FunctionAttrs.cpp revision c92b8aa79f4a2cd16f7b674189e425c2c367e886
1//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple interprocedural pass which walks the
11// call-graph, looking for functions which do not access or only read
12// non-local memory, and marking them readnone/readonly.  In addition,
13// it marks function arguments (of pointer type) 'nocapture' if a call
14// to the function does not create any copies of the pointer value that
15// outlive the call.  This more or less means that the pointer is only
16// dereferenced, and not returned from the function or stored in a global.
17// This pass is implemented as a bottom-up traversal of the call-graph.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "functionattrs"
22#include "llvm/Transforms/IPO.h"
23#include "llvm/CallGraphSCCPass.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Analysis/CallGraph.h"
29#include "llvm/Analysis/CaptureTracking.h"
30#include "llvm/ADT/SCCIterator.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/UniqueVector.h"
34#include "llvm/Support/InstIterator.h"
35using namespace llvm;
36
37STATISTIC(NumReadNone, "Number of functions marked readnone");
38STATISTIC(NumReadOnly, "Number of functions marked readonly");
39STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
40STATISTIC(NumNoAlias, "Number of function returns marked noalias");
41
42namespace {
43  struct FunctionAttrs : public CallGraphSCCPass {
44    static char ID; // Pass identification, replacement for typeid
45    FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
46      initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
47    }
48
49    // runOnSCC - Analyze the SCC, performing the transformation if possible.
50    bool runOnSCC(CallGraphSCC &SCC);
51
52    // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
53    bool AddReadAttrs(const CallGraphSCC &SCC);
54
55    // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
56    bool AddNoCaptureAttrs(const CallGraphSCC &SCC);
57
58    // IsFunctionMallocLike - Does this function allocate new memory?
59    bool IsFunctionMallocLike(Function *F,
60                              SmallPtrSet<Function*, 8> &) const;
61
62    // AddNoAliasAttrs - Deduce noalias attributes for the SCC.
63    bool AddNoAliasAttrs(const CallGraphSCC &SCC);
64
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.setPreservesCFG();
67      AU.addRequired<AliasAnalysis>();
68      CallGraphSCCPass::getAnalysisUsage(AU);
69    }
70
71  private:
72    AliasAnalysis *AA;
73  };
74}
75
76char FunctionAttrs::ID = 0;
77INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
78                "Deduce function attributes", false, false)
79INITIALIZE_AG_DEPENDENCY(CallGraph)
80INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
81                "Deduce function attributes", false, false)
82
83Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
84
85
86/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
87bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
88  SmallPtrSet<Function*, 8> SCCNodes;
89
90  // Fill SCCNodes with the elements of the SCC.  Used for quickly
91  // looking up whether a given CallGraphNode is in this SCC.
92  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
93    SCCNodes.insert((*I)->getFunction());
94
95  // Check if any of the functions in the SCC read or write memory.  If they
96  // write memory then they can't be marked readnone or readonly.
97  bool ReadsMemory = false;
98  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
99    Function *F = (*I)->getFunction();
100
101    if (F == 0)
102      // External node - may write memory.  Just give up.
103      return false;
104
105    AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
106    if (MRB == AliasAnalysis::DoesNotAccessMemory)
107      // Already perfect!
108      continue;
109
110    // Definitions with weak linkage may be overridden at linktime with
111    // something that writes memory, so treat them like declarations.
112    if (F->isDeclaration() || F->mayBeOverridden()) {
113      if (!AliasAnalysis::onlyReadsMemory(MRB))
114        // May write memory.  Just give up.
115        return false;
116
117      ReadsMemory = true;
118      continue;
119    }
120
121    // Scan the function body for instructions that may read or write memory.
122    for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
123      Instruction *I = &*II;
124
125      // Some instructions can be ignored even if they read or write memory.
126      // Detect these now, skipping to the next instruction if one is found.
127      CallSite CS(cast<Value>(I));
128      if (CS) {
129        // Ignore calls to functions in the same SCC.
130        if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
131          continue;
132        AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
133        // If the call doesn't access arbitrary memory, we may be able to
134        // figure out something.
135        if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
136          // If the call does access argument pointees, check each argument.
137          if (AliasAnalysis::doesAccessArgPointees(MRB))
138            // Check whether all pointer arguments point to local memory, and
139            // ignore calls that only access local memory.
140            for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
141                 CI != CE; ++CI) {
142              Value *Arg = *CI;
143              if (Arg->getType()->isPointerTy()) {
144                AliasAnalysis::Location Loc(Arg,
145                                            AliasAnalysis::UnknownSize,
146                                            I->getMetadata(LLVMContext::MD_tbaa));
147                if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
148                  if (MRB & AliasAnalysis::Mod)
149                    // Writes non-local memory.  Give up.
