GlobalOpt.cpp revision 08600f0c51738348b30fc8f5bf118d8f8bea1ed5
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/ADT/DenseMap.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46STATISTIC(NumDeleted   , "Number of globals deleted");
47STATISTIC(NumFnDeleted , "Number of functions deleted");
48STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49STATISTIC(NumLocalized , "Number of globals localized");
50STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56
57namespace {
58  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired<TargetData>();
61    }
62    static char ID; // Pass identification, replacement for typeid
63    GlobalOpt() : ModulePass(&ID) {}
64
65    bool runOnModule(Module &M);
66
67  private:
68    GlobalVariable *FindGlobalCtors(Module &M);
69    bool OptimizeFunctions(Module &M);
70    bool OptimizeGlobalVars(Module &M);
71    bool ResolveAliases(Module &M);
72    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
73    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
74  };
75}
76
77char GlobalOpt::ID = 0;
78static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
79
80ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
81
82namespace {
83
84/// GlobalStatus - As we analyze each global, keep track of some information
85/// about it.  If we find out that the address of the global is taken, none of
86/// this info will be accurate.
87struct VISIBILITY_HIDDEN GlobalStatus {
88  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
89  /// loaded it can be deleted.
90  bool isLoaded;
91
92  /// StoredType - Keep track of what stores to the global look like.
93  ///
94  enum StoredType {
95    /// NotStored - There is no store to this global.  It can thus be marked
96    /// constant.
97    NotStored,
98
99    /// isInitializerStored - This global is stored to, but the only thing
100    /// stored is the constant it was initialized with.  This is only tracked
101    /// for scalar globals.
102    isInitializerStored,
103
104    /// isStoredOnce - This global is stored to, but only its initializer and
105    /// one other value is ever stored to it.  If this global isStoredOnce, we
106    /// track the value stored to it in StoredOnceValue below.  This is only
107    /// tracked for scalar globals.
108    isStoredOnce,
109
110    /// isStored - This global is stored to by multiple values or something else
111    /// that we cannot track.
112    isStored
113  } StoredType;
114
115  /// StoredOnceValue - If only one value (besides the initializer constant) is
116  /// ever stored to this global, keep track of what value it is.
117  Value *StoredOnceValue;
118
119  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
120  /// null/false.  When the first accessing function is noticed, it is recorded.
121  /// When a second different accessing function is noticed,
122  /// HasMultipleAccessingFunctions is set to true.
123  Function *AccessingFunction;
124  bool HasMultipleAccessingFunctions;
125
126  /// HasNonInstructionUser - Set to true if this global has a user that is not
127  /// an instruction (e.g. a constant expr or GV initializer).
128  bool HasNonInstructionUser;
129
130  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
131  bool HasPHIUser;
132
133  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
134                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
135                   HasNonInstructionUser(false), HasPHIUser(false) {}
136};
137
138}
139
140/// ConstantIsDead - Return true if the specified constant is (transitively)
141/// dead.  The constant may be used by other constants (e.g. constant arrays,
142/// constant exprs, constant global variables) as long as they are dead,
143/// but it cannot be used by anything else. If DeadGVs is not null then
144/// record dead constant GV users.
145static bool ConstantIsDead(Constant *C,
146                           SmallPtrSet<GlobalVariable *, 4> *DeadGVs = false) {
147  if (isa<GlobalValue>(C)) return false;
148
149  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI) {
150    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(*UI)) {
151      if (!GV->isConstant() || !GV->hasLocalLinkage() || !GV->use_empty())
152        return false;
153      else {
154        if (DeadGVs)
155          DeadGVs->insert(GV);
156      }
157    }
158    else if (Constant *CU = dyn_cast<Constant>(*UI)) {
159      if (!ConstantIsDead(CU, DeadGVs)) return false;
160    } else
161      return false;
162  }
163  return true;
164}
165
166
167/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
168/// structure.  If the global has its address taken, return true to indicate we
169/// can't do anything with it.
170///
171static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
172                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
173  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
174    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
175      GS.HasNonInstructionUser = true;
176
177      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
178
179    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
180      if (!GS.HasMultipleAccessingFunctions) {
181        Function *F = I->getParent()->getParent();
182        if (GS.AccessingFunction == 0)
183          GS.AccessingFunction = F;
184        else if (GS.AccessingFunction != F)
185          GS.HasMultipleAccessingFunctions = true;
186      }
187      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
188        GS.isLoaded = true;
189        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
190      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
191        // Don't allow a store OF the address, only stores TO the address.
192        if (SI->getOperand(0) == V) return true;
193
194        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
195
196        // If this is a direct store to the global (i.e., the global is a scalar
197        // value, not an aggregate), keep more specific information about
198        // stores.
199        if (GS.StoredType != GlobalStatus::isStored) {
200          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
201            Value *StoredVal = SI->getOperand(0);
202            if (StoredVal == GV->getInitializer()) {
203              if (GS.StoredType < GlobalStatus::isInitializerStored)
204                GS.StoredType = GlobalStatus::isInitializerStored;
205            } else if (isa<LoadInst>(StoredVal) &&
206                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
207              // G = G
208              if (GS.StoredType < GlobalStatus::isInitializerStored)
209                GS.StoredType = GlobalStatus::isInitializerStored;
210            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
211              GS.StoredType = GlobalStatus::isStoredOnce;
212              GS.StoredOnceValue = StoredVal;
213            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
214                       GS.StoredOnceValue == StoredVal) {
215              // noop.
216            } else {
217              GS.StoredType = GlobalStatus::isStored;
218            }
219          } else {
220            GS.StoredType = GlobalStatus::isStored;
221          }
222        }
223      } else if (isa<GetElementPtrInst>(I)) {
224        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
225      } else if (isa<SelectInst>(I)) {
226        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
227      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
228        // PHI nodes we can check just like select or GEP instructions, but we
229        // have to be careful about infinite recursion.
230        if (PHIUsers.insert(PN))  // Not already visited.
231          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
232        GS.HasPHIUser = true;
233      } else if (isa<CmpInst>(I)) {
234      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
235        if (I->getOperand(1) == V)
236          GS.StoredType = GlobalStatus::isStored;
237        if (I->getOperand(2) == V)
238          GS.isLoaded = true;
239      } else if (isa<MemSetInst>(I)) {
240        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
241        GS.StoredType = GlobalStatus::isStored;
242      } else {
243        return true;  // Any other non-load instruction might take address!
244      }
245    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
246      GS.HasNonInstructionUser = true;
247      // We might have a dead and dangling constant hanging off of here.
248      if (!ConstantIsDead(C))
249        return true;
250    } else {
251      GS.HasNonInstructionUser = true;
252      // Otherwise must be some other user.
253      return true;
254    }
255
256  return false;
257}
258
259static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
260  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
261  if (!CI) return 0;
262  unsigned IdxV = CI->getZExtValue();
263
264  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
265    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
266  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
267    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
268  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
269    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
270  } else if (isa<ConstantAggregateZero>(Agg)) {
271    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
272      if (IdxV < STy->getNumElements())
273        return Constant::getNullValue(STy->getElementType(IdxV));
274    } else if (const SequentialType *STy =
275               dyn_cast<SequentialType>(Agg->getType())) {
276      return Constant::getNullValue(STy->getElementType());
277    }
278  } else if (isa<UndefValue>(Agg)) {
279    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
280      if (IdxV < STy->getNumElements())
281        return UndefValue::get(STy->getElementType(IdxV));
282    } else if (const SequentialType *STy =
283               dyn_cast<SequentialType>(Agg->getType())) {
284      return UndefValue::get(STy->getElementType());
285    }
286  }
287  return 0;
288}
289
290
291/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
292/// users of the global, cleaning up the obvious ones.  This is largely just a
293/// quick scan over the use list to clean up the easy and obvious cruft.  This
294/// returns true if it made a change.
295static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
296  bool Changed = false;
297  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
298    User *U = *UI++;
299
300    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
301      if (Init) {
302        // Replace the load with the initializer.
303        LI->replaceAllUsesWith(Init);
304        LI->eraseFromParent();
305        Changed = true;
306      }
307    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
308      // Store must be unreachable or storing Init into the global.
309      SI->eraseFromParent();
310      Changed = true;
311    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
312      if (CE->getOpcode() == Instruction::GetElementPtr) {
313        Constant *SubInit = 0;
314        if (Init)
315          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
316        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
317      } else if (CE->getOpcode() == Instruction::BitCast &&
318                 isa<PointerType>(CE->getType())) {
319        // Pointer cast, delete any stores and memsets to the global.
320        Changed |= CleanupConstantGlobalUsers(CE, 0);
321      }
322
323      if (CE->use_empty()) {
324        CE->destroyConstant();
325        Changed = true;
326      }
327    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
328      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
329      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
330      // and will invalidate our notion of what Init is.
331      Constant *SubInit = 0;
332      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
333        ConstantExpr *CE =
334          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
335        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
336          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
337      }
338      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
339
340      if (GEP->use_empty()) {
341        GEP->eraseFromParent();
342        Changed = true;
343      }
344    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
345      if (MI->getRawDest() == V) {
346        MI->eraseFromParent();
347        Changed = true;
348      }
349
350    } else if (Constant *C = dyn_cast<Constant>(U)) {
351      // If we have a chain of dead constantexprs or other things dangling from
352      // us, and if they are all dead, nuke them without remorse.
