GlobalOpt.cpp revision 1c8733e1fd69e634daaa7fefd0d1436b846a8eb3
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringExtras.h"
35#include <algorithm>
36#include <set>
37using namespace llvm;
38
39STATISTIC(NumMarked    , "Number of globals marked constant");
40STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
41STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
42STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
43STATISTIC(NumDeleted   , "Number of globals deleted");
44STATISTIC(NumFnDeleted , "Number of functions deleted");
45STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
46STATISTIC(NumLocalized , "Number of globals localized");
47STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
48STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
49STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
50STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
51
52namespace {
53  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.addRequired<TargetData>();
56    }
57    static char ID; // Pass identification, replacement for typeid
58    GlobalOpt() : ModulePass((intptr_t)&ID) {}
59
60    bool runOnModule(Module &M);
61
62  private:
63    GlobalVariable *FindGlobalCtors(Module &M);
64    bool OptimizeFunctions(Module &M);
65    bool OptimizeGlobalVars(Module &M);
66    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
67    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
68  };
69
70  char GlobalOpt::ID = 0;
71  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
72}
73
74ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
75
76/// GlobalStatus - As we analyze each global, keep track of some information
77/// about it.  If we find out that the address of the global is taken, none of
78/// this info will be accurate.
79struct VISIBILITY_HIDDEN GlobalStatus {
80  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
81  /// loaded it can be deleted.
82  bool isLoaded;
83
84  /// StoredType - Keep track of what stores to the global look like.
85  ///
86  enum StoredType {
87    /// NotStored - There is no store to this global.  It can thus be marked
88    /// constant.
89    NotStored,
90
91    /// isInitializerStored - This global is stored to, but the only thing
92    /// stored is the constant it was initialized with.  This is only tracked
93    /// for scalar globals.
94    isInitializerStored,
95
96    /// isStoredOnce - This global is stored to, but only its initializer and
97    /// one other value is ever stored to it.  If this global isStoredOnce, we
98    /// track the value stored to it in StoredOnceValue below.  This is only
99    /// tracked for scalar globals.
100    isStoredOnce,
101
102    /// isStored - This global is stored to by multiple values or something else
103    /// that we cannot track.
104    isStored
105  } StoredType;
106
107  /// StoredOnceValue - If only one value (besides the initializer constant) is
108  /// ever stored to this global, keep track of what value it is.
109  Value *StoredOnceValue;
110
111  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
112  /// null/false.  When the first accessing function is noticed, it is recorded.
113  /// When a second different accessing function is noticed,
114  /// HasMultipleAccessingFunctions is set to true.
115  Function *AccessingFunction;
116  bool HasMultipleAccessingFunctions;
117
118  /// HasNonInstructionUser - Set to true if this global has a user that is not
119  /// an instruction (e.g. a constant expr or GV initializer).
120  bool HasNonInstructionUser;
121
122  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
123  bool HasPHIUser;
124
125  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
126                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
127                   HasNonInstructionUser(false), HasPHIUser(false) {}
128};
129
130
131
132/// ConstantIsDead - Return true if the specified constant is (transitively)
133/// dead.  The constant may be used by other constants (e.g. constant arrays and
134/// constant exprs) as long as they are dead, but it cannot be used by anything
135/// else.
136static bool ConstantIsDead(Constant *C) {
137  if (isa<GlobalValue>(C)) return false;
138
139  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
140    if (Constant *CU = dyn_cast<Constant>(*UI)) {
141      if (!ConstantIsDead(CU)) return false;
142    } else
143      return false;
144  return true;
145}
146
147
148/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
149/// structure.  If the global has its address taken, return true to indicate we
150/// can't do anything with it.
151///
152static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
153                          std::set<PHINode*> &PHIUsers) {
154  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
155    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
156      GS.HasNonInstructionUser = true;
157
158      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
159
160    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
161      if (!GS.HasMultipleAccessingFunctions) {
162        Function *F = I->getParent()->getParent();
163        if (GS.AccessingFunction == 0)
164          GS.AccessingFunction = F;
165        else if (GS.AccessingFunction != F)
166          GS.HasMultipleAccessingFunctions = true;
167      }
168      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
169        GS.isLoaded = true;
170        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
171      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
172        // Don't allow a store OF the address, only stores TO the address.
173        if (SI->getOperand(0) == V) return true;
174
175        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
176
177        // If this is a direct store to the global (i.e., the global is a scalar
178        // value, not an aggregate), keep more specific information about
179        // stores.
180        if (GS.StoredType != GlobalStatus::isStored) {
181          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
182            Value *StoredVal = SI->getOperand(0);
183            if (StoredVal == GV->getInitializer()) {
184              if (GS.StoredType < GlobalStatus::isInitializerStored)
185                GS.StoredType = GlobalStatus::isInitializerStored;
186            } else if (isa<LoadInst>(StoredVal) &&
187                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
188              // G = G
189              if (GS.StoredType < GlobalStatus::isInitializerStored)
190                GS.StoredType = GlobalStatus::isInitializerStored;
191            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
192              GS.StoredType = GlobalStatus::isStoredOnce;
193              GS.StoredOnceValue = StoredVal;
194            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
195                       GS.StoredOnceValue == StoredVal) {
196              // noop.
197            } else {
198              GS.StoredType = GlobalStatus::isStored;
199            }
200          } else {
201            GS.StoredType = GlobalStatus::isStored;
202          }
203        }
204      } else if (isa<GetElementPtrInst>(I)) {
205        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
206      } else if (isa<SelectInst>(I)) {
207        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
208      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
209        // PHI nodes we can check just like select or GEP instructions, but we
210        // have to be careful about infinite recursion.
211        if (PHIUsers.insert(PN).second)  // Not already visited.
212          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
213        GS.HasPHIUser = true;
214      } else if (isa<CmpInst>(I)) {
215      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
216        if (I->getOperand(1) == V)
217          GS.StoredType = GlobalStatus::isStored;
218        if (I->getOperand(2) == V)
219          GS.isLoaded = true;
220      } else if (isa<MemSetInst>(I)) {
221        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
222        GS.StoredType = GlobalStatus::isStored;
223      } else {
224        return true;  // Any other non-load instruction might take address!
225      }
226    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
227      GS.HasNonInstructionUser = true;
228      // We might have a dead and dangling constant hanging off of here.
229      if (!ConstantIsDead(C))
230        return true;
231    } else {
232      GS.HasNonInstructionUser = true;
233      // Otherwise must be some other user.
234      return true;
235    }
236
237  return false;
238}
239
240static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
241  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
242  if (!CI) return 0;
243  unsigned IdxV = CI->getZExtValue();
244
245  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
246    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
247  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
248    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
249  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
250    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
251  } else if (isa<ConstantAggregateZero>(Agg)) {
252    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
253      if (IdxV < STy->getNumElements())
254        return Constant::getNullValue(STy->getElementType(IdxV));
255    } else if (const SequentialType *STy =
256               dyn_cast<SequentialType>(Agg->getType())) {
257      return Constant::getNullValue(STy->getElementType());
258    }
259  } else if (isa<UndefValue>(Agg)) {
260    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
261      if (IdxV < STy->getNumElements())
262        return UndefValue::get(STy->getElementType(IdxV));
263    } else if (const SequentialType *STy =
264               dyn_cast<SequentialType>(Agg->getType())) {
265      return UndefValue::get(STy->getElementType());
266    }
267  }
268  return 0;
269}
270
271
272/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
273/// users of the global, cleaning up the obvious ones.  This is largely just a
274/// quick scan over the use list to clean up the easy and obvious cruft.  This
275/// returns true if it made a change.
276static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
277  bool Changed = false;
278  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
279    User *U = *UI++;
280
281    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
282      if (Init) {
283        // Replace the load with the initializer.
284        LI->replaceAllUsesWith(Init);
285        LI->eraseFromParent();
286        Changed = true;
287      }
288    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
289      // Store must be unreachable or storing Init into the global.
290      SI->eraseFromParent();
291      Changed = true;
292    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
293      if (CE->getOpcode() == Instruction::GetElementPtr) {
294        Constant *SubInit = 0;
295        if (Init)
296          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
297        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
298      } else if (CE->getOpcode() == Instruction::BitCast &&
299                 isa<PointerType>(CE->getType())) {
300        // Pointer cast, delete any stores and memsets to the global.