150                    return false;
151                  if (MRB & AliasAnalysis::Ref)
152                    // Ok, it reads non-local memory.
153                    ReadsMemory = true;
154                }
155              }
156            }
157          continue;
158        }
159        // The call could access any memory. If that includes writes, give up.
160        if (MRB & AliasAnalysis::Mod)
161          return false;
162        // If it reads, note it.
163        if (MRB & AliasAnalysis::Ref)
164          ReadsMemory = true;
165        continue;
166      } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
167        // Ignore non-volatile loads from local memory. (Atomic is okay here.)
168        if (!LI->isVolatile()) {
169          AliasAnalysis::Location Loc = AA->getLocation(LI);
170          if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
171            continue;
172        }
173      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
174        // Ignore non-volatile stores to local memory. (Atomic is okay here.)
175        if (!SI->isVolatile()) {
176          AliasAnalysis::Location Loc = AA->getLocation(SI);
177          if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
178            continue;
179        }
180      } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
181        // Ignore vaargs on local memory.
182        AliasAnalysis::Location Loc = AA->getLocation(VI);
183        if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
184          continue;
185      }
186
187      // Any remaining instructions need to be taken seriously!  Check if they
188      // read or write memory.
189      if (I->mayWriteToMemory())
190        // Writes memory.  Just give up.
191        return false;
192
193      // If this instruction may read memory, remember that.
194      ReadsMemory |= I->mayReadFromMemory();
195    }
196  }
197
198  // Success!  Functions in this SCC do not access memory, or only read memory.
199  // Give them the appropriate attribute.
200  bool MadeChange = false;
201  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
202    Function *F = (*I)->getFunction();
203
204    if (F->doesNotAccessMemory())
205      // Already perfect!
206      continue;
207
208    if (F->onlyReadsMemory() && ReadsMemory)
209      // No change.
210      continue;
211
212    MadeChange = true;
213
214    // Clear out any existing attributes.
215    F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
216
217    // Add in the new attribute.
218    F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
219
220    if (ReadsMemory)
221      ++NumReadOnly;
222    else
223      ++NumReadNone;
224  }
225
226  return MadeChange;
227}
228
229namespace {
230  // For a given pointer Argument, this retains a list of Arguments of functions
231  // in the same SCC that the pointer data flows into. We use this to build an
232  // SCC of the arguments.
233  struct ArgumentGraphNode {
234    Argument *Definition;
235    SmallVector<ArgumentGraphNode*, 4> Uses;
236  };
237
238  class ArgumentGraph {
239    // We store pointers to ArgumentGraphNode objects, so it's important that
240    // that they not move around upon insert.
241    typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy;
242
243    ArgumentMapTy ArgumentMap;
244
245    // There is no root node for the argument graph, in fact:
246    //   void f(int *x, int *y) { if (...) f(x, y); }
247    // is an example where the graph is disconnected. The SCCIterator requires a
248    // single entry point, so we maintain a fake ("synthetic") root node that
249    // uses every node. Because the graph is directed and nothing points into
250    // the root, it will not participate in any SCCs (except for its own).
251    ArgumentGraphNode SyntheticRoot;
252
253  public:
254    ArgumentGraph() { SyntheticRoot.Definition = 0; }
255
256    typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator;
257
258    iterator begin() { return SyntheticRoot.Uses.begin(); }
259    iterator end() { return SyntheticRoot.Uses.end(); }
260    ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
261
262    ArgumentGraphNode *operator[](Argument *A) {
263      ArgumentGraphNode &Node = ArgumentMap[A];
264      Node.Definition = A;
265      SyntheticRoot.Uses.push_back(&Node);
266      return &Node;
267    }
268  };
269
270  // This tracker checks whether callees are in the SCC, and if so it does not
271  // consider that a capture, instead adding it to the "Uses" list and
272  // continuing with the analysis.
273  struct ArgumentUsesTracker : public CaptureTracker {
274    ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes)
275      : Captured(false), SCCNodes(SCCNodes) {}
276
277    void tooManyUses() { Captured = true; }
278
279    bool captured(Use *U) {
280      CallSite CS(U->getUser());
281      if (!CS.getInstruction()) { Captured = true; return true; }
282
283      Function *F = CS.getCalledFunction();
284      if (!F || !SCCNodes.count(F)) { Captured = true; return true; }
285
286      Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
287      for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end();
288           PI != PE; ++PI, ++AI) {
289        if (AI == AE) {
290          assert(F->isVarArg() && "More params than args in non-varargs call");
291          Captured = true;
292          return true;
293        }
294        if (PI == U) {
295          Uses.push_back(AI);
296          break;
297        }
298      }
299      assert(!Uses.empty() && "Capturing call-site captured nothing?");
300      return false;
301    }
302
303    bool Captured;  // True only if certainly captured (used outside our SCC).