353      SmallPtrSet<GlobalVariable *, 4> DeadGVs;
354      if (ConstantIsDead(C, &DeadGVs)) {
355        for (SmallPtrSet<GlobalVariable *, 4>::iterator TI = DeadGVs.begin(),
356               TE = DeadGVs.end(); TI != TE; ) {
357          GlobalVariable *TGV = *TI; ++TI;
358          if (TGV == C)
359            C = NULL;
360          TGV->eraseFromParent();
361        }
362        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
363          GV->eraseFromParent();
364        else if (C)
365          C->destroyConstant();
366        // This could have invalidated UI, start over from scratch.
367        CleanupConstantGlobalUsers(V, Init);
368        return true;
369      }
370    }
371  }
372  return Changed;
373}
374
375/// isSafeSROAElementUse - Return true if the specified instruction is a safe
376/// user of a derived expression from a global that we want to SROA.
377static bool isSafeSROAElementUse(Value *V) {
378  // We might have a dead and dangling constant hanging off of here.
379  if (Constant *C = dyn_cast<Constant>(V))
380    return ConstantIsDead(C);
381
382  Instruction *I = dyn_cast<Instruction>(V);
383  if (!I) return false;
384
385  // Loads are ok.
386  if (isa<LoadInst>(I)) return true;
387
388  // Stores *to* the pointer are ok.
389  if (StoreInst *SI = dyn_cast<StoreInst>(I))
390    return SI->getOperand(0) != V;
391
392  // Otherwise, it must be a GEP.
393  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
394  if (GEPI == 0) return false;
395
396  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
397      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
398    return false;
399
400  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
401       I != E; ++I)
402    if (!isSafeSROAElementUse(*I))
403      return false;
404  return true;
405}
406
407
408/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
409/// Look at it and its uses and decide whether it is safe to SROA this global.
410///
411static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
412  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
413  if (!isa<GetElementPtrInst>(U) &&
414      (!isa<ConstantExpr>(U) ||
415       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
416    return false;
417
418  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
419  // don't like < 3 operand CE's, and we don't like non-constant integer
420  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
421  // value of C.
422  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
423      !cast<Constant>(U->getOperand(1))->isNullValue() ||
424      !isa<ConstantInt>(U->getOperand(2)))
425    return false;
426
427  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
428  ++GEPI;  // Skip over the pointer index.
429
430  // If this is a use of an array allocation, do a bit more checking for sanity.
431  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
432    uint64_t NumElements = AT->getNumElements();
433    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
434
435    // Check to make sure that index falls within the array.  If not,
436    // something funny is going on, so we won't do the optimization.
437    //
438    if (Idx->getZExtValue() >= NumElements)
439      return false;
440
441    // We cannot scalar repl this level of the array unless any array
442    // sub-indices are in-range constants.  In particular, consider:
443    // A[0][i].  We cannot know that the user isn't doing invalid things like
444    // allowing i to index an out-of-range subscript that accesses A[1].
445    //
446    // Scalar replacing *just* the outer index of the array is probably not
447    // going to be a win anyway, so just give up.
448    for (++GEPI; // Skip array index.
449         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
450         ++GEPI) {
451      uint64_t NumElements;
452      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
453        NumElements = SubArrayTy->getNumElements();
454      else
455        NumElements = cast<VectorType>(*GEPI)->getNumElements();
456
457      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
458      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
459        return false;
460    }
461  }
462
463  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
464    if (!isSafeSROAElementUse(*I))
465      return false;
466  return true;
467}
468
469/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
470/// is safe for us to perform this transformation.
471///
472static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
473  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
474       UI != E; ++UI) {
475    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
476      return false;
477  }
478  return true;
479}
480
481
482/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
483/// variable.  This opens the door for other optimizations by exposing the
484/// behavior of the program in a more fine-grained way.  We have determined that
485/// this transformation is safe already.  We return the first global variable we
486/// insert so that the caller can reprocess it.
487static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
488  // Make sure this global only has simple uses that we can SRA.
489  if (!GlobalUsersSafeToSRA(GV))
490    return 0;
491
492  assert(GV->hasLocalLinkage() && !GV->isConstant());
493  Constant *Init = GV->getInitializer();
494  const Type *Ty = Init->getType();
495
496  std::vector<GlobalVariable*> NewGlobals;
497  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
498
499  // Get the alignment of the global, either explicit or target-specific.
500  unsigned StartAlignment = GV->getAlignment();
501  if (StartAlignment == 0)
502    StartAlignment = TD.getABITypeAlignment(GV->getType());
503
504  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
505    NewGlobals.reserve(STy->getNumElements());
506    const StructLayout &Layout = *TD.getStructLayout(STy);
507    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
508      Constant *In = getAggregateConstantElement(Init,
509                                            ConstantInt::get(Type::Int32Ty, i));
510      assert(In && "Couldn't get element of initializer?");
511      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
512                                               GlobalVariable::InternalLinkage,
513                                               In, GV->getName()+"."+utostr(i),
514                                               (Module *)NULL,
515                                               GV->isThreadLocal(),
516                                               GV->getType()->getAddressSpace());
517      Globals.insert(GV, NGV);
518      NewGlobals.push_back(NGV);
519
520      // Calculate the known alignment of the field.  If the original aggregate
521      // had 256 byte alignment for example, something might depend on that:
522      // propagate info to each field.
523      uint64_t FieldOffset = Layout.getElementOffset(i);
524      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
525      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
526        NGV->setAlignment(NewAlign);
527    }
528  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
529    unsigned NumElements = 0;
530    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
531      NumElements = ATy->getNumElements();
532    else
533      NumElements = cast<VectorType>(STy)->getNumElements();
534
535    if (NumElements > 16 && GV->hasNUsesOrMore(16))
536      return 0; // It's not worth it.
537    NewGlobals.reserve(NumElements);
538
539    uint64_t EltSize = TD.getTypePaddedSize(STy->getElementType());
540    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
541    for (unsigned i = 0, e = NumElements; i != e; ++i) {
542      Constant *In = getAggregateConstantElement(Init,
543                                            ConstantInt::get(Type::Int32Ty, i));
544      assert(In && "Couldn't get element of initializer?");
545
546      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
547                                               GlobalVariable::InternalLinkage,
548                                               In, GV->getName()+"."+utostr(i),
549                                               (Module *)NULL,
550                                               GV->isThreadLocal(),
551                                               GV->getType()->getAddressSpace());
552      Globals.insert(GV, NGV);
553      NewGlobals.push_back(NGV);
554
555      // Calculate the known alignment of the field.  If the original aggregate
556      // had 256 byte alignment for example, something might depend on that:
557      // propagate info to each field.
558      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
559      if (NewAlign > EltAlign)
560        NGV->setAlignment(NewAlign);
561    }
562  }
563
564  if (NewGlobals.empty())
565    return 0;
566
567  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
568
569  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
570
571  // Loop over all of the uses of the global, replacing the constantexpr geps,
572  // with smaller constantexpr geps or direct references.
573  while (!GV->use_empty()) {
574    User *GEP = GV->use_back();
575    assert(((isa<ConstantExpr>(GEP) &&
576             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
577            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
578
579    // Ignore the 1th operand, which has to be zero or else the program is quite
580    // broken (undefined).  Get the 2nd operand, which is the structure or array
581    // index.
582    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
583    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
584
585    Value *NewPtr = NewGlobals[Val];
586
587    // Form a shorter GEP if needed.
588    if (GEP->getNumOperands() > 3) {
589      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
590        SmallVector<Constant*, 8> Idxs;
591        Idxs.push_back(NullInt);
592        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
593          Idxs.push_back(CE->getOperand(i));
594        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
595                                                &Idxs[0], Idxs.size());
596      } else {
597        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
598        SmallVector<Value*, 8> Idxs;
599        Idxs.push_back(NullInt);
600        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
601          Idxs.push_back(GEPI->getOperand(i));
602        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
603                                           GEPI->getName()+"."+utostr(Val), GEPI);
604      }
605    }
606    GEP->replaceAllUsesWith(NewPtr);
607
608    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
609      GEPI->eraseFromParent();
610    else
611      cast<ConstantExpr>(GEP)->destroyConstant();
612  }
613
614  // Delete the old global, now that it is dead.
615  Globals.erase(GV);
616  ++NumSRA;
617
618  // Loop over the new globals array deleting any globals that are obviously
619  // dead.  This can arise due to scalarization of a structure or an array that
620  // has elements that are dead.
621  unsigned FirstGlobal = 0;
622  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
623    if (NewGlobals[i]->use_empty()) {
624      Globals.erase(NewGlobals[i]);
625      if (FirstGlobal == i) ++FirstGlobal;
626    }
627
628  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
629}
630
631/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
632/// value will trap if the value is dynamically null.  PHIs keeps track of any
633/// phi nodes we've seen to avoid reprocessing them.
634static bool AllUsesOfValueWillTrapIfNull(Value *V,
635                                         SmallPtrSet<PHINode*, 8> &PHIs) {
636  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
637    if (isa<LoadInst>(*UI)) {
638      // Will trap.
639    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
640      if (SI->getOperand(0) == V) {
641        //cerr << "NONTRAPPING USE: " << **UI;
642        return false;  // Storing the value.