301        Changed |= CleanupConstantGlobalUsers(CE, 0);
302      }
303
304      if (CE->use_empty()) {
305        CE->destroyConstant();
306        Changed = true;
307      }
308    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
309      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
310      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
311      // and will invalidate our notion of what Init is.
312      Constant *SubInit = 0;
313      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
314        ConstantExpr *CE =
315          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
316        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
317          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
318      }
319      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
320
321      if (GEP->use_empty()) {
322        GEP->eraseFromParent();
323        Changed = true;
324      }
325    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
326      if (MI->getRawDest() == V) {
327        MI->eraseFromParent();
328        Changed = true;
329      }
330
331    } else if (Constant *C = dyn_cast<Constant>(U)) {
332      // If we have a chain of dead constantexprs or other things dangling from
333      // us, and if they are all dead, nuke them without remorse.
334      if (ConstantIsDead(C)) {
335        C->destroyConstant();
336        // This could have invalidated UI, start over from scratch.
337        CleanupConstantGlobalUsers(V, Init);
338        return true;
339      }
340    }
341  }
342  return Changed;
343}
344
345/// isSafeSROAElementUse - Return true if the specified instruction is a safe
346/// user of a derived expression from a global that we want to SROA.
347static bool isSafeSROAElementUse(Value *V) {
348  // We might have a dead and dangling constant hanging off of here.
349  if (Constant *C = dyn_cast<Constant>(V))
350    return ConstantIsDead(C);
351
352  Instruction *I = dyn_cast<Instruction>(V);
353  if (!I) return false;
354
355  // Loads are ok.
356  if (isa<LoadInst>(I)) return true;
357
358  // Stores *to* the pointer are ok.
359  if (StoreInst *SI = dyn_cast<StoreInst>(I))
360    return SI->getOperand(0) != V;
361
362  // Otherwise, it must be a GEP.
363  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
364  if (GEPI == 0) return false;
365
366  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
367      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
368    return false;
369
370  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
371       I != E; ++I)
372    if (!isSafeSROAElementUse(*I))
373      return false;
374  return true;
375}
376
377
378/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
379/// Look at it and its uses and decide whether it is safe to SROA this global.
380///
381static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
382  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
383  if (!isa<GetElementPtrInst>(U) &&
384      (!isa<ConstantExpr>(U) ||
385       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
386    return false;
387
388  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
389  // don't like < 3 operand CE's, and we don't like non-constant integer
390  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
391  // value of C.
392  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
393      !cast<Constant>(U->getOperand(1))->isNullValue() ||
394      !isa<ConstantInt>(U->getOperand(2)))
395    return false;
396
397  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
398  ++GEPI;  // Skip over the pointer index.
399
400  // If this is a use of an array allocation, do a bit more checking for sanity.
401  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
402    uint64_t NumElements = AT->getNumElements();
403    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
404
405    // Check to make sure that index falls within the array.  If not,
406    // something funny is going on, so we won't do the optimization.
407    //
408    if (Idx->getZExtValue() >= NumElements)
409      return false;
410
411    // We cannot scalar repl this level of the array unless any array
412    // sub-indices are in-range constants.  In particular, consider:
413    // A[0][i].  We cannot know that the user isn't doing invalid things like
414    // allowing i to index an out-of-range subscript that accesses A[1].
415    //
416    // Scalar replacing *just* the outer index of the array is probably not
417    // going to be a win anyway, so just give up.
418    for (++GEPI; // Skip array index.
419         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
420         ++GEPI) {
421      uint64_t NumElements;
422      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
423        NumElements = SubArrayTy->getNumElements();
424      else
425        NumElements = cast<VectorType>(*GEPI)->getNumElements();
426
427      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
428      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
429        return false;
430    }
431  }
432
433  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
434    if (!isSafeSROAElementUse(*I))
435      return false;
436  return true;
437}
438
439/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
440/// is safe for us to perform this transformation.
441///
442static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
443  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
444       UI != E; ++UI) {
445    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
446      return false;
447  }
448  return true;
449}
450
451
452/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
453/// variable.  This opens the door for other optimizations by exposing the
454/// behavior of the program in a more fine-grained way.  We have determined that
455/// this transformation is safe already.  We return the first global variable we
456/// insert so that the caller can reprocess it.
457static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
458  // Make sure this global only has simple uses that we can SRA.
459  if (!GlobalUsersSafeToSRA(GV))
460    return 0;
461
462  assert(GV->hasInternalLinkage() && !GV->isConstant());
463  Constant *Init = GV->getInitializer();
464  const Type *Ty = Init->getType();
465
466  std::vector<GlobalVariable*> NewGlobals;
467  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
468
469  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
470    NewGlobals.reserve(STy->getNumElements());
471    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
472      Constant *In = getAggregateConstantElement(Init,
473                                            ConstantInt::get(Type::Int32Ty, i));
474      assert(In && "Couldn't get element of initializer?");
475      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
476                                               GlobalVariable::InternalLinkage,
477                                               In, GV->getName()+"."+utostr(i),
478                                               (Module *)NULL,
479                                               GV->isThreadLocal());
480      Globals.insert(GV, NGV);
481      NewGlobals.push_back(NGV);
482    }
483  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
484    unsigned NumElements = 0;
485    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
486      NumElements = ATy->getNumElements();
487    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
488      NumElements = PTy->getNumElements();
489    else
490      assert(0 && "Unknown aggregate sequential type!");
491
492    if (NumElements > 16 && GV->hasNUsesOrMore(16))
493      return 0; // It's not worth it.
494    NewGlobals.reserve(NumElements);
495    for (unsigned i = 0, e = NumElements; i != e; ++i) {
496      Constant *In = getAggregateConstantElement(Init,
497                                            ConstantInt::get(Type::Int32Ty, i));
498      assert(In && "Couldn't get element of initializer?");
499
500      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
501                                               GlobalVariable::InternalLinkage,
502                                               In, GV->getName()+"."+utostr(i),
503                                               (Module *)NULL,
504                                               GV->isThreadLocal());
505      Globals.insert(GV, NGV);
506      NewGlobals.push_back(NGV);
507    }
508  }
509
510  if (NewGlobals.empty())
511    return 0;
512
513  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
514
515  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
516
517  // Loop over all of the uses of the global, replacing the constantexpr geps,
518  // with smaller constantexpr geps or direct references.
519  while (!GV->use_empty()) {
520    User *GEP = GV->use_back();
521    assert(((isa<ConstantExpr>(GEP) &&
522             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
523            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
524
525    // Ignore the 1th operand, which has to be zero or else the program is quite
526    // broken (undefined).  Get the 2nd operand, which is the structure or array
527    // index.
528    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
529    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
530
531    Value *NewPtr = NewGlobals[Val];
532
533    // Form a shorter GEP if needed.
534    if (GEP->getNumOperands() > 3) {
535      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
536        SmallVector<Constant*, 8> Idxs;
537        Idxs.push_back(NullInt);
538        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
539          Idxs.push_back(CE->getOperand(i));
540        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
541                                                &Idxs[0], Idxs.size());
542      } else {
543        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
544        SmallVector<Value*, 8> Idxs;
545        Idxs.push_back(NullInt);
546        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
547          Idxs.push_back(GEPI->getOperand(i));
548        NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
549                                       GEPI->getName()+"."+utostr(Val), GEPI);
550      }
551    }
552    GEP->replaceAllUsesWith(NewPtr);
553
554    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
555      GEPI->eraseFromParent();
556    else
557      cast<ConstantExpr>(GEP)->destroyConstant();
558  }
559
560  // Delete the old global, now that it is dead.
561  Globals.erase(GV);
562  ++NumSRA;
563
564  // Loop over the new globals array deleting any globals that are obviously
565  // dead.  This can arise due to scalarization of a structure or an array that
566  // has elements that are dead.
567  unsigned FirstGlobal = 0;
568  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
569    if (NewGlobals[i]->use_empty()) {
570      Globals.erase(NewGlobals[i]);
571      if (FirstGlobal == i) ++FirstGlobal;
572    }
573
574  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
575}
576
577/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
578/// value will trap if the value is dynamically null.  PHIs keeps track of any
579/// phi nodes we've seen to avoid reprocessing them.
580static bool AllUsesOfValueWillTrapIfNull(Value *V,
581                                         SmallPtrSet<PHINode*, 8> &PHIs) {
582  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
583    if (isa<LoadInst>(*UI)) {
584      // Will trap.
585    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
586      if (SI->getOperand(0) == V) {
587        //cerr << "NONTRAPPING USE: " << **UI;
588        return false;  // Storing the value.
