_iterator AI = F.arg_begin(),
498       E = F.arg_end(); AI != E; ++AI, ++i) {
499    // See what the effect of this use is (recording any uses that cause
500    // MaybeLive in MaybeLiveArgUses).
501    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
502    // Mark the result.
503    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
504    // Clear the vector again for the next iteration.
505    MaybeLiveArgUses.clear();
506  }
507}
508
509/// MarkValue - This function marks the liveness of RA depending on L. If L is
510/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
511/// such that RA will be marked live if any use in MaybeLiveUses gets marked
512/// live later on.
513void DAE::MarkValue(const RetOrArg &RA, Liveness L,
514                    const UseVector &MaybeLiveUses) {
515  switch (L) {
516    case Live: MarkLive(RA); break;
517    case MaybeLive:
518    {
519      // Note any uses of this value, so this return value can be
520      // marked live whenever one of the uses becomes live.
521      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
522           UE = MaybeLiveUses.end(); UI != UE; ++UI)
523        Uses.insert(std::make_pair(*UI, RA));
524      break;
525    }
526  }
527}
528
529/// MarkLive - Mark the given Function as alive, meaning that it cannot be
530/// changed in any way. Additionally,
531/// mark any values that are used as this function's parameters or by its return
532/// values (according to Uses) live as well.
533void DAE::MarkLive(const Function &F) {
534  DEBUG(errs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
535    // Mark the function as live.
536    LiveFunctions.insert(&F);
537    // Mark all arguments as live.
538    for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
539      PropagateLiveness(CreateArg(&F, i));
540    // Mark all return values as live.
541    for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
542      PropagateLiveness(CreateRet(&F, i));
543}
544
545/// MarkLive - Mark the given return value or argument as live. Additionally,
546/// mark any values that are used by this value (according to Uses) live as
547/// well.
548void DAE::MarkLive(const RetOrArg &RA) {
549  if (LiveFunctions.count(RA.F))
550    return; // Function was already marked Live.
551
552  if (!LiveValues.insert(RA).second)
553    return; // We were already marked Live.
554
555  DEBUG(errs() << "DAE - Marking " << RA.getDescription() << " live\n");
556  PropagateLiveness(RA);
557}
558
559/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
560/// to any other values it uses (according to Uses).
561void DAE::PropagateLiveness(const RetOrArg &RA) {
562  // We don't use upper_bound (or equal_range) here, because our recursive call
563  // to ourselves is likely to cause the upper_bound (which is the first value
564  // not belonging to RA) to become erased and the iterator invalidated.
565  UseMap::iterator Begin = Uses.lower_bound(RA);
566  UseMap::iterator E = Uses.end();
567  UseMap::iterator I;
568  for (I = Begin; I != E && I->first == RA; ++I)
569    MarkLive(I->second);
570
571  // Erase RA from the Uses map (from the lower bound to wherever we ended up
572  // after the loop).
573  Uses.erase(Begin, I);
574}
575
576// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
577// that are not in LiveValues. Transform the function and all of the callees of
578// the function to not have these arguments and return values.
579//
580bool DAE::RemoveDeadStuffFromFunction(Function *F) {
581  // Don't modify fully live functions
582  if (LiveFunctions.count(F))
583    return false;
584
585  // Start by computing a new prototype for the function, which is the same as
586  // the old function, but has fewer arguments and a different return type.
587  const FunctionType *FTy = F->getFunctionType();
588  std::vector<const Type*> Params;
589
590  // Set up to build a new list of parameter attributes.
591  SmallVector<AttributeWithIndex, 8> AttributesVec;
592  const AttrListPtr &PAL = F->getAttributes();
593
594  // The existing function return attributes.
595  Attributes RAttrs = PAL.getRetAttributes();
596  Attributes FnAttrs = PAL.getFnAttributes();
597
598  // Find out the new return value.