643      }
644    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
645      if (CI->getOperand(0) != V) {
646        //cerr << "NONTRAPPING USE: " << **UI;
647        return false;  // Not calling the ptr
648      }
649    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
650      if (II->getOperand(0) != V) {
651        //cerr << "NONTRAPPING USE: " << **UI;
652        return false;  // Not calling the ptr
653      }
654    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
655      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
656    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
657      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
658    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
659      // If we've already seen this phi node, ignore it, it has already been
660      // checked.
661      if (PHIs.insert(PN))
662        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
663    } else if (isa<ICmpInst>(*UI) &&
664               isa<ConstantPointerNull>(UI->getOperand(1))) {
665      // Ignore setcc X, null
666    } else {
667      //cerr << "NONTRAPPING USE: " << **UI;
668      return false;
669    }
670  return true;
671}
672
673/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
674/// from GV will trap if the loaded value is null.  Note that this also permits
675/// comparisons of the loaded value against null, as a special case.
676static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
677  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
678    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
679      SmallPtrSet<PHINode*, 8> PHIs;
680      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
681        return false;
682    } else if (isa<StoreInst>(*UI)) {
683      // Ignore stores to the global.
684    } else {
685      // We don't know or understand this user, bail out.
686      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
687      return false;
688    }
689
690  return true;
691}
692
693static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
694  bool Changed = false;
695  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
696    Instruction *I = cast<Instruction>(*UI++);
697    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
698      LI->setOperand(0, NewV);
699      Changed = true;
700    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
701      if (SI->getOperand(1) == V) {
702        SI->setOperand(1, NewV);
703        Changed = true;
704      }
705    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
706      if (I->getOperand(0) == V) {
707        // Calling through the pointer!  Turn into a direct call, but be careful
708        // that the pointer is not also being passed as an argument.
709        I->setOperand(0, NewV);
710        Changed = true;
711        bool PassedAsArg = false;
712        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
713          if (I->getOperand(i) == V) {
714            PassedAsArg = true;
715            I->setOperand(i, NewV);
716          }
717
718        if (PassedAsArg) {
719          // Being passed as an argument also.  Be careful to not invalidate UI!
720          UI = V->use_begin();
721        }
722      }
723    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
724      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
725                                ConstantExpr::getCast(CI->getOpcode(),
726                                                      NewV, CI->getType()));
727      if (CI->use_empty()) {
728        Changed = true;
729        CI->eraseFromParent();
730      }
731    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
732      // Should handle GEP here.
733      SmallVector<Constant*, 8> Idxs;
734      Idxs.reserve(GEPI->getNumOperands()-1);
735      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
736           i != e; ++i)
737        if (Constant *C = dyn_cast<Constant>(*i))
738          Idxs.push_back(C);
739        else
740          break;
741      if (Idxs.size() == GEPI->getNumOperands()-1)
742        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
743                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
744                                                               Idxs.size()));
745      if (GEPI->use_empty()) {
746        Changed = true;
747        GEPI->eraseFromParent();
748      }
749    }
750  }
751
752  return Changed;
753}
754
755
756/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
757/// value stored into it.  If there are uses of the loaded value that would trap
758/// if the loaded value is dynamically null, then we know that they cannot be
759/// reachable with a null optimize away the load.
760static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
761  bool Changed = false;
762
763  // Keep track of whether we are able to remove all the uses of the global
764  // other than the store that defines it.
765  bool AllNonStoreUsesGone = true;
766
767  // Replace all uses of loads with uses of uses of the stored value.
768  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
769    User *GlobalUser = *GUI++;
770    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
771      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
772      // If we were able to delete all uses of the loads
773      if (LI->use_empty()) {
774        LI->eraseFromParent();
775        Changed = true;
776      } else {
777        AllNonStoreUsesGone = false;
778      }
779    } else if (isa<StoreInst>(GlobalUser)) {
780      // Ignore the store that stores "LV" to the global.
781      assert(GlobalUser->getOperand(1) == GV &&
782             "Must be storing *to* the global");
783    } else {
784      AllNonStoreUsesGone = false;
785
786      // If we get here we could have other crazy uses that are transitively
787      // loaded.
788      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
789              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
790    }
791  }
792
793  if (Changed) {
794    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
795    ++NumGlobUses;
796  }
797
798  // If we nuked all of the loads, then none of the stores are needed either,
799  // nor is the global.
800  if (AllNonStoreUsesGone) {
801    DOUT << "  *** GLOBAL NOW DEAD!\n";
802    CleanupConstantGlobalUsers(GV, 0);
803    if (GV->use_empty()) {
804      GV->eraseFromParent();
805      ++NumDeleted;
806    }
807    Changed = true;
808  }
809  return Changed;
810}
811
812/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
813/// instructions that are foldable.
814static void ConstantPropUsersOf(Value *V) {
815  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
816    if (Instruction *I = dyn_cast<Instruction>(*UI++))
817      if (Constant *NewC = ConstantFoldInstruction(I)) {
818        I->replaceAllUsesWith(NewC);
819
820        // Advance UI to the next non-I use to avoid invalidating it!
821        // Instructions could multiply use V.
822        while (UI != E && *UI == I)
823          ++UI;
824        I->eraseFromParent();
825      }
826}
827
828/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
829/// variable, and transforms the program as if it always contained the result of
830/// the specified malloc.  Because it is always the result of the specified
831/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
832/// malloc into a global, and any loads of GV as uses of the new global.
833static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
834                                                     MallocInst *MI) {
835  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
836  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
837
838  if (NElements->getZExtValue() != 1) {
839    // If we have an array allocation, transform it to a single element
840    // allocation to make the code below simpler.
841    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
842                                 NElements->getZExtValue());
843    MallocInst *NewMI =
844      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
845                     MI->getAlignment(), MI->getName(), MI);
846    Value* Indices[2];
847    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
848    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
849                                              NewMI->getName()+".el0", MI);
850    MI->replaceAllUsesWith(NewGEP);
851    MI->eraseFromParent();
852    MI = NewMI;
853  }
854
855  // Create the new global variable.  The contents of the malloc'd memory is
856  // undefined, so initialize with an undef value.
857  Constant *Init = UndefValue::get(MI->getAllocatedType());
858  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
859                                             GlobalValue::InternalLinkage, Init,
860                                             GV->getName()+".body",
861                                             (Module *)NULL,
862                                             GV->isThreadLocal());
863  // FIXME: This new global should have the alignment returned by malloc.  Code
864  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
865  // this would only guarantee some lower alignment.
866  GV->getParent()->getGlobalList().insert(GV, NewGV);
867
868  // Anything that used the malloc now uses the global directly.
869  MI->replaceAllUsesWith(NewGV);
870
871  Constant *RepValue = NewGV;
872  if (NewGV->getType() != GV->getType()->getElementType())
873    RepValue = ConstantExpr::getBitCast(RepValue,
874                                        GV->getType()->getElementType());
875
876  // If there is a comparison against null, we will insert a global bool to
877  // keep track of whether the global was initialized yet or not.
878  GlobalVariable *InitBool =
879    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
880                       ConstantInt::getFalse(), GV->getName()+".init",
881                       (Module *)NULL, GV->isThreadLocal());
882  bool InitBoolUsed = false;
883
884  // Loop over all uses of GV, processing them in turn.
885  std::vector<StoreInst*> Stores;
886  while (!GV->use_empty())
887    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
888      while (!LI->use_empty()) {
889        Use &LoadUse = LI->use_begin().getUse();
890        if (!isa<ICmpInst>(LoadUse.getUser()))
891          LoadUse = RepValue;
892        else {
893          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
894          // Replace the cmp X, 0 with a use of the bool value.
895          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
896          InitBoolUsed = true;
897          switch (CI->getPredicate()) {
898          default: assert(0 && "Unknown ICmp Predicate!");
899          case ICmpInst::ICMP_ULT:
900          case ICmpInst::ICMP_SLT:
901            LV = ConstantInt::getFalse();   // X < null -> always false
902            break;
903          case ICmpInst::ICMP_ULE:
904          case ICmpInst::ICMP_SLE:
905          case ICmpInst::ICMP_EQ:
906            LV = BinaryOperator::CreateNot(LV, "notinit", CI);
907            break;
908          case ICmpInst::ICMP_NE:
909          case ICmpInst::ICMP_UGE:
910          case ICmpInst::ICMP_SGE:
911          case ICmpInst::ICMP_UGT:
912          case ICmpInst::ICMP_SGT:
913            break;  // no change.
914          }
915          CI->replaceAllUsesWith(LV);
916          CI->eraseFromParent();
917        }
918      }
919      LI->eraseFromParent();
920    } else {
921      StoreInst *SI = cast<StoreInst>(GV->use_back());
922      // The global is initialized when the store to it occurs.
923      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
924      SI->eraseFromParent();
925    }
926
927  // If the initialization boolean was used, insert it, otherwise delete it.
928  if (!InitBoolUsed) {
929    while (!InitBool->use_empty())  // Delete initializations
930      cast<Instruction>(InitBool->use_back())->eraseFromParent();
931    delete InitBool;
932  } else
933    GV->getParent()->getGlobalList().insert(GV, InitBool);
934
935
936  // Now the GV is dead, nuke it and the malloc.
937  GV->eraseFromParent();
938  MI->eraseFromParent();
939
940  // To further other optimizations, loop over all users of NewGV and try to
941  // constant prop them.  This will promote GEP instructions with constant
942  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
943  ConstantPropUsersOf(NewGV);
944  if (RepValue != NewGV)
945    ConstantPropUsersOf(RepValue);
946
947  return NewGV;
948}
949
950/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
951/// to make sure that there are no complex uses of V.  We permit simple things
952/// like dereferencing the pointer, but not storing through the address, unless
953/// it is to the specified global.