589      }
590    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
591      if (CI->getOperand(0) != V) {
592        //cerr << "NONTRAPPING USE: " << **UI;
593        return false;  // Not calling the ptr
594      }
595    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
596      if (II->getOperand(0) != V) {
597        //cerr << "NONTRAPPING USE: " << **UI;
598        return false;  // Not calling the ptr
599      }
600    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
601      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
602    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
603      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
604    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
605      // If we've already seen this phi node, ignore it, it has already been
606      // checked.
607      if (PHIs.insert(PN))
608        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
609    } else if (isa<ICmpInst>(*UI) &&
610               isa<ConstantPointerNull>(UI->getOperand(1))) {
611      // Ignore setcc X, null
612    } else {
613      //cerr << "NONTRAPPING USE: " << **UI;
614      return false;
615    }
616  return true;
617}
618
619/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
620/// from GV will trap if the loaded value is null.  Note that this also permits
621/// comparisons of the loaded value against null, as a special case.
622static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
623  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
624    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
625      SmallPtrSet<PHINode*, 8> PHIs;
626      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
627        return false;
628    } else if (isa<StoreInst>(*UI)) {
629      // Ignore stores to the global.
630    } else {
631      // We don't know or understand this user, bail out.
632      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
633      return false;
634    }
635
636  return true;
637}
638
639static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
640  bool Changed = false;
641  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
642    Instruction *I = cast<Instruction>(*UI++);
643    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
644      LI->setOperand(0, NewV);
645      Changed = true;
646    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
647      if (SI->getOperand(1) == V) {
648        SI->setOperand(1, NewV);
649        Changed = true;
650      }
651    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
652      if (I->getOperand(0) == V) {
653        // Calling through the pointer!  Turn into a direct call, but be careful
654        // that the pointer is not also being passed as an argument.
655        I->setOperand(0, NewV);
656        Changed = true;
657        bool PassedAsArg = false;
658        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
659          if (I->getOperand(i) == V) {
660            PassedAsArg = true;
661            I->setOperand(i, NewV);
662          }
663
664        if (PassedAsArg) {
665          // Being passed as an argument also.  Be careful to not invalidate UI!
666          UI = V->use_begin();
667        }
668      }
669    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
670      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
671                                ConstantExpr::getCast(CI->getOpcode(),
672                                                      NewV, CI->getType()));
673      if (CI->use_empty()) {
674        Changed = true;
675        CI->eraseFromParent();
676      }
677    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
678      // Should handle GEP here.
679      SmallVector<Constant*, 8> Idxs;
680      Idxs.reserve(GEPI->getNumOperands()-1);
681      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
682        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
683          Idxs.push_back(C);
684        else
685          break;
686      if (Idxs.size() == GEPI->getNumOperands()-1)
687        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
688                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
689                                                               Idxs.size()));
690      if (GEPI->use_empty()) {
691        Changed = true;
692        GEPI->eraseFromParent();
693      }
694    }
695  }
696
697  return Changed;
698}
699
700
701/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
702/// value stored into it.  If there are uses of the loaded value that would trap
703/// if the loaded value is dynamically null, then we know that they cannot be
704/// reachable with a null optimize away the load.
705static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
706  std::vector<LoadInst*> Loads;
707  bool Changed = false;
708
709  // Replace all uses of loads with uses of uses of the stored value.
710  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
711       GUI != E; ++GUI)
712    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
713      Loads.push_back(LI);
714      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
715    } else {
716      // If we get here we could have stores, selects, or phi nodes whose values
717      // are loaded.
718      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
719              isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
720             "Only expect load and stores!");
721    }
722
723  if (Changed) {
724    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
725    ++NumGlobUses;
726  }
727
728  // Delete all of the loads we can, keeping track of whether we nuked them all!
729  bool AllLoadsGone = true;
730  while (!Loads.empty()) {
731    LoadInst *L = Loads.back();
732    if (L->use_empty()) {
733      L->eraseFromParent();
734      Changed = true;
735    } else {
736      AllLoadsGone = false;
737    }
738    Loads.pop_back();
739  }
740
741  // If we nuked all of the loads, then none of the stores are needed either,
742  // nor is the global.
743  if (AllLoadsGone) {
744    DOUT << "  *** GLOBAL NOW DEAD!\n";
745    CleanupConstantGlobalUsers(GV, 0);
746    if (GV->use_empty()) {
747      GV->eraseFromParent();
748      ++NumDeleted;
749    }
750    Changed = true;
751  }
752  return Changed;
753}
754
755/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
756/// instructions that are foldable.
757static void ConstantPropUsersOf(Value *V) {
758  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
759    if (Instruction *I = dyn_cast<Instruction>(*UI++))
760      if (Constant *NewC = ConstantFoldInstruction(I)) {
761        I->replaceAllUsesWith(NewC);
762
763        // Advance UI to the next non-I use to avoid invalidating it!
764        // Instructions could multiply use V.
765        while (UI != E && *UI == I)
766          ++UI;
767        I->eraseFromParent();
768      }
769}
770
771/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
772/// variable, and transforms the program as if it always contained the result of
773/// the specified malloc.  Because it is always the result of the specified
774/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
775/// malloc into a global, and any loads of GV as uses of the new global.
776static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
777                                                     MallocInst *MI) {
778  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
779  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
780
781  if (NElements->getZExtValue() != 1) {
782    // If we have an array allocation, transform it to a single element
783    // allocation to make the code below simpler.
784    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
785                                 NElements->getZExtValue());
786    MallocInst *NewMI =
787      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
788                     MI->getAlignment(), MI->getName(), MI);
789    Value* Indices[2];
790    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
791    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
792                                          NewMI->getName()+".el0", MI);
793    MI->replaceAllUsesWith(NewGEP);
794    MI->eraseFromParent();
795    MI = NewMI;
796  }
797
798  // Create the new global variable.  The contents of the malloc'd memory is
799  // undefined, so initialize with an undef value.
800  Constant *Init = UndefValue::get(MI->getAllocatedType());
801  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
802                                             GlobalValue::InternalLinkage, Init,
803                                             GV->getName()+".body",
804                                             (Module *)NULL,
805                                             GV->isThreadLocal());
806  GV->getParent()->getGlobalList().insert(GV, NewGV);
807
808  // Anything that used the malloc now uses the global directly.
809  MI->replaceAllUsesWith(NewGV);
810
811  Constant *RepValue = NewGV;
812  if (NewGV->getType() != GV->getType()->getElementType())
813    RepValue = ConstantExpr::getBitCast(RepValue,
814                                        GV->getType()->getElementType());
815
816  // If there is a comparison against null, we will insert a global bool to
817  // keep track of whether the global was initialized yet or not.
818  GlobalVariable *InitBool =
819    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
820                       ConstantInt::getFalse(), GV->getName()+".init",
821                       (Module *)NULL, GV->isThreadLocal());
822  bool InitBoolUsed = false;
823
824  // Loop over all uses of GV, processing them in turn.
825  std::vector<StoreInst*> Stores;
826  while (!GV->use_empty())
827    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
828      while (!LI->use_empty()) {
829        Use &LoadUse = LI->use_begin().getUse();
830        if (!isa<ICmpInst>(LoadUse.getUser()))
831          LoadUse = RepValue;
832        else {
833          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
834          // Replace the cmp X, 0 with a use of the bool value.
835          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
836          InitBoolUsed = true;
837          switch (CI->getPredicate()) {
838          default: assert(0 && "Unknown ICmp Predicate!");
839          case ICmpInst::ICMP_ULT:
840          case ICmpInst::ICMP_SLT:
841            LV = ConstantInt::getFalse();   // X < null -> always false
842            break;
843          case ICmpInst::ICMP_ULE:
844          case ICmpInst::ICMP_SLE:
845          case ICmpInst::ICMP_EQ:
846            LV = BinaryOperator::createNot(LV, "notinit", CI);
847            break;
848          case ICmpInst::ICMP_NE:
849          case ICmpInst::ICMP_UGE:
850          case ICmpInst::ICMP_SGE:
851          case ICmpInst::ICMP_UGT:
852          case ICmpInst::ICMP_SGT:
853            break;  // no change.
854          }
855          CI->replaceAllUsesWith(LV);
856          CI->eraseFromParent();
857        }
858      }
859      LI->eraseFromParent();
860    } else {
861      StoreInst *SI = cast<StoreInst>(GV->use_back());
862      // The global is initialized when the store to it occurs.
