FunctionAttrs.cpp revision 2265b0cc728e76b5846ee92dc0a049d916b87134
1//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple interprocedural pass which walks the
11// call-graph, looking for functions which do not access or only read
12// non-local memory, and marking them readnone/readonly.  In addition,
13// it marks function arguments (of pointer type) 'nocapture' if a call
14// to the function does not create any copies of the pointer value that
15// outlive the call.  This more or less means that the pointer is only
16// dereferenced, and not returned from the function or stored in a global.
17// This pass is implemented as a bottom-up traversal of the call-graph.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "functionattrs"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/CallGraphSCCPass.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Instructions.h"
26#include "llvm/Analysis/CallGraph.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/InstIterator.h"
32using namespace llvm;
33
34STATISTIC(NumReadNone, "Number of functions marked readnone");
35STATISTIC(NumReadOnly, "Number of functions marked readonly");
36STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
37
38namespace {
39  struct VISIBILITY_HIDDEN FunctionAttrs : public CallGraphSCCPass {
40    static char ID; // Pass identification, replacement for typeid
41    FunctionAttrs() : CallGraphSCCPass(&ID) {}
42
43    // runOnSCC - Analyze the SCC, performing the transformation if possible.
44    bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
45
46    // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
47    bool AddReadAttrs(const std::vector<CallGraphNode *> &SCC);
48
49    // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
50    bool AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC);
51
52    // isCaptured - Return true if this pointer value may be captured.
53    bool isCaptured(Function &F, Value *V);
54
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      AU.setPreservesCFG();
57      CallGraphSCCPass::getAnalysisUsage(AU);
58    }
59
60    bool PointsToLocalMemory(Value *V);
61  };
62}
63
64char FunctionAttrs::ID = 0;
65static RegisterPass<FunctionAttrs>
66X("functionattrs", "Deduce function attributes");
67
68Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
69
70
71/// PointsToLocalMemory - Returns whether the given pointer value points to
72/// memory that is local to the function.  Global constants are considered
73/// local to all functions.
74bool FunctionAttrs::PointsToLocalMemory(Value *V) {
75  V = V->getUnderlyingObject();
76  // An alloca instruction defines local memory.
77  if (isa<AllocaInst>(V))
78    return true;
79  // A global constant counts as local memory for our purposes.
80  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
81    return GV->isConstant();
82  // Could look through phi nodes and selects here, but it doesn't seem
83  // to be useful in practice.
84  return false;
85}
86
87/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
88bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
89  SmallPtrSet<CallGraphNode*, 8> SCCNodes;
90  CallGraph &CG = getAnalysis<CallGraph>();
91
92  // Fill SCCNodes with the elements of the SCC.  Used for quickly
93  // looking up whether a given CallGraphNode is in this SCC.
94  for (unsigned i = 0, e = SCC.size(); i != e; ++i)
95    SCCNodes.insert(SCC[i]);
96
97  // Check if any of the functions in the SCC read or write memory.  If they
98  // write memory then they can't be marked readnone or readonly.
99  bool ReadsMemory = false;
100  for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
101    Function *F = SCC[i]->getFunction();
102
103    if (F == 0)
104      // External node - may write memory.  Just give up.
105      return false;
106
107    if (F->doesNotAccessMemory())
108      // Already perfect!
109      continue;
110
111    // Definitions with weak linkage may be overridden at linktime with
112    // something that writes memory, so treat them like declarations.
113    if (F->isDeclaration() || F->mayBeOverridden()) {
114      if (!F->onlyReadsMemory())
115        // May write memory.  Just give up.
116        return false;
117
118      ReadsMemory = true;
119      continue;
120    }
121
122    // Scan the function body for instructions that may read or write memory.
123    for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
124      Instruction *I = &*II;
125
126      // Some instructions can be ignored even if they read or write memory.
127      // Detect these now, skipping to the next instruction if one is found.