954static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
955                                                      GlobalVariable *GV,
956                                              SmallPtrSet<PHINode*, 8> &PHIs) {
957  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
958    Instruction *Inst = dyn_cast<Instruction>(*UI);
959    if (Inst == 0) return false;
960
961    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
962      continue; // Fine, ignore.
963    }
964
965    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
966      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
967        return false;  // Storing the pointer itself... bad.
968      continue; // Otherwise, storing through it, or storing into GV... fine.
969    }
970
971    if (isa<GetElementPtrInst>(Inst)) {
972      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
973        return false;
974      continue;
975    }
976
977    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
978      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
979      // cycles.
980      if (PHIs.insert(PN))
981        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
982          return false;
983      continue;
984    }
985
986    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
987      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
988        return false;
989      continue;
990    }
991
992    return false;
993  }
994  return true;
995}
996
997/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
998/// somewhere.  Transform all uses of the allocation into loads from the
999/// global and uses of the resultant pointer.  Further, delete the store into
1000/// GV.  This assumes that these value pass the
1001/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1002static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1003                                          GlobalVariable *GV) {
1004  while (!Alloc->use_empty()) {
1005    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1006    Instruction *InsertPt = U;
1007    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1008      // If this is the store of the allocation into the global, remove it.
1009      if (SI->getOperand(1) == GV) {
1010        SI->eraseFromParent();
1011        continue;
1012      }
1013    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1014      // Insert the load in the corresponding predecessor, not right before the
1015      // PHI.
1016      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1017    } else if (isa<BitCastInst>(U)) {
1018      // Must be bitcast between the malloc and store to initialize the global.
1019      ReplaceUsesOfMallocWithGlobal(U, GV);
1020      U->eraseFromParent();
1021      continue;
1022    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1023      // If this is a "GEP bitcast" and the user is a store to the global, then
1024      // just process it as a bitcast.
1025      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1026        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1027          if (SI->getOperand(1) == GV) {
1028            // Must be bitcast GEP between the malloc and store to initialize
1029            // the global.
1030            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1031            GEPI->eraseFromParent();
1032            continue;
1033          }
1034    }
1035
1036    // Insert a load from the global, and use it instead of the malloc.
1037    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1038    U->replaceUsesOfWith(Alloc, NL);
1039  }
1040}
1041
1042/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1043/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1044/// that index through the array and struct field, icmps of null, and PHIs.
1045static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1046                                     SmallPtrSet<PHINode*, 32> &LoadUsingPHIs) {
1047  // We permit two users of the load: setcc comparing against the null
1048  // pointer, and a getelementptr of a specific form.
1049  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1050    Instruction *User = cast<Instruction>(*UI);
1051
1052    // Comparison against null is ok.
1053    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1054      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1055        return false;
1056      continue;
1057    }
1058
1059    // getelementptr is also ok, but only a simple form.
1060    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1061      // Must index into the array and into the struct.
1062      if (GEPI->getNumOperands() < 3)
1063        return false;
1064
1065      // Otherwise the GEP is ok.
1066      continue;
1067    }
1068
1069    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1070      // If we have already recursively analyzed this PHI, then it is safe.
1071      if (LoadUsingPHIs.insert(PN))
1072        continue;
1073
1074      // Make sure all uses of the PHI are simple enough to transform.
1075      if (!LoadUsesSimpleEnoughForHeapSRA(PN, LoadUsingPHIs))
1076        return false;
1077
1078      continue;
1079    }
1080
1081    // Otherwise we don't know what this is, not ok.
1082    return false;
1083  }
1084
1085  return true;
1086}
1087
1088
1089/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1090/// GV are simple enough to perform HeapSRA, return true.
1091static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1092                                                    MallocInst *MI) {
1093  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1094  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1095       ++UI)
1096    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1097      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs))
1098        return false;
1099
1100  // If we reach here, we know that all uses of the loads and transitive uses
1101  // (through PHI nodes) are simple enough to transform.  However, we don't know
1102  // that all inputs the to the PHI nodes are in the same equivalence sets.
1103  // Check to verify that all operands of the PHIs are either PHIS that can be
1104  // transformed, loads from GV, or MI itself.
1105  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1106       E = LoadUsingPHIs.end(); I != E; ++I) {
1107    PHINode *PN = *I;
1108    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1109      Value *InVal = PN->getIncomingValue(op);
1110
1111      // PHI of the stored value itself is ok.
1112      if (InVal == MI) continue;
1113
1114      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1115        // One of the PHIs in our set is (optimistically) ok.
1116        if (LoadUsingPHIs.count(InPN))
1117          continue;
1118        return false;
1119      }
1120
1121      // Load from GV is ok.
1122      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1123        if (LI->getOperand(0) == GV)
1124          continue;
1125
1126      // UNDEF? NULL?
1127
1128      // Anything else is rejected.
1129      return false;
1130    }
1131  }
1132
1133  return true;
1134}
1135
1136static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1137               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1138                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1139  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1140
1141  if (FieldNo >= FieldVals.size())
1142    FieldVals.resize(FieldNo+1);
1143
1144  // If we already have this value, just reuse the previously scalarized
1145  // version.
1146  if (Value *FieldVal = FieldVals[FieldNo])
1147    return FieldVal;
1148
1149  // Depending on what instruction this is, we have several cases.
1150  Value *Result;
1151  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1152    // This is a scalarized version of the load from the global.  Just create
1153    // a new Load of the scalarized global.
1154    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1155                                           InsertedScalarizedValues,
1156                                           PHIsToRewrite),
1157                          LI->getName()+".f" + utostr(FieldNo), LI);
1158  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1159    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1160    // field.
1161    const StructType *ST =
1162      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1163
1164    Result =PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1165                            PN->getName()+".f"+utostr(FieldNo), PN);
1166    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1167  } else {
1168    assert(0 && "Unknown usable value");
1169    Result = 0;
1170  }
1171
1172  return FieldVals[FieldNo] = Result;
1173}
1174
1175/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1176/// the load, rewrite the derived value to use the HeapSRoA'd load.
1177static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1178             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1179                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1180  // If this is a comparison against null, handle it.
1181  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1182    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1183    // If we have a setcc of the loaded pointer, we can use a setcc of any
1184    // field.
1185    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1186                                   InsertedScalarizedValues, PHIsToRewrite);
1187
1188    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1189                              Constant::getNullValue(NPtr->getType()),
1190                              SCI->getName(), SCI);
1191    SCI->replaceAllUsesWith(New);
1192    SCI->eraseFromParent();
1193    return;
1194  }
1195
1196  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1197  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1198    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1199           && "Unexpected GEPI!");
1200
1201    // Load the pointer for this field.
1202    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1203    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1204                                     InsertedScalarizedValues, PHIsToRewrite);
1205
1206    // Create the new GEP idx vector.
1207    SmallVector<Value*, 8> GEPIdx;
1208    GEPIdx.push_back(GEPI->getOperand(1));
1209    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1210
1211    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1212                                             GEPIdx.begin(), GEPIdx.end(),
1213                                             GEPI->getName(), GEPI);
1214    GEPI->replaceAllUsesWith(NGEPI);
1215    GEPI->eraseFromParent();
1216    return;
1217  }
1218
1219  // Recursively transform the users of PHI nodes.  This will lazily create the
1220  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1221  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1222  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1223  // already been seen first by another load, so its uses have already been
1224  // processed.
1225  PHINode *PN = cast<PHINode>(LoadUser);
1226  bool Inserted;
1227  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1228  tie(InsertPos, Inserted) =
1229    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1230  if (!Inserted) return;
1231
1232  // If this is the first time we've seen this PHI, recursively process all
1233  // users.
1234  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1235    Instruction *User = cast<Instruction>(*UI++);
1236    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1237  }
1238}
1239
1240/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1241/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1242/// use FieldGlobals instead.  All uses of loaded values satisfy
1243/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1244static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1245               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1246                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1247  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1248       UI != E; ) {
1249    Instruction *User = cast<Instruction>(*UI++);
1250    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1251  }
1252
1253  if (Load->use_empty()) {
1254    Load->eraseFromParent();
1255    InsertedScalarizedValues.erase(Load);
1256  }
1257}
1258
1259/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1260/// it up into multiple allocations of arrays of the fields.
1261static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1262  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1263  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1264
1265  // There is guaranteed to be at least one use of the malloc (storing
1266  // it into GV).  If there are other uses, change them to be uses of
1267  // the global to simplify later code.  This also deletes the store
1268  // into GV.
1269  ReplaceUsesOfMallocWithGlobal(MI, GV);
1270
1271  // Okay, at this point, there are no users of the malloc.  Insert N
1272  // new mallocs at the same place as MI, and N globals.