863      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
864      SI->eraseFromParent();
865    }
866
867  // If the initialization boolean was used, insert it, otherwise delete it.
868  if (!InitBoolUsed) {
869    while (!InitBool->use_empty())  // Delete initializations
870      cast<Instruction>(InitBool->use_back())->eraseFromParent();
871    delete InitBool;
872  } else
873    GV->getParent()->getGlobalList().insert(GV, InitBool);
874
875
876  // Now the GV is dead, nuke it and the malloc.
877  GV->eraseFromParent();
878  MI->eraseFromParent();
879
880  // To further other optimizations, loop over all users of NewGV and try to
881  // constant prop them.  This will promote GEP instructions with constant
882  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
883  ConstantPropUsersOf(NewGV);
884  if (RepValue != NewGV)
885    ConstantPropUsersOf(RepValue);
886
887  return NewGV;
888}
889
890/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
891/// to make sure that there are no complex uses of V.  We permit simple things
892/// like dereferencing the pointer, but not storing through the address, unless
893/// it is to the specified global.
894static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
895                                                      GlobalVariable *GV,
896                                              SmallPtrSet<PHINode*, 8> &PHIs) {
897  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
898    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
899      // Fine, ignore.
900    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
901      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
902        return false;  // Storing the pointer itself... bad.
903      // Otherwise, storing through it, or storing into GV... fine.
904    } else if (isa<GetElementPtrInst>(*UI)) {
905      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
906                                                     GV, PHIs))
907        return false;
908    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
909      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
910      // cycles.
911      if (PHIs.insert(PN))
912        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
913          return false;
914    } else {
915      return false;
916    }
917  return true;
918}
919
920/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
921/// somewhere.  Transform all uses of the allocation into loads from the
922/// global and uses of the resultant pointer.  Further, delete the store into
923/// GV.  This assumes that these value pass the
924/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
925static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
926                                          GlobalVariable *GV) {
927  while (!Alloc->use_empty()) {
928    Instruction *U = cast<Instruction>(*Alloc->use_begin());
929    Instruction *InsertPt = U;
930    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
931      // If this is the store of the allocation into the global, remove it.
932      if (SI->getOperand(1) == GV) {
933        SI->eraseFromParent();
934        continue;
935      }
936    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
937      // Insert the load in the corresponding predecessor, not right before the
938      // PHI.
939      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
940      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
941    }
942
943    // Insert a load from the global, and use it instead of the malloc.
944    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
945    U->replaceUsesOfWith(Alloc, NL);
946  }
947}
948
949/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
950/// GV are simple enough to perform HeapSRA, return true.
951static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
952                                                 MallocInst *MI) {
953  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
954       ++UI)
955    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
956      // We permit two users of the load: setcc comparing against the null
957      // pointer, and a getelementptr of a specific form.
958      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
959           ++UI) {
960        // Comparison against null is ok.
961        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
962          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
963            return false;
964          continue;
965        }
966
967        // getelementptr is also ok, but only a simple form.
968        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
969          // Must index into the array and into the struct.
970          if (GEPI->getNumOperands() < 3)
971            return false;
972
973          // Otherwise the GEP is ok.
974          continue;
975        }
976
977        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
978          // We have a phi of a load from the global.  We can only handle this
979          // if the other PHI'd values are actually the same.  In this case,
980          // the rewriter will just drop the phi entirely.
981          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
982            Value *IV = PN->getIncomingValue(i);
983            if (IV == LI) continue;  // Trivial the same.
984
985            // If the phi'd value is from the malloc that initializes the value,
986            // we can xform it.
987            if (IV == MI) continue;
988
989            // Otherwise, we don't know what it is.
990            return false;
991          }
992          return true;
993        }
994
995        // Otherwise we don't know what this is, not ok.
996        return false;
997      }
998    }
999  return true;
1000}
1001
1002/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
1003/// value, lazily creating it on demand.
1004static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
1005                              const std::vector<GlobalVariable*> &FieldGlobals,
1006                              std::vector<Value *> &InsertedLoadsForPtr) {
1007  if (InsertedLoadsForPtr.size() <= FieldNo)
1008    InsertedLoadsForPtr.resize(FieldNo+1);
1009  if (InsertedLoadsForPtr[FieldNo] == 0)
1010    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1011                                                Load->getName()+".f" +
1012                                                utostr(FieldNo), Load);
1013  return InsertedLoadsForPtr[FieldNo];
1014}
1015
1016/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1017/// the load, rewrite the derived value to use the HeapSRoA'd load.
1018static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1019                               const std::vector<GlobalVariable*> &FieldGlobals,
1020                                    std::vector<Value *> &InsertedLoadsForPtr) {
1021  // If this is a comparison against null, handle it.
1022  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1023    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1024    // If we have a setcc of the loaded pointer, we can use a setcc of any
1025    // field.
1026    Value *NPtr;
1027    if (InsertedLoadsForPtr.empty()) {
1028      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
1029    } else {
1030      NPtr = InsertedLoadsForPtr.back();
1031    }
1032
1033    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1034                              Constant::getNullValue(NPtr->getType()),
1035                              SCI->getName(), SCI);
1036    SCI->replaceAllUsesWith(New);
1037    SCI->eraseFromParent();
1038    return;
1039  }
1040
1041  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1042  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1043    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1044           && "Unexpected GEPI!");
1045
1046    // Load the pointer for this field.
1047    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1048    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1049                                    FieldGlobals, InsertedLoadsForPtr);
1050
1051    // Create the new GEP idx vector.
1052    SmallVector<Value*, 8> GEPIdx;
1053    GEPIdx.push_back(GEPI->getOperand(1));
1054    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1055
1056    Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
1057                                         GEPI->getName(), GEPI);
1058    GEPI->replaceAllUsesWith(NGEPI);
1059    GEPI->eraseFromParent();
1060    return;
1061  }
1062
1063  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
1064  // potentially the original malloc.  Insert phi nodes for each field, then
1065  // process uses of the PHI.
1066  PHINode *PN = cast<PHINode>(LoadUser);
1067  std::vector<Value *> PHIsForField;
1068  PHIsForField.resize(FieldGlobals.size());
1069  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1070    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1071
1072    PHINode *FieldPN = new PHINode(LoadV->getType(),
1073                                   PN->getName()+"."+utostr(i), PN);
1074    // Fill in the predecessor values.
1075    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1076      // Each predecessor either uses the load or the original malloc.
1077      Value *InVal = PN->getIncomingValue(pred);
1078      BasicBlock *BB = PN->getIncomingBlock(pred);
1079      Value *NewVal;
1080      if (isa<MallocInst>(InVal)) {
1081        // Insert a reload from the global in the predecessor.
1082        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1083                                 PHIsForField);
1084      } else {
1085        NewVal = InsertedLoadsForPtr[i];
1086      }
1087      FieldPN->addIncoming(NewVal, BB);
1088    }
1089    PHIsForField[i] = FieldPN;
1090  }
1091
1092  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1093  // will never insert a load.
1094  while (!PN->use_empty())
1095    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1096  PN->eraseFromParent();
1097}
1098
1099/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1100/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1101/// use FieldGlobals instead.  All uses of loaded values satisfy
1102/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1103static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1104                             const std::vector<GlobalVariable*> &FieldGlobals) {
1105  std::vector<Value *> InsertedLoadsForPtr;
1106  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1107  while (!Load->use_empty())
1108    RewriteHeapSROALoadUser(Load, Load->use_back(),
1109                            FieldGlobals, InsertedLoadsForPtr);
1110}
1111
1112/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1113/// it up into multiple allocations of arrays of the fields.
1114static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1115  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1116  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1117
1118  // There is guaranteed to be at least one use of the malloc (storing
1119  // it into GV).  If there are other uses, change them to be uses of
1120  // the global to simplify later code.  This also deletes the store
1121  // into GV.
1122  ReplaceUsesOfMallocWithGlobal(MI, GV);
1123
1124  // Okay, at this point, there are no users of the malloc.  Insert N
1125  // new mallocs at the same place as MI, and N globals.