128      CallSite CS = CallSite::get(I);
129      if (CS.getInstruction()) {
130        // Ignore calls to functions in the same SCC.
131        if (SCCNodes.count(CG[CS.getCalledFunction()]))
132          continue;
133      } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
134        // Ignore loads from local memory.
135        if (PointsToLocalMemory(LI->getPointerOperand()))
136          continue;
137      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
138        // Ignore stores to local memory.
139        if (PointsToLocalMemory(SI->getPointerOperand()))
140          continue;
141      }
142
143      // Any remaining instructions need to be taken seriously!  Check if they
144      // read or write memory.
145      if (I->mayWriteToMemory())
146        // Writes memory.  Just give up.
147        return false;
148      // If this instruction may read memory, remember that.
149      ReadsMemory |= I->mayReadFromMemory();
150    }
151  }
152
153  // Success!  Functions in this SCC do not access memory, or only read memory.
154  // Give them the appropriate attribute.
155  bool MadeChange = false;
156  for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
157    Function *F = SCC[i]->getFunction();
158
159    if (F->doesNotAccessMemory())
160      // Already perfect!
161      continue;
162
163    if (F->onlyReadsMemory() && ReadsMemory)
164      // No change.
165      continue;
166
167    MadeChange = true;
168
169    // Clear out any existing attributes.
170    F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
171
172    // Add in the new attribute.
173    F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
174
175    if (ReadsMemory)
176      ++NumReadOnly;
177    else
178      ++NumReadNone;
179  }
180
181  return MadeChange;
182}
183
184/// isCaptured - Return true if this pointer value may be captured.
185bool FunctionAttrs::isCaptured(Function &F, Value *V) {
186  typedef PointerIntPair<Use*, 2> UseWithDepth;
187  SmallVector<UseWithDepth, 16> Worklist;
188  SmallSet<UseWithDepth, 16> Visited;
189
190  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
191       ++UI) {
192    UseWithDepth UD(&UI.getUse(), 0);
193    Visited.insert(UD);
194    Worklist.push_back(UD);
195  }
196
197  while (!Worklist.empty()) {
198    UseWithDepth UD = Worklist.pop_back_val();
199    Use *U = UD.getPointer();
200    Instruction *I = cast<Instruction>(U->getUser());
201    // The value V may have any type if it comes from tracking a load.
202    V = U->get();
203    // The depth represents the number of loads that need to be performed to
204    // get back the original pointer (or a bitcast etc of it).  For example,
205    // if the pointer is stored to an alloca, then all uses of the alloca get
206    // depth 1: if the alloca is loaded then you get the original pointer back.
207    // If a load of the alloca is returned then the pointer has been captured.
208    // The depth is needed in order to know which loads dereference the original
209    // pointer (these do not capture), and which return a value which needs to
210    // be tracked because if it is captured then so is the original pointer.
211    unsigned Depth = UD.getInt();
212
213    switch (I->getOpcode()) {
214    case Instruction::Call:
215    case Instruction::Invoke: {
216      CallSite CS = CallSite::get(I);
217      // Not captured if the callee is readonly and doesn't return a copy
218      // through its return value.
219      if (CS.onlyReadsMemory() && I->getType() == Type::VoidTy)
220        break;
221
222      // Not captured if only passed via 'nocapture' arguments.  Note that
223      // calling a function pointer does not in itself cause the pointer to
224      // be captured.  This is a subtle point considering that (for example)
225      // the callee might return its own address.  It is analogous to saying
226      // that loading a value from a pointer does not cause the pointer to be
227      // captured, even though the loaded value might be the pointer itself
228      // (think of self-referential objects).
229      CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
230      for (CallSite::arg_iterator A = B; A != E; ++A)
231        if (A->get() == V && !CS.paramHasAttr(A - B + 1, Attribute::NoCapture))
232          // The parameter is not marked 'nocapture' - captured.
233          return true;
234      // Only passed via 'nocapture' arguments, or is the called function - not
235      // captured.