1273  std::vector<Value*> FieldGlobals;
1274  std::vector<MallocInst*> FieldMallocs;
1275
1276  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1277    const Type *FieldTy = STy->getElementType(FieldNo);
1278    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1279
1280    GlobalVariable *NGV =
1281      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1282                         Constant::getNullValue(PFieldTy),
1283                         GV->getName() + ".f" + utostr(FieldNo), GV,
1284                         GV->isThreadLocal());
1285    FieldGlobals.push_back(NGV);
1286
1287    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1288                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1289    FieldMallocs.push_back(NMI);
1290    new StoreInst(NMI, NGV, MI);
1291  }
1292
1293  // The tricky aspect of this transformation is handling the case when malloc
1294  // fails.  In the original code, malloc failing would set the result pointer
1295  // of malloc to null.  In this case, some mallocs could succeed and others
1296  // could fail.  As such, we emit code that looks like this:
1297  //    F0 = malloc(field0)
1298  //    F1 = malloc(field1)
1299  //    F2 = malloc(field2)
1300  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1301  //      if (F0) { free(F0); F0 = 0; }
1302  //      if (F1) { free(F1); F1 = 0; }
1303  //      if (F2) { free(F2); F2 = 0; }
1304  //    }
1305  Value *RunningOr = 0;
1306  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1307    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1308                             Constant::getNullValue(FieldMallocs[i]->getType()),
1309                                  "isnull", MI);
1310    if (!RunningOr)
1311      RunningOr = Cond;   // First seteq
1312    else
1313      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1314  }
1315
1316  // Split the basic block at the old malloc.
1317  BasicBlock *OrigBB = MI->getParent();
1318  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1319
1320  // Create the block to check the first condition.  Put all these blocks at the
1321  // end of the function as they are unlikely to be executed.
1322  BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1323                                                OrigBB->getParent());
1324
1325  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1326  // branch on RunningOr.
1327  OrigBB->getTerminator()->eraseFromParent();
1328  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1329
1330  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1331  // pointer, because some may be null while others are not.
1332  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1333    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1334    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1335                              Constant::getNullValue(GVVal->getType()),
1336                              "tmp", NullPtrBlock);
1337    BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1338    BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1339    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1340
1341    // Fill in FreeBlock.
1342    new FreeInst(GVVal, FreeBlock);
1343    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1344                  FreeBlock);
1345    BranchInst::Create(NextBlock, FreeBlock);
1346
1347    NullPtrBlock = NextBlock;
1348  }
1349
1350  BranchInst::Create(ContBB, NullPtrBlock);
1351
1352  // MI is no longer needed, remove it.
1353  MI->eraseFromParent();
1354
1355  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1356  /// update all uses of the load, keep track of what scalarized loads are
1357  /// inserted for a given load.
1358  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1359  InsertedScalarizedValues[GV] = FieldGlobals;
1360
1361  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1362
1363  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1364  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1365  // of the per-field globals instead.
1366  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1367    Instruction *User = cast<Instruction>(*UI++);
1368
1369    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1370      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1371      continue;
1372    }
1373
1374    // Must be a store of null.
1375    StoreInst *SI = cast<StoreInst>(User);
1376    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1377           "Unexpected heap-sra user!");
1378
1379    // Insert a store of null into each global.
1380    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1381      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1382      Constant *Null = Constant::getNullValue(PT->getElementType());
1383      new StoreInst(Null, FieldGlobals[i], SI);
1384    }
1385    // Erase the original store.
1386    SI->eraseFromParent();
1387  }
1388
1389  // While we have PHIs that are interesting to rewrite, do it.
1390  while (!PHIsToRewrite.empty()) {
1391    PHINode *PN = PHIsToRewrite.back().first;
1392    unsigned FieldNo = PHIsToRewrite.back().second;
1393    PHIsToRewrite.pop_back();
1394    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1395    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1396
1397    // Add all the incoming values.  This can materialize more phis.
1398    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1399      Value *InVal = PN->getIncomingValue(i);
1400      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1401                               PHIsToRewrite);
1402      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1403    }
1404  }
1405
1406  // Drop all inter-phi links and any loads that made it this far.
1407  for (DenseMap<Value*, std::vector<Value*> >::iterator
1408       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1409       I != E; ++I) {
1410    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1411      PN->dropAllReferences();
1412    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1413      LI->dropAllReferences();
1414  }
1415
1416  // Delete all the phis and loads now that inter-references are dead.
1417  for (DenseMap<Value*, std::vector<Value*> >::iterator
1418       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1419       I != E; ++I) {
1420    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1421      PN->eraseFromParent();
1422    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1423      LI->eraseFromParent();
1424  }
1425
1426  // The old global is now dead, remove it.
1427  GV->eraseFromParent();
1428
1429  ++NumHeapSRA;
1430  return cast<GlobalVariable>(FieldGlobals[0]);
1431}
1432
1433/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1434/// pointer global variable with a single value stored it that is a malloc or
1435/// cast of malloc.
1436static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1437                                               MallocInst *MI,
1438                                               Module::global_iterator &GVI,
1439                                               TargetData &TD) {
1440  // If this is a malloc of an abstract type, don't touch it.
1441  if (!MI->getAllocatedType()->isSized())
1442    return false;
1443
1444  // We can't optimize this global unless all uses of it are *known* to be
1445  // of the malloc value, not of the null initializer value (consider a use
1446  // that compares the global's value against zero to see if the malloc has
1447  // been reached).  To do this, we check to see if all uses of the global
1448  // would trap if the global were null: this proves that they must all
1449  // happen after the malloc.
1450  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1451    return false;
1452
1453  // We can't optimize this if the malloc itself is used in a complex way,
1454  // for example, being stored into multiple globals.  This allows the
1455  // malloc to be stored into the specified global, loaded setcc'd, and
1456  // GEP'd.  These are all things we could transform to using the global
1457  // for.
1458  {
1459    SmallPtrSet<PHINode*, 8> PHIs;
1460    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1461      return false;
1462  }
1463
1464
1465  // If we have a global that is only initialized with a fixed size malloc,
1466  // transform the program to use global memory instead of malloc'd memory.
1467  // This eliminates dynamic allocation, avoids an indirection accessing the
1468  // data, and exposes the resultant global to further GlobalOpt.
1469  if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1470    // Restrict this transformation to only working on small allocations
1471    // (2048 bytes currently), as we don't want to introduce a 16M global or
1472    // something.
1473    if (NElements->getZExtValue()*
1474        TD.getTypePaddedSize(MI->getAllocatedType()) < 2048) {
1475      GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1476      return true;
1477    }
1478  }
1479
1480  // If the allocation is an array of structures, consider transforming this
1481  // into multiple malloc'd arrays, one for each field.  This is basically
1482  // SRoA for malloc'd memory.
1483  const Type *AllocTy = MI->getAllocatedType();
1484
1485  // If this is an allocation of a fixed size array of structs, analyze as a
1486  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1487  if (!MI->isArrayAllocation())
1488    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1489      AllocTy = AT->getElementType();
1490
1491  if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1492    // This the structure has an unreasonable number of fields, leave it
1493    // alone.
1494    if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1495        AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1496
1497      // If this is a fixed size array, transform the Malloc to be an alloc of
1498      // structs.  malloc [100 x struct],1 -> malloc struct, 100
1499      if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
1500        MallocInst *NewMI =
1501          new MallocInst(AllocSTy,
1502                         ConstantInt::get(Type::Int32Ty, AT->getNumElements()),
1503                         "", MI);
1504        NewMI->takeName(MI);
1505        Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
1506        MI->replaceAllUsesWith(Cast);
1507        MI->eraseFromParent();
1508        MI = NewMI;
1509      }
1510
1511      GVI = PerformHeapAllocSRoA(GV, MI);
1512      return true;
1513    }
1514  }
1515
1516  return false;
1517}
1518
1519// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1520// that only one value (besides its initializer) is ever stored to the global.
1521static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1522                                     Module::global_iterator &GVI,
1523                                     TargetData &TD) {
1524  // Ignore no-op GEPs and bitcasts.
1525  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1526
1527  // If we are dealing with a pointer global that is initialized to null and
1528  // only has one (non-null) value stored into it, then we can optimize any
1529  // users of the loaded value (often calls and loads) that would trap if the
1530  // value was null.
1531  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1532      GV->getInitializer()->isNullValue()) {
1533    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1534      if (GV->getInitializer()->getType() != SOVC->getType())
1535        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1536
1537      // Optimize away any trapping uses of the loaded value.
1538      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1539        return true;
1540    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1541      if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD))
1542        return true;
1543    }
1544  }
1545
1546  return false;
1547}
1548
1549/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1550/// two values ever stored into GV are its initializer and OtherVal.  See if we
1551/// can shrink the global into a boolean and select between the two values
1552/// whenever it is used.  This exposes the values to other scalar optimizations.
1553static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1554  const Type *GVElType = GV->getType()->getElementType();
1555
1556  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1557  // an FP value or vector, don't do this optimization because a select between
1558  // them is very expensive and unlikely to lead to later simplification.
1559  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1560      isa<VectorType>(GVElType))
1561    return false;
1562
1563  // Walk the use list of the global seeing if all the uses are load or store.
1564  // If there is anything else, bail out.
1565  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1566    if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !UserIsDebugInfo(*I))
1567      return false;
1568
1569  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1570
1571  // Create the new global, initializing it to false.
1572  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1573         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1574                                             GV->getName()+".b",
1575                                             (Module *)NULL,
1576                                             GV->isThreadLocal());
1577  GV->getParent()->getGlobalList().insert(GV, NewGV);
1578
1579  Constant *InitVal = GV->getInitializer();
1580  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1581
1582  // If initialized to zero and storing one into the global, we can use a cast
1583  // instead of a select to synthesize the desired value.