1126  std::vector<GlobalVariable*> FieldGlobals;
1127  std::vector<MallocInst*> FieldMallocs;
1128
1129  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1130    const Type *FieldTy = STy->getElementType(FieldNo);
1131    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1132
1133    GlobalVariable *NGV =
1134      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1135                         Constant::getNullValue(PFieldTy),
1136                         GV->getName() + ".f" + utostr(FieldNo), GV,
1137                         GV->isThreadLocal());
1138    FieldGlobals.push_back(NGV);
1139
1140    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1141                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1142    FieldMallocs.push_back(NMI);
1143    new StoreInst(NMI, NGV, MI);
1144  }
1145
1146  // The tricky aspect of this transformation is handling the case when malloc
1147  // fails.  In the original code, malloc failing would set the result pointer
1148  // of malloc to null.  In this case, some mallocs could succeed and others
1149  // could fail.  As such, we emit code that looks like this:
1150  //    F0 = malloc(field0)
1151  //    F1 = malloc(field1)
1152  //    F2 = malloc(field2)
1153  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1154  //      if (F0) { free(F0); F0 = 0; }
1155  //      if (F1) { free(F1); F1 = 0; }
1156  //      if (F2) { free(F2); F2 = 0; }
1157  //    }
1158  Value *RunningOr = 0;
1159  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1160    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1161                             Constant::getNullValue(FieldMallocs[i]->getType()),
1162                                  "isnull", MI);
1163    if (!RunningOr)
1164      RunningOr = Cond;   // First seteq
1165    else
1166      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1167  }
1168
1169  // Split the basic block at the old malloc.
1170  BasicBlock *OrigBB = MI->getParent();
1171  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1172
1173  // Create the block to check the first condition.  Put all these blocks at the
1174  // end of the function as they are unlikely to be executed.
1175  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
1176                                            OrigBB->getParent());
1177
1178  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1179  // branch on RunningOr.
1180  OrigBB->getTerminator()->eraseFromParent();
1181  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
1182
1183  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1184  // pointer, because some may be null while others are not.
1185  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1186    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1187    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1188                              Constant::getNullValue(GVVal->getType()),
1189                              "tmp", NullPtrBlock);
1190    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
1191    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
1192    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1193
1194    // Fill in FreeBlock.
1195    new FreeInst(GVVal, FreeBlock);
1196    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1197                  FreeBlock);
1198    new BranchInst(NextBlock, FreeBlock);
1199
1200    NullPtrBlock = NextBlock;
1201  }
1202
1203  new BranchInst(ContBB, NullPtrBlock);
1204
1205
1206  // MI is no longer needed, remove it.
1207  MI->eraseFromParent();
1208
1209
1210  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1211  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1212  // of the per-field globals instead.
1213  while (!GV->use_empty()) {
1214    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1215      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1216      LI->eraseFromParent();
1217    } else {
1218      // Must be a store of null.
1219      StoreInst *SI = cast<StoreInst>(GV->use_back());
1220      assert(isa<Constant>(SI->getOperand(0)) &&
1221             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1222             "Unexpected heap-sra user!");
1223
1224      // Insert a store of null into each global.
1225      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1226        Constant *Null =
1227          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1228        new StoreInst(Null, FieldGlobals[i], SI);
1229      }
1230      // Erase the original store.
1231      SI->eraseFromParent();
1232    }
1233  }
1234
1235  // The old global is now dead, remove it.
1236  GV->eraseFromParent();
1237
1238  ++NumHeapSRA;
1239  return FieldGlobals[0];
1240}
1241
1242
1243// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1244// that only one value (besides its initializer) is ever stored to the global.
1245static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1246                                     Module::global_iterator &GVI,
1247                                     TargetData &TD) {
1248  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1249    StoredOnceVal = CI->getOperand(0);
1250  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1251    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1252    bool IsJustACast = true;
1253    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1254      if (!isa<Constant>(GEPI->getOperand(i)) ||
1255          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1256        IsJustACast = false;
1257        break;
1258      }
1259    if (IsJustACast)
1260      StoredOnceVal = GEPI->getOperand(0);
1261  }
1262
1263  // If we are dealing with a pointer global that is initialized to null and
1264  // only has one (non-null) value stored into it, then we can optimize any
1265  // users of the loaded value (often calls and loads) that would trap if the
1266  // value was null.
1267  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1268      GV->getInitializer()->isNullValue()) {
1269    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1270      if (GV->getInitializer()->getType() != SOVC->getType())
1271        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1272
1273      // Optimize away any trapping uses of the loaded value.
1274      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1275        return true;
1276    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1277      // If this is a malloc of an abstract type, don't touch it.
1278      if (!MI->getAllocatedType()->isSized())
1279        return false;
1280
1281      // We can't optimize this global unless all uses of it are *known* to be
1282      // of the malloc value, not of the null initializer value (consider a use
1283      // that compares the global's value against zero to see if the malloc has
1284      // been reached).  To do this, we check to see if all uses of the global
1285      // would trap if the global were null: this proves that they must all
1286      // happen after the malloc.
1287      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1288        return false;
1289
1290      // We can't optimize this if the malloc itself is used in a complex way,
1291      // for example, being stored into multiple globals.  This allows the
1292      // malloc to be stored into the specified global, loaded setcc'd, and
1293      // GEP'd.  These are all things we could transform to using the global
1294      // for.
1295      {
1296        SmallPtrSet<PHINode*, 8> PHIs;
1297        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1298          return false;
1299      }
1300
1301
1302      // If we have a global that is only initialized with a fixed size malloc,
1303      // transform the program to use global memory instead of malloc'd memory.
1304      // This eliminates dynamic allocation, avoids an indirection accessing the
1305      // data, and exposes the resultant global to further GlobalOpt.
1306      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1307        // Restrict this transformation to only working on small allocations
1308        // (2048 bytes currently), as we don't want to introduce a 16M global or
1309        // something.
1310        if (NElements->getZExtValue()*
1311                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
1312          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1313          return true;
1314        }
1315      }
1316
1317      // If the allocation is an array of structures, consider transforming this
1318      // into multiple malloc'd arrays, one for each field.  This is basically
1319      // SRoA for malloc'd memory.
1320      if (const StructType *AllocTy =
1321                  dyn_cast<StructType>(MI->getAllocatedType())) {
1322        // This the structure has an unreasonable number of fields, leave it
1323        // alone.
1324        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1325            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1326          GVI = PerformHeapAllocSRoA(GV, MI);
1327          return true;
1328        }
1329      }
1330    }
1331  }
1332
1333  return false;
1334}
1335
1336/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1337/// two values ever stored into GV are its initializer and OtherVal.  See if we
1338/// can shrink the global into a boolean and select between the two values
1339/// whenever it is used.  This exposes the values to other scalar optimizations.
1340static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1341  const Type *GVElType = GV->getType()->getElementType();
1342
1343  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1344  // an FP value or vector, don't do this optimization because a select between
1345  // them is very expensive and unlikely to lead to later simplification.
1346  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1347      isa<VectorType>(GVElType))
1348    return false;
1349
1350  // Walk the use list of the global seeing if all the uses are load or store.
1351  // If there is anything else, bail out.
1352  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1353    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1354      return false;
1355
1356  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1357
1358  // Create the new global, initializing it to false.
1359  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1360         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1361                                             GV->getName()+".b",
1362                                             (Module *)NULL,
1363                                             GV->isThreadLocal());
1364  GV->getParent()->getGlobalList().insert(GV, NewGV);
1365
1366  Constant *InitVal = GV->getInitializer();
1367  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1368
1369  // If initialized to zero and storing one into the global, we can use a cast
1370  // instead of a select to synthesize the desired value.
1371  bool IsOneZero = false;
1372  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1373    IsOneZero = InitVal->isNullValue() && CI->isOne();
1374
1375  while (!GV->use_empty()) {
1376    Instruction *UI = cast<Instruction>(GV->use_back());
1377    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1378      // Change the store into a boolean store.
1379      bool StoringOther = SI->getOperand(0) == OtherVal;
1380      // Only do this if we weren't storing a loaded value.
1381      Value *StoreVal;
1382      if (StoringOther || SI->getOperand(0) == InitVal)
1383        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1384      else {
1385        // Otherwise, we are storing a previously loaded copy.  To do this,
1386        // change the copy from copying the original value to just copying the
1387        // bool.
1388        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1389
1390        // If we're already replaced the input, StoredVal will be a cast or
1391        // select instruction.  If not, it will be a load of the original
1392        // global.
1393        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1394          assert(LI->getOperand(0) == GV && "Not a copy!");
1395          // Insert a new load, to preserve the saved value.