304    SmallVector<Argument*, 4> Uses;  // Uses within our SCC.
305
306    const SmallPtrSet<Function*, 8> &SCCNodes;
307  };
308}
309
310namespace llvm {
311  template<> struct GraphTraits<ArgumentGraphNode*> {
312    typedef ArgumentGraphNode NodeType;
313    typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType;
314
315    static inline NodeType *getEntryNode(NodeType *A) { return A; }
316    static inline ChildIteratorType child_begin(NodeType *N) {
317      return N->Uses.begin();
318    }
319    static inline ChildIteratorType child_end(NodeType *N) {
320      return N->Uses.end();
321    }
322  };
323  template<> struct GraphTraits<ArgumentGraph*>
324    : public GraphTraits<ArgumentGraphNode*> {
325    static NodeType *getEntryNode(ArgumentGraph *AG) {
326      return AG->getEntryNode();
327    }
328    static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
329      return AG->begin();
330    }
331    static ChildIteratorType nodes_end(ArgumentGraph *AG) {
332      return AG->end();
333    }
334  };
335}
336
337/// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
338bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
339  bool Changed = false;
340
341  SmallPtrSet<Function*, 8> SCCNodes;
342
343  // Fill SCCNodes with the elements of the SCC.  Used for quickly
344  // looking up whether a given CallGraphNode is in this SCC.
345  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
346    Function *F = (*I)->getFunction();
347    if (F && !F->isDeclaration() && !F->mayBeOverridden())
348      SCCNodes.insert(F);
349  }
350
351  ArgumentGraph AG;
352
353  // Check each function in turn, determining which pointer arguments are not
354  // captured.
355  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
356    Function *F = (*I)->getFunction();
357
358    if (F == 0)
359      // External node - only a problem for arguments that we pass to it.
360      continue;
361
362    // Definitions with weak linkage may be overridden at linktime with
363    // something that captures pointers, so treat them like declarations.
364    if (F->isDeclaration() || F->mayBeOverridden())
365      continue;
366
367    // Functions that are readonly (or readnone) and nounwind and don't return
368    // a value can't capture arguments. Don't analyze them.
369    if (F->onlyReadsMemory() && F->doesNotThrow() &&
370        F->getReturnType()->isVoidTy()) {
371      for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
372           A != E; ++A) {
373        if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
374          A->addAttr(Attribute::NoCapture);
375          ++NumNoCapture;
376          Changed = true;
377        }
378      }
379      continue;
380    }
381
382    for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
383      if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
384        ArgumentUsesTracker Tracker(SCCNodes);
385        PointerMayBeCaptured(A, &Tracker);
386        if (!Tracker.Captured) {
387          if (Tracker.Uses.empty()) {
388            // If it's trivially not captured, mark it nocapture now.
389            A->addAttr(Attribute::NoCapture);
390            ++NumNoCapture;
391            Changed = true;
392          } else {
393            // If it's not trivially captured and not trivially not captured,
394            // then it must be calling into another function in our SCC. Save
395            // its particulars for Argument-SCC analysis later.
396            ArgumentGraphNode *Node = AG[A];
397            for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(),
398                   UE = Tracker.Uses.end(); UI != UE; ++UI)
399              Node->Uses.push_back(AG[*UI]);
400          }
401        }
402        // Otherwise, it's captured. Don't bother doing SCC analysis on it.
403      }
404  }
405
406  // The graph we've collected is partial because we stopped scanning for
407  // argument uses once we solved the argument trivially. These partial nodes
408  // show up as ArgumentGraphNode objects with an empty Uses list, and for
409  // these nodes the final decision about whether they capture has already been
410  // made.  If the definition doesn't have a 'nocapture' attribute by now, it
411  // captures.
412
413  for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG);
414       I != E; ++I) {
415    std::vector<ArgumentGraphNode*> &ArgumentSCC = *I;
416    if (ArgumentSCC.size() == 1) {
417      if (!ArgumentSCC[0]->Definition) continue;  // synthetic root node
418
419      // eg. "void f(int* x) { if (...) f(x); }"
420      if (ArgumentSCC[0]->Uses.size() == 1 &&
421          ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
422        ArgumentSCC[0]->Definition->addAttr(Attribute::NoCapture);
423        ++NumNoCapture;
424        Changed = true;
425      }
426      continue;
427    }
428
429    bool SCCCaptured = false;
430    for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
431           E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
432      ArgumentGraphNode *Node = *I;
433      if (Node->Uses.empty()) {
434        if (!Node->Definition->hasNoCaptureAttr())
435          SCCCaptured = true;
436      }
437    }
438    if (SCCCaptured) continue;
439
440    SmallPtrSet<Argument*, 8> ArgumentSCCNodes;
441    // Fill ArgumentSCCNodes with the elements of the ArgumentSCC.  Used for
442    // quickly looking up whether a given Argument is in this ArgumentSCC.