1584  bool IsOneZero = false;
1585  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1586    IsOneZero = InitVal->isNullValue() && CI->isOne();
1587
1588  while (!GV->use_empty()) {
1589    User *GVU = GV->use_back();
1590    if (StoreInst *SI = dyn_cast<StoreInst>(GVU)) {
1591      // Change the store into a boolean store.
1592      bool StoringOther = SI->getOperand(0) == OtherVal;
1593      // Only do this if we weren't storing a loaded value.
1594      Value *StoreVal;
1595      if (StoringOther || SI->getOperand(0) == InitVal)
1596        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1597      else {
1598        // Otherwise, we are storing a previously loaded copy.  To do this,
1599        // change the copy from copying the original value to just copying the
1600        // bool.
1601        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1602
1603        // If we're already replaced the input, StoredVal will be a cast or
1604        // select instruction.  If not, it will be a load of the original
1605        // global.
1606        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1607          assert(LI->getOperand(0) == GV && "Not a copy!");
1608          // Insert a new load, to preserve the saved value.
1609          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1610        } else {
1611          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1612                 "This is not a form that we understand!");
1613          StoreVal = StoredVal->getOperand(0);
1614          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1615        }
1616      }
1617      new StoreInst(StoreVal, NewGV, SI);
1618      SI->eraseFromParent();
1619    } else if (LoadInst *LI = dyn_cast<LoadInst>(GVU)) {
1620      // Change the load into a load of bool then a select.
1621      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1622      Value *NSI;
1623      if (IsOneZero)
1624        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1625      else
1626        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1627      NSI->takeName(LI);
1628      LI->replaceAllUsesWith(NSI);
1629      LI->eraseFromParent();
1630    } else
1631      RemoveDbgInfoUser(GVU);
1632  }
1633
1634  GV->eraseFromParent();
1635  return true;
1636}
1637
1638
1639/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1640/// it if possible.  If we make a change, return true.
1641bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1642                                      Module::global_iterator &GVI) {
1643  SmallPtrSet<PHINode*, 16> PHIUsers;
1644  GlobalStatus GS;
1645  GV->removeDeadConstantUsers();
1646
1647  if (GV->use_empty()) {
1648    DOUT << "GLOBAL DEAD: " << *GV;
1649    GV->eraseFromParent();
1650    ++NumDeleted;
1651    return true;
1652  }
1653
1654  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1655#if 0
1656    cerr << "Global: " << *GV;
1657    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1658    cerr << "  StoredType = ";
1659    switch (GS.StoredType) {
1660    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1661    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1662    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1663    case GlobalStatus::isStored: cerr << "stored\n"; break;
1664    }
1665    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1666      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1667    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1668      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1669                << "\n";
1670    cerr << "  HasMultipleAccessingFunctions =  "
1671              << GS.HasMultipleAccessingFunctions << "\n";
1672    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1673    cerr << "\n";
1674#endif
1675
1676    // If this is a first class global and has only one accessing function
1677    // and this function is main (which we know is not recursive we can make
1678    // this global a local variable) we replace the global with a local alloca
1679    // in this function.
1680    //
1681    // NOTE: It doesn't make sense to promote non single-value types since we
1682    // are just replacing static memory to stack memory.
1683    if (!GS.HasMultipleAccessingFunctions &&
1684        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1685        GV->getType()->getElementType()->isSingleValueType() &&
1686        GS.AccessingFunction->getName() == "main" &&
1687        GS.AccessingFunction->hasExternalLinkage()) {
1688      DOUT << "LOCALIZING GLOBAL: " << *GV;
1689      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1690      const Type* ElemTy = GV->getType()->getElementType();
1691      // FIXME: Pass Global's alignment when globals have alignment
1692      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1693      if (!isa<UndefValue>(GV->getInitializer()))
1694        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1695
1696      GV->replaceAllUsesWith(Alloca);
1697      GV->eraseFromParent();
1698      ++NumLocalized;
1699      return true;
1700    }
1701
1702    // If the global is never loaded (but may be stored to), it is dead.
1703    // Delete it now.
1704    if (!GS.isLoaded) {
1705      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1706
1707      // Delete any stores we can find to the global.  We may not be able to
1708      // make it completely dead though.
1709      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1710
1711      // If the global is dead now, delete it.
1712      if (GV->use_empty()) {
1713        GV->eraseFromParent();
1714        ++NumDeleted;
1715        Changed = true;
1716      }
1717      return Changed;
1718
1719    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1720      DOUT << "MARKING CONSTANT: " << *GV;
1721      GV->setConstant(true);
1722
1723      // Clean up any obviously simplifiable users now.
1724      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1725
1726      // If the global is dead now, just nuke it.
1727      if (GV->use_empty()) {
1728        DOUT << "   *** Marking constant allowed us to simplify "
1729             << "all users and delete global!\n";
1730        GV->eraseFromParent();
1731        ++NumDeleted;
1732      }
1733
1734      ++NumMarked;
1735      return true;
1736    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1737      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1738                                                 getAnalysis<TargetData>())) {
1739        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1740        return true;
1741      }
1742    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1743      // If the initial value for the global was an undef value, and if only
1744      // one other value was stored into it, we can just change the
1745      // initializer to be the stored value, then delete all stores to the
1746      // global.  This allows us to mark it constant.
1747      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1748        if (isa<UndefValue>(GV->getInitializer())) {
1749          // Change the initial value here.
1750          GV->setInitializer(SOVConstant);
1751
1752          // Clean up any obviously simplifiable users now.
1753          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1754
1755          if (GV->use_empty()) {
1756            DOUT << "   *** Substituting initializer allowed us to "
1757                 << "simplify all users and delete global!\n";
1758            GV->eraseFromParent();
1759            ++NumDeleted;
1760          } else {
1761            GVI = GV;
1762          }
1763          ++NumSubstitute;
1764          return true;
1765        }
1766
1767      // Try to optimize globals based on the knowledge that only one value
1768      // (besides its initializer) is ever stored to the global.
1769      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1770                                   getAnalysis<TargetData>()))
1771        return true;
1772
1773      // Otherwise, if the global was not a boolean, we can shrink it to be a
1774      // boolean.
1775      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1776        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1777          ++NumShrunkToBool;
1778          return true;
1779        }
1780    }
1781  }
1782  return false;
1783}
1784
1785/// OnlyCalledDirectly - Return true if the specified function is only called
1786/// directly.  In other words, its address is never taken.
1787static bool OnlyCalledDirectly(Function *F) {
1788  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1789    Instruction *User = dyn_cast<Instruction>(*UI);
1790    if (!User) return false;
1791    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1792
1793    // See if the function address is passed as an argument.
1794    for (User::op_iterator i = User->op_begin() + 1, e = User->op_end();
1795         i != e; ++i)
1796      if (*i == F) return false;
1797  }
1798  return true;
1799}
1800
1801/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1802/// function, changing them to FastCC.
1803static void ChangeCalleesToFastCall(Function *F) {
1804  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1805    CallSite User(cast<Instruction>(*UI));
1806    User.setCallingConv(CallingConv::Fast);
1807  }
1808}
1809
1810static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1811  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1812    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1813      continue;
1814
1815    // There can be only one.
1816    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1817  }
1818
1819  return Attrs;
1820}
1821
1822static void RemoveNestAttribute(Function *F) {
1823  F->setAttributes(StripNest(F->getAttributes()));
1824  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1825    CallSite User(cast<Instruction>(*UI));
1826    User.setAttributes(StripNest(User.getAttributes()));
1827  }
1828}
1829
1830bool GlobalOpt::OptimizeFunctions(Module &M) {
1831  bool Changed = false;
1832  // Optimize functions.
1833  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1834    Function *F = FI++;
1835    F->removeDeadConstantUsers();
1836    if (F->use_empty() && (F->hasLocalLinkage() ||
1837                           F->hasLinkOnceLinkage())) {
1838      M.getFunctionList().erase(F);
1839      Changed = true;
1840      ++NumFnDeleted;
1841    } else if (F->hasLocalLinkage()) {
1842      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1843          OnlyCalledDirectly(F)) {
1844        // If this function has C calling conventions, is not a varargs
1845        // function, and is only called directly, promote it to use the Fast
1846        // calling convention.
1847        F->setCallingConv(CallingConv::Fast);
1848        ChangeCalleesToFastCall(F);
1849        ++NumFastCallFns;
1850        Changed = true;
1851      }
1852
1853      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1854          OnlyCalledDirectly(F)) {
1855        // The function is not used by a trampoline intrinsic, so it is safe
1856        // to remove the 'nest' attribute.
1857        RemoveNestAttribute(F);
1858        ++NumNestRemoved;
1859        Changed = true;
1860      }
1861    }
1862  }
1863  return Changed;
1864}
1865
1866bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1867  bool Changed = false;
1868  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1869       GVI != E; ) {
1870    GlobalVariable *GV = GVI++;
1871    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1872        GV->hasInitializer())
1873      Changed |= ProcessInternalGlobal(GV, GVI);
1874  }
1875  return Changed;
1876}
1877
1878/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1879/// initializers have an init priority of 65535.
1880GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1881  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1882       I != E; ++I)
1883    if (I->getName() == "llvm.global_ctors") {
1884      // Found it, verify it's an array of { int, void()* }.