1396          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1397        } else {
1398          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1399                 "This is not a form that we understand!");
1400          StoreVal = StoredVal->getOperand(0);
1401          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1402        }
1403      }
1404      new StoreInst(StoreVal, NewGV, SI);
1405    } else {
1406      // Change the load into a load of bool then a select.
1407      LoadInst *LI = cast<LoadInst>(UI);
1408      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1409      Value *NSI;
1410      if (IsOneZero)
1411        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1412      else
1413        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
1414      NSI->takeName(LI);
1415      LI->replaceAllUsesWith(NSI);
1416    }
1417    UI->eraseFromParent();
1418  }
1419
1420  GV->eraseFromParent();
1421  return true;
1422}
1423
1424
1425/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1426/// it if possible.  If we make a change, return true.
1427bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1428                                      Module::global_iterator &GVI) {
1429  std::set<PHINode*> PHIUsers;
1430  GlobalStatus GS;
1431  GV->removeDeadConstantUsers();
1432
1433  if (GV->use_empty()) {
1434    DOUT << "GLOBAL DEAD: " << *GV;
1435    GV->eraseFromParent();
1436    ++NumDeleted;
1437    return true;
1438  }
1439
1440  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1441#if 0
1442    cerr << "Global: " << *GV;
1443    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1444    cerr << "  StoredType = ";
1445    switch (GS.StoredType) {
1446    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1447    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1448    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1449    case GlobalStatus::isStored: cerr << "stored\n"; break;
1450    }
1451    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1452      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1453    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1454      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1455                << "\n";
1456    cerr << "  HasMultipleAccessingFunctions =  "
1457              << GS.HasMultipleAccessingFunctions << "\n";
1458    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1459    cerr << "\n";
1460#endif
1461
1462    // If this is a first class global and has only one accessing function
1463    // and this function is main (which we know is not recursive we can make
1464    // this global a local variable) we replace the global with a local alloca
1465    // in this function.
1466    //
1467    // NOTE: It doesn't make sense to promote non first class types since we
1468    // are just replacing static memory to stack memory.
1469    if (!GS.HasMultipleAccessingFunctions &&
1470        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1471        GV->getType()->getElementType()->isFirstClassType() &&
1472        GS.AccessingFunction->getName() == "main" &&
1473        GS.AccessingFunction->hasExternalLinkage()) {
1474      DOUT << "LOCALIZING GLOBAL: " << *GV;
1475      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1476      const Type* ElemTy = GV->getType()->getElementType();
1477      // FIXME: Pass Global's alignment when globals have alignment
1478      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1479      if (!isa<UndefValue>(GV->getInitializer()))
1480        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1481
1482      GV->replaceAllUsesWith(Alloca);
1483      GV->eraseFromParent();
1484      ++NumLocalized;
1485      return true;
1486    }
1487
1488    // If the global is never loaded (but may be stored to), it is dead.
1489    // Delete it now.
1490    if (!GS.isLoaded) {
1491      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1492
1493      // Delete any stores we can find to the global.  We may not be able to
1494      // make it completely dead though.
1495      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1496
1497      // If the global is dead now, delete it.
1498      if (GV->use_empty()) {
1499        GV->eraseFromParent();
1500        ++NumDeleted;
1501        Changed = true;
1502      }
1503      return Changed;
1504
1505    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1506      DOUT << "MARKING CONSTANT: " << *GV;
1507      GV->setConstant(true);
1508
1509      // Clean up any obviously simplifiable users now.
1510      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1511
1512      // If the global is dead now, just nuke it.
1513      if (GV->use_empty()) {
1514        DOUT << "   *** Marking constant allowed us to simplify "
1515             << "all users and delete global!\n";
1516        GV->eraseFromParent();
1517        ++NumDeleted;
1518      }
1519
1520      ++NumMarked;
1521      return true;
1522    } else if (!GV->getInitializer()->getType()->isFirstClassType()) {
1523      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
1524        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1525        return true;
1526      }
1527    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1528      // If the initial value for the global was an undef value, and if only
1529      // one other value was stored into it, we can just change the
1530      // initializer to be an undef value, then delete all stores to the
1531      // global.  This allows us to mark it constant.
1532      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1533        if (isa<UndefValue>(GV->getInitializer())) {
1534          // Change the initial value here.
1535          GV->setInitializer(SOVConstant);
1536
1537          // Clean up any obviously simplifiable users now.
1538          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1539
1540          if (GV->use_empty()) {
1541            DOUT << "   *** Substituting initializer allowed us to "
1542                 << "simplify all users and delete global!\n";
1543            GV->eraseFromParent();
1544            ++NumDeleted;
1545          } else {
1546            GVI = GV;
1547          }
1548          ++NumSubstitute;
1549          return true;
1550        }
1551
1552      // Try to optimize globals based on the knowledge that only one value
1553      // (besides its initializer) is ever stored to the global.
1554      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1555                                   getAnalysis<TargetData>()))
1556        return true;
1557
1558      // Otherwise, if the global was not a boolean, we can shrink it to be a
1559      // boolean.
1560      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1561        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1562          ++NumShrunkToBool;
1563          return true;
1564        }
1565    }
1566  }
1567  return false;
1568}
1569
1570/// OnlyCalledDirectly - Return true if the specified function is only called
1571/// directly.  In other words, its address is never taken.
1572static bool OnlyCalledDirectly(Function *F) {
1573  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1574    Instruction *User = dyn_cast<Instruction>(*UI);
1575    if (!User) return false;
1576    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1577
1578    // See if the function address is passed as an argument.
1579    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1580      if (User->getOperand(i) == F) return false;
1581  }
1582  return true;
1583}
1584
1585/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1586/// function, changing them to FastCC.
1587static void ChangeCalleesToFastCall(Function *F) {
1588  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1589    CallSite User(cast<Instruction>(*UI));
1590    User.setCallingConv(CallingConv::Fast);
1591  }
1592}
1593
1594static PAListPtr StripNest(const PAListPtr &Attrs) {
1595  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1596    if ((Attrs.getSlot(i).Attrs & ParamAttr::Nest) == 0)
1597      continue;
1598
1599    // There can be only one.
1600    return Attrs.removeAttr(Attrs.getSlot(i).Index, ParamAttr::Nest);
1601  }
1602
1603  return Attrs;
1604}
1605
1606static void RemoveNestAttribute(Function *F) {
1607  F->setParamAttrs(StripNest(F->getParamAttrs()));
1608  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1609    CallSite User(cast<Instruction>(*UI));
1610    User.setParamAttrs(StripNest(User.getParamAttrs()));
1611  }
1612}
1613
1614bool GlobalOpt::OptimizeFunctions(Module &M) {
1615  bool Changed = false;
1616  // Optimize functions.
1617  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1618    Function *F = FI++;
1619    F->removeDeadConstantUsers();
1620    if (F->use_empty() && (F->hasInternalLinkage() ||
1621                           F->hasLinkOnceLinkage())) {
1622      M.getFunctionList().erase(F);
1623      Changed = true;
1624      ++NumFnDeleted;
1625    } else if (F->hasInternalLinkage()) {
1626      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1627          OnlyCalledDirectly(F)) {
1628        // If this function has C calling conventions, is not a varargs
1629        // function, and is only called directly, promote it to use the Fast
1630        // calling convention.
1631        F->setCallingConv(CallingConv::Fast);
1632        ChangeCalleesToFastCall(F);
1633        ++NumFastCallFns;
1634        Changed = true;
1635      }
1636
1637      if (F->getParamAttrs().hasAttrSomewhere(ParamAttr::Nest) &&
1638          OnlyCalledDirectly(F)) {
1639        // The function is not used by a trampoline intrinsic, so it is safe
1640        // to remove the 'nest' attribute.
1641        RemoveNestAttribute(F);
1642        ++NumNestRemoved;
1643        Changed = true;
1644      }
1645    }
1646  }
1647  return Changed;
1648}
1649
1650bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1651  bool Changed = false;
1652  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1653       GVI != E; ) {
1654    GlobalVariable *GV = GVI++;
1655    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1656        GV->hasInitializer())
1657      Changed |= ProcessInternalGlobal(GV, GVI);
1658  }
1659  return Changed;
1660}
1661
1662/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1663/// initializers have an init priority of 65535.
1664GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1665  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1666       I != E; ++I)
1667    if (I->getName() == "llvm.global_ctors") {
1668      // Found it, verify it's an array of { int, void()* }.