599
600  const Type *RetTy = FTy->getReturnType();
601  const Type *NRetTy = NULL;
602  unsigned RetCount = NumRetVals(F);
603
604  // -1 means unused, other numbers are the new index
605  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
606  std::vector<const Type*> RetTypes;
607  if (RetTy == Type::getVoidTy(F->getContext())) {
608    NRetTy = Type::getVoidTy(F->getContext());
609  } else {
610    const StructType *STy = dyn_cast<StructType>(RetTy);
611    if (STy)
612      // Look at each of the original return values individually.
613      for (unsigned i = 0; i != RetCount; ++i) {
614        RetOrArg Ret = CreateRet(F, i);
615        if (LiveValues.erase(Ret)) {
616          RetTypes.push_back(STy->getElementType(i));
617          NewRetIdxs[i] = RetTypes.size() - 1;
618        } else {
619          ++NumRetValsEliminated;
620          DEBUG(errs() << "DAE - Removing return value " << i << " from "
621                << F->getName() << "\n");
622        }
623      }
624    else
625      // We used to return a single value.
626      if (LiveValues.erase(CreateRet(F, 0))) {
627        RetTypes.push_back(RetTy);
628        NewRetIdxs[0] = 0;
629      } else {
630        DEBUG(errs() << "DAE - Removing return value from " << F->getName()
631              << "\n");
632        ++NumRetValsEliminated;
633      }
634    if (RetTypes.size() > 1)
635      // More than one return type? Return a struct with them. Also, if we used
636      // to return a struct and didn't change the number of return values,
637      // return a struct again. This prevents changing {something} into
638      // something and {} into void.
639      // Make the new struct packed if we used to return a packed struct
640      // already.
641      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
642    else if (RetTypes.size() == 1)
643      // One return type? Just a simple value then, but only if we didn't use to
644      // return a struct with that simple value before.
645      NRetTy = RetTypes.front();
646    else if (RetTypes.size() == 0)
647      // No return types? Make it void, but only if we didn't use to return {}.
648      NRetTy = Type::getVoidTy(F->getContext());
649  }
650
651  assert(NRetTy && "No new return type found?");
652
653  // Remove any incompatible attributes, but only if we removed all return
654  // values. Otherwise, ensure that we don't have any conflicting attributes
655  // here. Currently, this should not be possible, but special handling might be
656  // required when new return value attributes are added.
657  if (NRetTy == Type::getVoidTy(F->getContext()))
658    RAttrs &= ~Attribute::typeIncompatible(NRetTy);
659  else
660    assert((RAttrs & Attribute::typeIncompatible(NRetTy)) == 0
661           && "Return attributes no longer compatible?");
662
663  if (RAttrs)
664    AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
665
666  // Remember which arguments are still alive.
667  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
668  // Construct the new parameter list from non-dead arguments. Also construct
669  // a new set of parameter attributes to correspond. Skip the first parameter
670  // attribute, since that belongs to the return value.
671  unsigned i = 0;
672  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
673       I != E; ++I, ++i) {
674    RetOrArg Arg = CreateArg(F, i);
675    if (LiveValues.erase(Arg)) {
676      Params.push_back(I->getType());
677      ArgAlive[i] = true;
678
679      // Get the original parameter attributes (skipping the first one, that is
680      // for the return value.
681      if (Attributes Attrs = PAL.getParamAttributes(i + 1))
682        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), Attrs));
683    } else {
684      ++NumArgumentsEliminated;
685      DEBUG(errs() << "DAE - Removing argument " << i << " (" << I->getName()
686            << ") from " << F->getName() << "\n");
687    }
688  }
689
690  if (FnAttrs != Attribute::None)
691    AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
692
693  // Reconstruct the AttributesList based on the vector we constructed.
694  AttrListPtr NewPAL = AttrListPtr::get(AttributesVec.begin(), AttributesVec.end());
695
696  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
697  // have zero fixed arguments.
698  //
699  // Note that we apply this hack for a vararg fuction that does not have any
700  // arguments anymore, but did have them before (so don't bother fixing
701  // functions that were already broken wrt CWriter).
702  bool ExtraArgHack = false;
703  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
704    ExtraArgHack = true;
705    Params.push_back(Type::getInt32Ty(F->getContext()));
706  }
707
708  // Create the new function type based on the recomputed parameters.