1885      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1886      if (!ATy) return 0;
1887      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1888      if (!STy || STy->getNumElements() != 2 ||
1889          STy->getElementType(0) != Type::Int32Ty) return 0;
1890      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1891      if (!PFTy) return 0;
1892      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1893      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1894          FTy->getNumParams() != 0)
1895        return 0;
1896
1897      // Verify that the initializer is simple enough for us to handle.
1898      if (!I->hasInitializer()) return 0;
1899      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1900      if (!CA) return 0;
1901      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1902        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1903          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1904            continue;
1905
1906          // Must have a function or null ptr.
1907          if (!isa<Function>(CS->getOperand(1)))
1908            return 0;
1909
1910          // Init priority must be standard.
1911          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1912          if (!CI || CI->getZExtValue() != 65535)
1913            return 0;
1914        } else {
1915          return 0;
1916        }
1917
1918      return I;
1919    }
1920  return 0;
1921}
1922
1923/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1924/// return a list of the functions and null terminator as a vector.
1925static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1926  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1927  std::vector<Function*> Result;
1928  Result.reserve(CA->getNumOperands());
1929  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1930    ConstantStruct *CS = cast<ConstantStruct>(*i);
1931    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1932  }
1933  return Result;
1934}
1935
1936/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1937/// specified array, returning the new global to use.
1938static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1939                                          const std::vector<Function*> &Ctors) {
1940  // If we made a change, reassemble the initializer list.
1941  std::vector<Constant*> CSVals;
1942  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1943  CSVals.push_back(0);
1944
1945  // Create the new init list.
1946  std::vector<Constant*> CAList;
1947  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1948    if (Ctors[i]) {
1949      CSVals[1] = Ctors[i];
1950    } else {
1951      const Type *FTy = FunctionType::get(Type::VoidTy,
1952                                          std::vector<const Type*>(), false);
1953      const PointerType *PFTy = PointerType::getUnqual(FTy);
1954      CSVals[1] = Constant::getNullValue(PFTy);
1955      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1956    }
1957    CAList.push_back(ConstantStruct::get(CSVals));
1958  }
1959
1960  // Create the array initializer.
1961  const Type *StructTy =
1962    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1963  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1964                                    CAList);
1965
1966  // If we didn't change the number of elements, don't create a new GV.
1967  if (CA->getType() == GCL->getInitializer()->getType()) {
1968    GCL->setInitializer(CA);
1969    return GCL;
1970  }
1971
1972  // Create the new global and insert it next to the existing list.
1973  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1974                                           GCL->getLinkage(), CA, "",
1975                                           (Module *)NULL,
1976                                           GCL->isThreadLocal());
1977  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1978  NGV->takeName(GCL);
1979
1980  // Nuke the old list, replacing any uses with the new one.
1981  if (!GCL->use_empty()) {
1982    Constant *V = NGV;
1983    if (V->getType() != GCL->getType())
1984      V = ConstantExpr::getBitCast(V, GCL->getType());
1985    GCL->replaceAllUsesWith(V);
1986  }
1987  GCL->eraseFromParent();
1988
1989  if (Ctors.size())
1990    return NGV;
1991  else
1992    return 0;
1993}
1994
1995
1996static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
1997                        Value *V) {
1998  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1999  Constant *R = ComputedValues[V];
2000  assert(R && "Reference to an uncomputed value!");
2001  return R;
2002}
2003
2004/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2005/// enough for us to understand.  In particular, if it is a cast of something,
2006/// we punt.  We basically just support direct accesses to globals and GEP's of
2007/// globals.  This should be kept up to date with CommitValueTo.
2008static bool isSimpleEnoughPointerToCommit(Constant *C) {
2009  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
2010    if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2011      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2012    return !GV->isDeclaration();  // reject external globals.
2013  }
2014  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2015    // Handle a constantexpr gep.
2016    if (CE->getOpcode() == Instruction::GetElementPtr &&
2017        isa<GlobalVariable>(CE->getOperand(0))) {
2018      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2019      if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2020        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2021      return GV->hasInitializer() &&
2022             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2023    }
2024  return false;
2025}
2026
2027/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2028/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2029/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2030static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2031                                   ConstantExpr *Addr, unsigned OpNo) {
2032  // Base case of the recursion.
2033  if (OpNo == Addr->getNumOperands()) {
2034    assert(Val->getType() == Init->getType() && "Type mismatch!");
2035    return Val;
2036  }
2037
2038  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2039    std::vector<Constant*> Elts;
2040
2041    // Break up the constant into its elements.
2042    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2043      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2044        Elts.push_back(cast<Constant>(*i));
2045    } else if (isa<ConstantAggregateZero>(Init)) {
2046      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2047        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2048    } else if (isa<UndefValue>(Init)) {
2049      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2050        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2051    } else {
2052      assert(0 && "This code is out of sync with "
2053             " ConstantFoldLoadThroughGEPConstantExpr");
2054    }
2055
2056    // Replace the element that we are supposed to.
2057    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2058    unsigned Idx = CU->getZExtValue();
2059    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2060    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2061
2062    // Return the modified struct.
2063    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
2064  } else {
2065    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2066    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2067
2068    // Break up the array into elements.
2069    std::vector<Constant*> Elts;
2070    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2071      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2072        Elts.push_back(cast<Constant>(*i));
2073    } else if (isa<ConstantAggregateZero>(Init)) {
2074      Constant *Elt = Constant::getNullValue(ATy->getElementType());
2075      Elts.assign(ATy->getNumElements(), Elt);
2076    } else if (isa<UndefValue>(Init)) {
2077      Constant *Elt = UndefValue::get(ATy->getElementType());
2078      Elts.assign(ATy->getNumElements(), Elt);
2079    } else {
2080      assert(0 && "This code is out of sync with "
2081             " ConstantFoldLoadThroughGEPConstantExpr");
2082    }
2083
2084    assert(CI->getZExtValue() < ATy->getNumElements());
2085    Elts[CI->getZExtValue()] =
2086      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2087    return ConstantArray::get(ATy, Elts);
2088  }
2089}
2090
2091/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2092/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2093static void CommitValueTo(Constant *Val, Constant *Addr) {
2094  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2095    assert(GV->hasInitializer());
2096    GV->setInitializer(Val);
2097    return;
2098  }
2099
2100  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2101  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2102
2103  Constant *Init = GV->getInitializer();
2104  Init = EvaluateStoreInto(Init, Val, CE, 2);
2105  GV->setInitializer(Init);
2106}
2107
2108/// ComputeLoadResult - Return the value that would be computed by a load from
2109/// P after the stores reflected by 'memory' have been performed.  If we can't
2110/// decide, return null.
2111static Constant *ComputeLoadResult(Constant *P,
2112                                const DenseMap<Constant*, Constant*> &Memory) {
2113  // If this memory location has been recently stored, use the stored value: it
2114  // is the most up-to-date.
2115  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2116  if (I != Memory.end()) return I->second;
2117
2118  // Access it.
2119  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2120    if (GV->hasInitializer())
2121      return GV->getInitializer();
2122    return 0;
2123  }
2124
2125  // Handle a constantexpr getelementptr.
2126  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2127    if (CE->getOpcode() == Instruction::GetElementPtr &&
2128        isa<GlobalVariable>(CE->getOperand(0))) {
2129      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2130      if (GV->hasInitializer())
2131        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2132    }
2133
2134  return 0;  // don't know how to evaluate.
2135}
2136
2137/// EvaluateFunction - Evaluate a call to function F, returning true if
2138/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2139/// arguments for the function.
2140static bool EvaluateFunction(Function *F, Constant *&RetVal,
2141                             const std::vector<Constant*> &ActualArgs,
2142                             std::vector<Function*> &CallStack,
2143                             DenseMap<Constant*, Constant*> &MutatedMemory,
2144                             std::vector<GlobalVariable*> &AllocaTmps) {
2145  // Check to see if this function is already executing (recursion).  If so,
2146  // bail out.  TODO: we might want to accept limited recursion.
2147  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2148    return false;
2149
2150  CallStack.push_back(F);
2151
2152  /// Values - As we compute SSA register values, we store their contents here.
2153  DenseMap<Value*, Constant*> Values;
2154
2155  // Initialize arguments to the incoming values specified.
2156  unsigned ArgNo = 0;
2157  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2158       ++AI, ++ArgNo)
2159    Values[AI] = ActualArgs[ArgNo];
2160
2161  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2162  /// we can only evaluate any one basic block at most once.  This set keeps
2163  /// track of what we have executed so we can detect recursive cases etc.
2164  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2165
2166  // CurInst - The current instruction we're evaluating.
2167  BasicBlock::iterator CurInst = F->begin()->begin();
2168
2169  // This is the main evaluation loop.
2170  while (1) {
2171    Constant *InstResult = 0;
2172
2173    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2174      if (SI->isVolatile()) return false;  // no volatile accesses.
2175      Constant *Ptr = getVal(Values, SI->getOperand(1));
2176      if (!isSimpleEnoughPointerToCommit(Ptr))
2177        // If this is too complex for us to commit, reject it.