1669      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1670      if (!ATy) return 0;
1671      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1672      if (!STy || STy->getNumElements() != 2 ||
1673          STy->getElementType(0) != Type::Int32Ty) return 0;
1674      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1675      if (!PFTy) return 0;
1676      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1677      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1678          FTy->getNumParams() != 0)
1679        return 0;
1680
1681      // Verify that the initializer is simple enough for us to handle.
1682      if (!I->hasInitializer()) return 0;
1683      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1684      if (!CA) return 0;
1685      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1686        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1687          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1688            continue;
1689
1690          // Must have a function or null ptr.
1691          if (!isa<Function>(CS->getOperand(1)))
1692            return 0;
1693
1694          // Init priority must be standard.
1695          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1696          if (!CI || CI->getZExtValue() != 65535)
1697            return 0;
1698        } else {
1699          return 0;
1700        }
1701
1702      return I;
1703    }
1704  return 0;
1705}
1706
1707/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1708/// return a list of the functions and null terminator as a vector.
1709static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1710  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1711  std::vector<Function*> Result;
1712  Result.reserve(CA->getNumOperands());
1713  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1714    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1715    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1716  }
1717  return Result;
1718}
1719
1720/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1721/// specified array, returning the new global to use.
1722static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1723                                          const std::vector<Function*> &Ctors) {
1724  // If we made a change, reassemble the initializer list.
1725  std::vector<Constant*> CSVals;
1726  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1727  CSVals.push_back(0);
1728
1729  // Create the new init list.
1730  std::vector<Constant*> CAList;
1731  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1732    if (Ctors[i]) {
1733      CSVals[1] = Ctors[i];
1734    } else {
1735      const Type *FTy = FunctionType::get(Type::VoidTy,
1736                                          std::vector<const Type*>(), false);
1737      const PointerType *PFTy = PointerType::getUnqual(FTy);
1738      CSVals[1] = Constant::getNullValue(PFTy);
1739      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1740    }
1741    CAList.push_back(ConstantStruct::get(CSVals));
1742  }
1743
1744  // Create the array initializer.
1745  const Type *StructTy =
1746    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1747  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1748                                    CAList);
1749
1750  // If we didn't change the number of elements, don't create a new GV.
1751  if (CA->getType() == GCL->getInitializer()->getType()) {
1752    GCL->setInitializer(CA);
1753    return GCL;
1754  }
1755
1756  // Create the new global and insert it next to the existing list.
1757  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1758                                           GCL->getLinkage(), CA, "",
1759                                           (Module *)NULL,
1760                                           GCL->isThreadLocal());
1761  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1762  NGV->takeName(GCL);
1763
1764  // Nuke the old list, replacing any uses with the new one.
1765  if (!GCL->use_empty()) {
1766    Constant *V = NGV;
1767    if (V->getType() != GCL->getType())
1768      V = ConstantExpr::getBitCast(V, GCL->getType());
1769    GCL->replaceAllUsesWith(V);
1770  }
1771  GCL->eraseFromParent();
1772
1773  if (Ctors.size())
1774    return NGV;
1775  else
1776    return 0;
1777}
1778
1779
1780static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1781                        Value *V) {
1782  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1783  Constant *R = ComputedValues[V];
1784  assert(R && "Reference to an uncomputed value!");
1785  return R;
1786}
1787
1788/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1789/// enough for us to understand.  In particular, if it is a cast of something,
1790/// we punt.  We basically just support direct accesses to globals and GEP's of
1791/// globals.  This should be kept up to date with CommitValueTo.
1792static bool isSimpleEnoughPointerToCommit(Constant *C) {
1793  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1794    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1795      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1796    return !GV->isDeclaration();  // reject external globals.
1797  }
1798  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1799    // Handle a constantexpr gep.
1800    if (CE->getOpcode() == Instruction::GetElementPtr &&
1801        isa<GlobalVariable>(CE->getOperand(0))) {
1802      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1803      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1804        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1805      return GV->hasInitializer() &&
1806             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1807    }
1808  return false;
1809}
1810
1811/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1812/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1813/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1814static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1815                                   ConstantExpr *Addr, unsigned OpNo) {
1816  // Base case of the recursion.
1817  if (OpNo == Addr->getNumOperands()) {
1818    assert(Val->getType() == Init->getType() && "Type mismatch!");
1819    return Val;
1820  }
1821
1822  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1823    std::vector<Constant*> Elts;
1824
1825    // Break up the constant into its elements.
1826    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1827      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1828        Elts.push_back(CS->getOperand(i));
1829    } else if (isa<ConstantAggregateZero>(Init)) {
1830      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1831        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1832    } else if (isa<UndefValue>(Init)) {
1833      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1834        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1835    } else {
1836      assert(0 && "This code is out of sync with "
1837             " ConstantFoldLoadThroughGEPConstantExpr");
1838    }
1839
1840    // Replace the element that we are supposed to.
1841    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1842    unsigned Idx = CU->getZExtValue();
1843    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1844    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1845
1846    // Return the modified struct.
1847    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1848  } else {
1849    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1850    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1851
1852    // Break up the array into elements.
1853    std::vector<Constant*> Elts;
1854    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1855      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1856        Elts.push_back(CA->getOperand(i));
1857    } else if (isa<ConstantAggregateZero>(Init)) {
1858      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1859      Elts.assign(ATy->getNumElements(), Elt);
1860    } else if (isa<UndefValue>(Init)) {
1861      Constant *Elt = UndefValue::get(ATy->getElementType());
1862      Elts.assign(ATy->getNumElements(), Elt);
1863    } else {
1864      assert(0 && "This code is out of sync with "
1865             " ConstantFoldLoadThroughGEPConstantExpr");
1866    }
1867
1868    assert(CI->getZExtValue() < ATy->getNumElements());
1869    Elts[CI->getZExtValue()] =
1870      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1871    return ConstantArray::get(ATy, Elts);
1872  }
1873}
1874
1875/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1876/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1877static void CommitValueTo(Constant *Val, Constant *Addr) {
1878  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1879    assert(GV->hasInitializer());
1880    GV->setInitializer(Val);
1881    return;
1882  }
1883
1884  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1885  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1886
1887  Constant *Init = GV->getInitializer();
1888  Init = EvaluateStoreInto(Init, Val, CE, 2);
1889  GV->setInitializer(Init);
1890}
1891
1892/// ComputeLoadResult - Return the value that would be computed by a load from
1893/// P after the stores reflected by 'memory' have been performed.  If we can't
1894/// decide, return null.
1895static Constant *ComputeLoadResult(Constant *P,
1896                                const std::map<Constant*, Constant*> &Memory) {
1897  // If this memory location has been recently stored, use the stored value: it
1898  // is the most up-to-date.
1899  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1900  if (I != Memory.end()) return I->second;
1901
1902  // Access it.
1903  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1904    if (GV->hasInitializer())
1905      return GV->getInitializer();
1906    return 0;
1907  }
1908
1909  // Handle a constantexpr getelementptr.
1910  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1911    if (CE->getOpcode() == Instruction::GetElementPtr &&
1912        isa<GlobalVariable>(CE->getOperand(0))) {
1913      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1914      if (GV->hasInitializer())
1915        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1916    }
1917
1918  return 0;  // don't know how to evaluate.
1919}
1920
1921/// EvaluateFunction - Evaluate a call to function F, returning true if
1922/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1923/// arguments for the function.
1924static bool EvaluateFunction(Function *F, Constant *&RetVal,
1925                             const std::vector<Constant*> &ActualArgs,
1926                             std::vector<Function*> &CallStack,
1927                             std::map<Constant*, Constant*> &MutatedMemory,
1928                             std::vector<GlobalVariable*> &AllocaTmps) {
1929  // Check to see if this function is already executing (recursion).  If so,
1930  // bail out.  TODO: we might want to accept limited recursion.
1931  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1932    return false;
1933
1934  CallStack.push_back(F);
1935
1936  /// Values - As we compute SSA register values, we store their contents here.
1937  std::map<Value*, Constant*> Values;
1938
1939  // Initialize arguments to the incoming values specified.
1940  unsigned ArgNo = 0;
1941  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1942       ++AI, ++ArgNo)
1943    Values[AI] = ActualArgs[ArgNo];
1944
1945  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1946  /// we can only evaluate any one basic block at most once.  This set keeps
1947  /// track of what we have executed so we can detect recursive cases etc.
1948  std::set<BasicBlock*> ExecutedBlocks;
1949
1950  // CurInst - The current instruction we're evaluating.