709  FunctionType *NFTy = FunctionType::get(NRetTy, Params,
710                                                FTy->isVarArg());
711
712  // No change?
713  if (NFTy == FTy)
714    return false;
715
716  // Create the new function body and insert it into the module...
717  Function *NF = Function::Create(NFTy, F->getLinkage());
718  NF->copyAttributesFrom(F);
719  NF->setAttributes(NewPAL);
720  // Insert the new function before the old function, so we won't be processing
721  // it again.
722  F->getParent()->getFunctionList().insert(F, NF);
723  NF->takeName(F);
724
725  // Loop over all of the callers of the function, transforming the call sites
726  // to pass in a smaller number of arguments into the new function.
727  //
728  std::vector<Value*> Args;
729  while (!F->use_empty()) {
730    CallSite CS = CallSite::get(F->use_back());
731    Instruction *Call = CS.getInstruction();
732
733    AttributesVec.clear();
734    const AttrListPtr &CallPAL = CS.getAttributes();
735
736    // The call return attributes.
737    Attributes RAttrs = CallPAL.getRetAttributes();
738    Attributes FnAttrs = CallPAL.getFnAttributes();
739    // Adjust in case the function was changed to return void.
740    RAttrs &= ~Attribute::typeIncompatible(NF->getReturnType());
741    if (RAttrs)
742      AttributesVec.push_back(AttributeWithIndex::get(0, RAttrs));
743
744    // Declare these outside of the loops, so we can reuse them for the second
745    // loop, which loops the varargs.
746    CallSite::arg_iterator I = CS.arg_begin();
747    unsigned i = 0;
748    // Loop over those operands, corresponding to the normal arguments to the
749    // original function, and add those that are still alive.
750    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
751      if (ArgAlive[i]) {
752        Args.push_back(*I);
753        // Get original parameter attributes, but skip return attributes.
754        if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
755          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
756      }
757
758    if (ExtraArgHack)
759      Args.push_back(UndefValue::get(Type::getInt32Ty(F->getContext())));
760
761    // Push any varargs arguments on the list. Don't forget their attributes.
762    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
763      Args.push_back(*I);
764      if (Attributes Attrs = CallPAL.getParamAttributes(i + 1))
765        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
766    }
767
768    if (FnAttrs != Attribute::None)
769      AttributesVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
770
771    // Reconstruct the AttributesList based on the vector we constructed.
772    AttrListPtr NewCallPAL = AttrListPtr::get(AttributesVec.begin(),
773                                              AttributesVec.end());
774
775    Instruction *New;
776    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
777      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
778                               Args.begin(), Args.end(), "", Call);
779      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
780      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
781    } else {
782      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
783      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
784      cast<CallInst>(New)->setAttributes(NewCallPAL);
785      if (cast<CallInst>(Call)->isTailCall())
786        cast<CallInst>(New)->setTailCall();
787    }
788    Args.clear();
789
790    if (!Call->use_empty()) {
791      if (New->getType() == Call->getType()) {
792        // Return type not changed? Just replace users then.
793        Call->replaceAllUsesWith(New);
794        New->takeName(Call);
795      } else if (New->getType() == Type::getVoidTy(F->getContext())) {
796        // Our return value has uses, but they will get removed later on.
797        // Replace by null for now.
798        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
799      } else {
800        assert(isa<StructType>(RetTy) &&
801               "Return type changed, but not into a void. The old return type"
802               " must have been a struct!");
803        Instruction *InsertPt = Call;
804        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
805          BasicBlock::iterator IP = II->getNormalDest()->begin();
806          while (isa<PHINode>(IP)) ++IP;
807          InsertPt = IP;
808        }
809
810        // We used to return a struct. Instead of doing smart stuff with all the
811        // uses of this struct, we will just rebuild it using
812        // extract/insertvalue chaining and let instcombine clean that up.