2178        return false;
2179      Constant *Val = getVal(Values, SI->getOperand(0));
2180      MutatedMemory[Ptr] = Val;
2181    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2182      InstResult = ConstantExpr::get(BO->getOpcode(),
2183                                     getVal(Values, BO->getOperand(0)),
2184                                     getVal(Values, BO->getOperand(1)));
2185    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2186      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2187                                            getVal(Values, CI->getOperand(0)),
2188                                            getVal(Values, CI->getOperand(1)));
2189    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2190      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2191                                         getVal(Values, CI->getOperand(0)),
2192                                         CI->getType());
2193    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2194      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2195                                           getVal(Values, SI->getOperand(1)),
2196                                           getVal(Values, SI->getOperand(2)));
2197    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2198      Constant *P = getVal(Values, GEP->getOperand(0));
2199      SmallVector<Constant*, 8> GEPOps;
2200      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2201           i != e; ++i)
2202        GEPOps.push_back(getVal(Values, *i));
2203      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2204    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2205      if (LI->isVolatile()) return false;  // no volatile accesses.
2206      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2207                                     MutatedMemory);
2208      if (InstResult == 0) return false; // Could not evaluate load.
2209    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2210      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2211      const Type *Ty = AI->getType()->getElementType();
2212      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2213                                              GlobalValue::InternalLinkage,
2214                                              UndefValue::get(Ty),
2215                                              AI->getName()));
2216      InstResult = AllocaTmps.back();
2217    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2218      // Cannot handle inline asm.
2219      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2220
2221      // Resolve function pointers.
2222      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2223      if (!Callee) return false;  // Cannot resolve.
2224
2225      std::vector<Constant*> Formals;
2226      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2227           i != e; ++i)
2228        Formals.push_back(getVal(Values, *i));
2229
2230      if (Callee->isDeclaration()) {
2231        // If this is a function we can constant fold, do it.
2232        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2233                                           Formals.size())) {
2234          InstResult = C;
2235        } else {
2236          return false;
2237        }
2238      } else {
2239        if (Callee->getFunctionType()->isVarArg())
2240          return false;
2241
2242        Constant *RetVal;
2243
2244        // Execute the call, if successful, use the return value.
2245        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2246                              MutatedMemory, AllocaTmps))
2247          return false;
2248        InstResult = RetVal;
2249      }
2250    } else if (isa<TerminatorInst>(CurInst)) {
2251      BasicBlock *NewBB = 0;
2252      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2253        if (BI->isUnconditional()) {
2254          NewBB = BI->getSuccessor(0);
2255        } else {
2256          ConstantInt *Cond =
2257            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2258          if (!Cond) return false;  // Cannot determine.
2259
2260          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2261        }
2262      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2263        ConstantInt *Val =
2264          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2265        if (!Val) return false;  // Cannot determine.
2266        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2267      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2268        if (RI->getNumOperands())
2269          RetVal = getVal(Values, RI->getOperand(0));
2270
2271        CallStack.pop_back();  // return from fn.
2272        return true;  // We succeeded at evaluating this ctor!
2273      } else {
2274        // invoke, unwind, unreachable.
2275        return false;  // Cannot handle this terminator.
2276      }
2277
2278      // Okay, we succeeded in evaluating this control flow.  See if we have
2279      // executed the new block before.  If so, we have a looping function,
2280      // which we cannot evaluate in reasonable time.
2281      if (!ExecutedBlocks.insert(NewBB))
2282        return false;  // looped!
2283
2284      // Okay, we have never been in this block before.  Check to see if there
2285      // are any PHI nodes.  If so, evaluate them with information about where
2286      // we came from.
2287      BasicBlock *OldBB = CurInst->getParent();
2288      CurInst = NewBB->begin();
2289      PHINode *PN;
2290      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2291        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2292
2293      // Do NOT increment CurInst.  We know that the terminator had no value.
2294      continue;
2295    } else {
2296      // Did not know how to evaluate this!
2297      return false;
2298    }
2299
2300    if (!CurInst->use_empty())
2301      Values[CurInst] = InstResult;
2302
2303    // Advance program counter.
2304    ++CurInst;
2305  }
2306}
2307
2308/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2309/// we can.  Return true if we can, false otherwise.
2310static bool EvaluateStaticConstructor(Function *F) {
2311  /// MutatedMemory - For each store we execute, we update this map.  Loads
2312  /// check this to get the most up-to-date value.  If evaluation is successful,
2313  /// this state is committed to the process.
2314  DenseMap<Constant*, Constant*> MutatedMemory;
2315
2316  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2317  /// to represent its body.  This vector is needed so we can delete the
2318  /// temporary globals when we are done.
2319  std::vector<GlobalVariable*> AllocaTmps;
2320
2321  /// CallStack - This is used to detect recursion.  In pathological situations
2322  /// we could hit exponential behavior, but at least there is nothing
2323  /// unbounded.
2324  std::vector<Function*> CallStack;
2325
2326  // Call the function.
2327  Constant *RetValDummy;
2328  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2329                                       CallStack, MutatedMemory, AllocaTmps);
2330  if (EvalSuccess) {
2331    // We succeeded at evaluation: commit the result.
2332    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2333         << F->getName() << "' to " << MutatedMemory.size()
2334         << " stores.\n";
2335    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2336         E = MutatedMemory.end(); I != E; ++I)
2337      CommitValueTo(I->second, I->first);
2338  }
2339
2340  // At this point, we are done interpreting.  If we created any 'alloca'
2341  // temporaries, release them now.
2342  while (!AllocaTmps.empty()) {
2343    GlobalVariable *Tmp = AllocaTmps.back();
2344    AllocaTmps.pop_back();
2345
2346    // If there are still users of the alloca, the program is doing something
2347    // silly, e.g. storing the address of the alloca somewhere and using it
2348    // later.  Since this is undefined, we'll just make it be null.
2349    if (!Tmp->use_empty())
2350      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2351    delete Tmp;
2352  }
2353
2354  return EvalSuccess;
2355}
2356
2357
2358
2359/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2360/// Return true if anything changed.
2361bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2362  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2363  bool MadeChange = false;
2364  if (Ctors.empty()) return false;
2365
2366  // Loop over global ctors, optimizing them when we can.
2367  for (unsigned i = 0; i != Ctors.size(); ++i) {
2368    Function *F = Ctors[i];
2369    // Found a null terminator in the middle of the list, prune off the rest of
2370    // the list.
2371    if (F == 0) {
2372      if (i != Ctors.size()-1) {
2373        Ctors.resize(i+1);
2374        MadeChange = true;
2375      }
2376      break;
2377    }
2378
2379    // We cannot simplify external ctor functions.
2380    if (F->empty()) continue;
2381
2382    // If we can evaluate the ctor at compile time, do.
2383    if (EvaluateStaticConstructor(F)) {
2384      Ctors.erase(Ctors.begin()+i);
2385      MadeChange = true;
2386      --i;
2387      ++NumCtorsEvaluated;
2388      continue;
2389    }
2390  }
2391
2392  if (!MadeChange) return false;
2393
2394  GCL = InstallGlobalCtors(GCL, Ctors);
2395  return true;
2396}
2397
2398bool GlobalOpt::ResolveAliases(Module &M) {
2399  bool Changed = false;
2400
2401  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2402       I != E;) {
2403    Module::alias_iterator J = I++;
2404    // If the aliasee may change at link time, nothing can be done - bail out.
2405    if (J->mayBeOverridden())
2406      continue;
2407
2408    Constant *Aliasee = J->getAliasee();
2409    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2410    Target->removeDeadConstantUsers();
2411    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2412
2413    // Make all users of the alias use the aliasee instead.
2414    if (!J->use_empty()) {
2415      J->replaceAllUsesWith(Aliasee);
2416      ++NumAliasesResolved;
2417      Changed = true;
2418    }
2419
2420    // If the aliasee has internal linkage, give it the name and linkage
2421    // of the alias, and delete the alias.  This turns:
2422    //   define internal ... @f(...)
2423    //   @a = alias ... @f
2424    // into:
2425    //   define ... @a(...)
2426    if (!Target->hasLocalLinkage())
2427      continue;
2428
2429    // The transform is only useful if the alias does not have internal linkage.
2430    if (J->hasLocalLinkage())
2431      continue;
2432
2433    // Do not perform the transform if multiple aliases potentially target the
2434    // aliasee.  This check also ensures that it is safe to replace the section
2435    // and other attributes of the aliasee with those of the alias.
2436    if (!hasOneUse)
2437      continue;
2438
2439    // Give the aliasee the name, linkage and other attributes of the alias.
2440    Target->takeName(J);
2441    Target->setLinkage(J->getLinkage());
2442    Target->GlobalValue::copyAttributesFrom(J);
2443
2444    // Delete the alias.
2445    M.getAliasList().erase(J);
2446    ++NumAliasesRemoved;
2447    Changed = true;
2448  }
2449
2450  return Changed;
2451}
2452
2453bool GlobalOpt::runOnModule(Module &M) {
2454  bool Changed = false;
2455
2456  // Try to find the llvm.globalctors list.
2457  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2458
2459  bool LocalChange = true;
2460  while (LocalChange) {
2461    LocalChange = false;
2462
2463    // Delete functions that are trivially dead, ccc -> fastcc
2464    LocalChange |= OptimizeFunctions(M);
2465
2466    // Optimize global_ctors list.
2467    if (GlobalCtors)
2468      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2469
2470    // Optimize non-address-taken globals.
2471    LocalChange |= OptimizeGlobalVars(M);
2472
2473    // Resolve aliases, when possible.
2474    LocalChange |= ResolveAliases(M);
2475    Changed |= LocalChange;
2476  }
2477
2478  // TODO: Move all global ctors functions to the end of the module for code
2479  // layout.
2480
2481  return Changed;
2482}
2483