1951  BasicBlock::iterator CurInst = F->begin()->begin();
1952
1953  // This is the main evaluation loop.
1954  while (1) {
1955    Constant *InstResult = 0;
1956
1957    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1958      if (SI->isVolatile()) return false;  // no volatile accesses.
1959      Constant *Ptr = getVal(Values, SI->getOperand(1));
1960      if (!isSimpleEnoughPointerToCommit(Ptr))
1961        // If this is too complex for us to commit, reject it.
1962        return false;
1963      Constant *Val = getVal(Values, SI->getOperand(0));
1964      MutatedMemory[Ptr] = Val;
1965    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1966      InstResult = ConstantExpr::get(BO->getOpcode(),
1967                                     getVal(Values, BO->getOperand(0)),
1968                                     getVal(Values, BO->getOperand(1)));
1969    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1970      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1971                                            getVal(Values, CI->getOperand(0)),
1972                                            getVal(Values, CI->getOperand(1)));
1973    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
1974      InstResult = ConstantExpr::getCast(CI->getOpcode(),
1975                                         getVal(Values, CI->getOperand(0)),
1976                                         CI->getType());
1977    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
1978      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
1979                                           getVal(Values, SI->getOperand(1)),
1980                                           getVal(Values, SI->getOperand(2)));
1981    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
1982      Constant *P = getVal(Values, GEP->getOperand(0));
1983      SmallVector<Constant*, 8> GEPOps;
1984      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1985        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
1986      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
1987    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
1988      if (LI->isVolatile()) return false;  // no volatile accesses.
1989      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
1990                                     MutatedMemory);
1991      if (InstResult == 0) return false; // Could not evaluate load.
1992    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
1993      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
1994      const Type *Ty = AI->getType()->getElementType();
1995      AllocaTmps.push_back(new GlobalVariable(Ty, false,
1996                                              GlobalValue::InternalLinkage,
1997                                              UndefValue::get(Ty),
1998                                              AI->getName()));
1999      InstResult = AllocaTmps.back();
2000    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2001      // Cannot handle inline asm.
2002      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2003
2004      // Resolve function pointers.
2005      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2006      if (!Callee) return false;  // Cannot resolve.
2007
2008      std::vector<Constant*> Formals;
2009      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
2010        Formals.push_back(getVal(Values, CI->getOperand(i)));
2011
2012      if (Callee->isDeclaration()) {
2013        // If this is a function we can constant fold, do it.
2014        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2015                                           Formals.size())) {
2016          InstResult = C;
2017        } else {
2018          return false;
2019        }
2020      } else {
2021        if (Callee->getFunctionType()->isVarArg())
2022          return false;
2023
2024        Constant *RetVal;
2025
2026        // Execute the call, if successful, use the return value.
2027        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2028                              MutatedMemory, AllocaTmps))
2029          return false;
2030        InstResult = RetVal;
2031      }
2032    } else if (isa<TerminatorInst>(CurInst)) {
2033      BasicBlock *NewBB = 0;
2034      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2035        if (BI->isUnconditional()) {
2036          NewBB = BI->getSuccessor(0);
2037        } else {
2038          ConstantInt *Cond =
2039            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2040          if (!Cond) return false;  // Cannot determine.
2041
2042          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2043        }
2044      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2045        ConstantInt *Val =
2046          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2047        if (!Val) return false;  // Cannot determine.
2048        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2049      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2050        if (RI->getNumOperands())
2051          RetVal = getVal(Values, RI->getOperand(0));
2052
2053        CallStack.pop_back();  // return from fn.
2054        return true;  // We succeeded at evaluating this ctor!
2055      } else {
2056        // invoke, unwind, unreachable.
2057        return false;  // Cannot handle this terminator.
2058      }
2059
2060      // Okay, we succeeded in evaluating this control flow.  See if we have
2061      // executed the new block before.  If so, we have a looping function,
2062      // which we cannot evaluate in reasonable time.
2063      if (!ExecutedBlocks.insert(NewBB).second)
2064        return false;  // looped!
2065
2066      // Okay, we have never been in this block before.  Check to see if there
2067      // are any PHI nodes.  If so, evaluate them with information about where
2068      // we came from.
2069      BasicBlock *OldBB = CurInst->getParent();
2070      CurInst = NewBB->begin();
2071      PHINode *PN;
2072      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2073        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2074
2075      // Do NOT increment CurInst.  We know that the terminator had no value.
2076      continue;
2077    } else {
2078      // Did not know how to evaluate this!
2079      return false;
2080    }
2081
2082    if (!CurInst->use_empty())
2083      Values[CurInst] = InstResult;
2084
2085    // Advance program counter.
2086    ++CurInst;
2087  }
2088}
2089
2090/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2091/// we can.  Return true if we can, false otherwise.
2092static bool EvaluateStaticConstructor(Function *F) {
2093  /// MutatedMemory - For each store we execute, we update this map.  Loads
2094  /// check this to get the most up-to-date value.  If evaluation is successful,
2095  /// this state is committed to the process.
2096  std::map<Constant*, Constant*> MutatedMemory;
2097
2098  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2099  /// to represent its body.  This vector is needed so we can delete the
2100  /// temporary globals when we are done.
2101  std::vector<GlobalVariable*> AllocaTmps;
2102
2103  /// CallStack - This is used to detect recursion.  In pathological situations
2104  /// we could hit exponential behavior, but at least there is nothing
2105  /// unbounded.
2106  std::vector<Function*> CallStack;
2107
2108  // Call the function.
2109  Constant *RetValDummy;
2110  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2111                                       CallStack, MutatedMemory, AllocaTmps);
2112  if (EvalSuccess) {
2113    // We succeeded at evaluation: commit the result.
2114    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2115         << F->getName() << "' to " << MutatedMemory.size()
2116         << " stores.\n";
2117    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2118         E = MutatedMemory.end(); I != E; ++I)
2119      CommitValueTo(I->second, I->first);
2120  }
2121
2122  // At this point, we are done interpreting.  If we created any 'alloca'
2123  // temporaries, release them now.
2124  while (!AllocaTmps.empty()) {
2125    GlobalVariable *Tmp = AllocaTmps.back();
2126    AllocaTmps.pop_back();
2127
2128    // If there are still users of the alloca, the program is doing something
2129    // silly, e.g. storing the address of the alloca somewhere and using it
2130    // later.  Since this is undefined, we'll just make it be null.
2131    if (!Tmp->use_empty())
2132      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2133    delete Tmp;
2134  }
2135
2136  return EvalSuccess;
2137}
2138
2139
2140
2141/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2142/// Return true if anything changed.
2143bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2144  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2145  bool MadeChange = false;
2146  if (Ctors.empty()) return false;
2147
2148  // Loop over global ctors, optimizing them when we can.
2149  for (unsigned i = 0; i != Ctors.size(); ++i) {
2150    Function *F = Ctors[i];
2151    // Found a null terminator in the middle of the list, prune off the rest of
2152    // the list.
2153    if (F == 0) {
2154      if (i != Ctors.size()-1) {
2155        Ctors.resize(i+1);
2156        MadeChange = true;
2157      }
2158      break;
2159    }
2160
2161    // We cannot simplify external ctor functions.
2162    if (F->empty()) continue;
2163
2164    // If we can evaluate the ctor at compile time, do.
2165    if (EvaluateStaticConstructor(F)) {
2166      Ctors.erase(Ctors.begin()+i);
2167      MadeChange = true;
2168      --i;
2169      ++NumCtorsEvaluated;
2170      continue;
2171    }
2172  }
2173
2174  if (!MadeChange) return false;
2175
2176  GCL = InstallGlobalCtors(GCL, Ctors);
2177  return true;
2178}
2179
2180
2181bool GlobalOpt::runOnModule(Module &M) {
2182  bool Changed = false;
2183
2184  // Try to find the llvm.globalctors list.
2185  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2186
2187  bool LocalChange = true;
2188  while (LocalChange) {
2189    LocalChange = false;
2190
2191    // Delete functions that are trivially dead, ccc -> fastcc
2192    LocalChange |= OptimizeFunctions(M);
2193
2194    // Optimize global_ctors list.
2195    if (GlobalCtors)
2196      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2197
2198    // Optimize non-address-taken globals.
2199    LocalChange |= OptimizeGlobalVars(M);
2200    Changed |= LocalChange;
2201  }
2202
2203  // TODO: Move all global ctors functions to the end of the module for code
2204  // layout.
2205
2206  return Changed;
2207}
2208