236      break;
237    }
238    case Instruction::Free:
239      // Freeing a pointer does not cause it to be captured.
240      break;
241    case Instruction::Store:
242      if (V == I->getOperand(0)) {
243        // Stored the pointer - it may be captured.  If it is stored to a local
244        // object (alloca) then track that object.  Otherwise give up.
245        Value *Target = I->getOperand(1)->getUnderlyingObject();
246        if (!isa<AllocaInst>(Target))
247          // Didn't store to an obviously local object - captured.
248          return true;
249        if (Depth >= 3)
250          // Alloca recursion too deep - give up.
251          return true;
252        // Analyze all uses of the alloca.
253        for (Value::use_iterator UI = Target->use_begin(),
254             UE = Target->use_end(); UI != UE; ++UI) {
255          UseWithDepth NUD(&UI.getUse(), Depth + 1);
256          if (Visited.insert(NUD))
257            Worklist.push_back(NUD);
258        }
259      }
260      // Storing to the pointee does not cause the pointer to be captured.
261      break;
262    case Instruction::BitCast:
263    case Instruction::GetElementPtr:
264    case Instruction::Load:
265    case Instruction::PHI:
266    case Instruction::Select:
267      // Track any uses of this instruction to see if they are captured.
268      // First handle any special cases.
269      if (isa<GetElementPtrInst>(I)) {
270        // Play safe and do not accept being used as an index.
271        if (V != I->getOperand(0))
272          return true;
273      } else if (isa<SelectInst>(I)) {
274        // Play safe and do not accept being used as the condition.
275        if (V == I->getOperand(0))
276          return true;
277      } else if (isa<LoadInst>(I)) {
278        // Usually loads can be ignored because they dereference the original
279        // pointer.  However the loaded value needs to be tracked if loading
280        // from an object that the original pointer was stored to.
281        if (Depth == 0)
282          // Loading the original pointer or a variation of it.  This does not
283          // cause the pointer to be captured.  Note that the loaded value might
284          // be the pointer itself (think of self-referential objects), but that
285          // is fine as long as it's not this function that stored it there.
286          break;
287        // Loading a pointer to (a pointer to...) the original pointer or a
288        // variation of it.  Track uses of the loaded value, noting that one
289        // dereference was performed.  Note that the loaded value need not be
290        // of pointer type.  For example, an alloca may have been bitcast to
291        // a pointer to another type, which was then loaded.
292        --Depth;
293      }
294
295      // The original value is not captured via this if the instruction isn't.
296      for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
297           UI != UE; ++UI) {
298        UseWithDepth UD(&UI.getUse(), Depth);
299        if (Visited.insert(UD))
300          Worklist.push_back(UD);
301      }
302      break;
303    default:
304      // Something else - be conservative and say it is captured.
305      return true;
306    }
307  }
308
309  // All uses examined - not captured.
310  return false;
311}
312
313/// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
314bool FunctionAttrs::AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC) {
315  bool Changed = false;
316
317  // Check each function in turn, determining which pointer arguments are not
318  // captured.
319  for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
320    Function *F = SCC[i]->getFunction();
321
322    if (F == 0)
323      // External node - skip it;
324      continue;
325
326    // Definitions with weak linkage may be overridden at linktime with
327    // something that writes memory, so treat them like declarations.
328    if (F->isDeclaration() || F->mayBeOverridden())
329      continue;
330
331    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
332      if (isa<PointerType>(A->getType()) && !A->hasNoCaptureAttr() &&
333          !isCaptured(*F, A)) {
334        A->addAttr(Attribute::NoCapture);
335        ++NumNoCapture;
336        Changed = true;
337      }
338  }
339
340  return Changed;
341}
342
343bool FunctionAttrs::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
344  bool Changed = AddReadAttrs(SCC);
345  Changed |= AddNoCaptureAttrs(SCC);
346  return Changed;
347}
348