443    for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
444           E = ArgumentSCC.end(); I != E; ++I) {
445      ArgumentSCCNodes.insert((*I)->Definition);
446    }
447
448    for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
449           E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
450      ArgumentGraphNode *N = *I;
451      for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(),
452             UE = N->Uses.end(); UI != UE; ++UI) {
453        Argument *A = (*UI)->Definition;
454        if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
455          continue;
456        SCCCaptured = true;
457        break;
458      }
459    }
460    if (SCCCaptured) continue;
461
462    for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
463      Argument *A = ArgumentSCC[i]->Definition;
464      A->addAttr(Attribute::NoCapture);
465      ++NumNoCapture;
466      Changed = true;
467    }
468  }
469
470  return Changed;
471}
472
473/// IsFunctionMallocLike - A function is malloc-like if it returns either null
474/// or a pointer that doesn't alias any other pointer visible to the caller.
475bool FunctionAttrs::IsFunctionMallocLike(Function *F,
476                              SmallPtrSet<Function*, 8> &SCCNodes) const {
477  UniqueVector<Value *> FlowsToReturn;
478  for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
479    if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
480      FlowsToReturn.insert(Ret->getReturnValue());
481
482  for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
483    Value *RetVal = FlowsToReturn[i+1];   // UniqueVector[0] is reserved.
484
485    if (Constant *C = dyn_cast<Constant>(RetVal)) {
486      if (!C->isNullValue() && !isa<UndefValue>(C))
487        return false;
488
489      continue;
490    }
491
492    if (isa<Argument>(RetVal))
493      return false;
494
495    if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
496      switch (RVI->getOpcode()) {
497        // Extend the analysis by looking upwards.
498        case Instruction::BitCast:
499        case Instruction::GetElementPtr:
500          FlowsToReturn.insert(RVI->getOperand(0));
501          continue;
502        case Instruction::Select: {
503          SelectInst *SI = cast<SelectInst>(RVI);
504          FlowsToReturn.insert(SI->getTrueValue());
505          FlowsToReturn.insert(SI->getFalseValue());
506          continue;
507        }
508        case Instruction::PHI: {
509          PHINode *PN = cast<PHINode>(RVI);
510          for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
511            FlowsToReturn.insert(PN->getIncomingValue(i));
512          continue;
513        }
514
515        // Check whether the pointer came from an allocation.
516        case Instruction::Alloca:
517          break;
518        case Instruction::Call:
519        case Instruction::Invoke: {
520          CallSite CS(RVI);
521          if (CS.paramHasNoAliasAttr(0))
522            break;
523          if (CS.getCalledFunction() &&
524              SCCNodes.count(CS.getCalledFunction()))
525            break;
526        } // fall-through
527        default:
528          return false;  // Did not come from an allocation.
529      }
530
531    if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
532      return false;
533  }
534
535  return true;
536}
537
538/// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
539bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
540  SmallPtrSet<Function*, 8> SCCNodes;
541
542  // Fill SCCNodes with the elements of the SCC.  Used for quickly
543  // looking up whether a given CallGraphNode is in this SCC.
544  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
545    SCCNodes.insert((*I)->getFunction());
546
547  // Check each function in turn, determining which functions return noalias
548  // pointers.
549  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
550    Function *F = (*I)->getFunction();
551
552    if (F == 0)
553      // External node - skip it;
554      return false;
555
556    // Already noalias.
557    if (F->doesNotAlias(0))
558      continue;
559
560    // Definitions with weak linkage may be overridden at linktime, so
561    // treat them like declarations.
562    if (F->isDeclaration() || F->mayBeOverridden())
563      return false;
564
565    // We annotate noalias return values, which are only applicable to
566    // pointer types.
567    if (!F->getReturnType()->isPointerTy())
568      continue;
569
570    if (!IsFunctionMallocLike(F, SCCNodes))
571      return false;
572  }
573
574  bool MadeChange = false;
575  for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
576    Function *F = (*I)->getFunction();
577    if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
578      continue;
579
580    F->setDoesNotAlias(0);
581    ++NumNoAlias;
582    MadeChange = true;
583  }
584
585  return MadeChange;
586}
587
588bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
589  AA = &getAnalysis<AliasAnalysis>();
590
591  bool Changed = AddReadAttrs(SCC);
592  Changed |= AddNoCaptureAttrs(SCC);
593  Changed |= AddNoAliasAttrs(SCC);
594  return Changed;
595}
596