813        //
814        // Start out building up our return value from undef
815        Value *RetVal = UndefValue::get(RetTy);
816        for (unsigned i = 0; i != RetCount; ++i)
817          if (NewRetIdxs[i] != -1) {
818            Value *V;
819            if (RetTypes.size() > 1)
820              // We are still returning a struct, so extract the value from our
821              // return value
822              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
823                                           InsertPt);
824            else
825              // We are now returning a single element, so just insert that
826              V = New;
827            // Insert the value at the old position
828            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
829          }
830        // Now, replace all uses of the old call instruction with the return
831        // struct we built
832        Call->replaceAllUsesWith(RetVal);
833        New->takeName(Call);
834      }
835    }
836
837    // Finally, remove the old call from the program, reducing the use-count of
838    // F.
839    Call->eraseFromParent();
840  }
841
842  // Since we have now created the new function, splice the body of the old
843  // function right into the new function, leaving the old rotting hulk of the
844  // function empty.
845  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
846
847  // Loop over the argument list, transfering uses of the old arguments over to
848  // the new arguments, also transfering over the names as well.
849  i = 0;
850  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
851       I2 = NF->arg_begin(); I != E; ++I, ++i)
852    if (ArgAlive[i]) {
853      // If this is a live argument, move the name and users over to the new
854      // version.
855      I->replaceAllUsesWith(I2);
856      I2->takeName(I);
857      ++I2;
858    } else {
859      // If this argument is dead, replace any uses of it with null constants
860      // (these are guaranteed to become unused later on).
861      I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
862    }
863
864  // If we change the return value of the function we must rewrite any return
865  // instructions.  Check this now.
866  if (F->getReturnType() != NF->getReturnType())
867    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
868      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
869        Value *RetVal;
870
871        if (NFTy->getReturnType() == Type::getVoidTy(F->getContext())) {
872          RetVal = 0;
873        } else {
874          assert (isa<StructType>(RetTy));
875          // The original return value was a struct, insert
876          // extractvalue/insertvalue chains to extract only the values we need
877          // to return and insert them into our new result.
878          // This does generate messy code, but we'll let it to instcombine to
879          // clean that up.
880          Value *OldRet = RI->getOperand(0);
881          // Start out building up our return value from undef
882          RetVal = UndefValue::get(NRetTy);
883          for (unsigned i = 0; i != RetCount; ++i)
884            if (NewRetIdxs[i] != -1) {
885              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
886                                                              "oldret", RI);
887              if (RetTypes.size() > 1) {
888                // We're still returning a struct, so reinsert the value into
889                // our new return value at the new index
890
891                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
892                                                 "newret", RI);
893              } else {
894                // We are now only returning a simple value, so just return the
895                // extracted value.
896                RetVal = EV;
897              }
898            }
899        }
900        // Replace the return instruction with one returning the new return
901        // value (possibly 0 if we became void).
902        ReturnInst::Create(F->getContext(), RetVal, RI);
903        BB->getInstList().erase(RI);
904      }
905
906  // Now that the old function is dead, delete it.
907  F->eraseFromParent();
908
909  return true;
910}
911
912bool DAE::runOnModule(Module &M) {
913  bool Changed = false;
914
915  // First pass: Do a simple check to see if any functions can have their "..."
916  // removed.  We can do this if they never call va_start.  This loop cannot be
917  // fused with the next loop, because deleting a function invalidates
918  // information computed while surveying other functions.
919  DEBUG(errs() << "DAE - Deleting dead varargs\n");
920  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
921    Function &F = *I++;
922    if (F.getFunctionType()->isVarArg())
923      Changed |= DeleteDeadVarargs(F);
924  }
925
926  // Second phase:loop through the module, determining which arguments are live.
927  // We assume all arguments are dead unless proven otherwise (allowing us to
928  // determine that dead arguments passed into recursive functions are dead).
929  //
930  DEBUG(errs() << "DAE - Determining liveness\n");
931  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
932    SurveyFunction(*I);
933
934  // Now, remove all dead arguments and return values from each function in
935  // turn
936  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
937    // Increment now, because the function will probably get removed (ie
938    // replaced by a new one).
939    Function *F = I++;
940    Changed |= RemoveDeadStuffFromFunction(F);
941  }
942  return Changed;
943}
944