GlobalOpt.cpp revision 20846274a7f535146b327141c523befa40c727de
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <map>
38#include <set>
39using namespace llvm;
40
41STATISTIC(NumMarked    , "Number of globals marked constant");
42STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
43STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
44STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
45STATISTIC(NumDeleted   , "Number of globals deleted");
46STATISTIC(NumFnDeleted , "Number of functions deleted");
47STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
48STATISTIC(NumLocalized , "Number of globals localized");
49STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
50STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
51STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
52STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
53
54namespace {
55  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
56    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
57      AU.addRequired<TargetData>();
58    }
59    static char ID; // Pass identification, replacement for typeid
60    GlobalOpt() : ModulePass((intptr_t)&ID) {}
61
62    bool runOnModule(Module &M);
63
64  private:
65    GlobalVariable *FindGlobalCtors(Module &M);
66    bool OptimizeFunctions(Module &M);
67    bool OptimizeGlobalVars(Module &M);
68    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
69    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
70  };
71
72  char GlobalOpt::ID = 0;
73  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
74}
75
76ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
77
78/// GlobalStatus - As we analyze each global, keep track of some information
79/// about it.  If we find out that the address of the global is taken, none of
80/// this info will be accurate.
81struct VISIBILITY_HIDDEN GlobalStatus {
82  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
83  /// loaded it can be deleted.
84  bool isLoaded;
85
86  /// StoredType - Keep track of what stores to the global look like.
87  ///
88  enum StoredType {
89    /// NotStored - There is no store to this global.  It can thus be marked
90    /// constant.
91    NotStored,
92
93    /// isInitializerStored - This global is stored to, but the only thing
94    /// stored is the constant it was initialized with.  This is only tracked
95    /// for scalar globals.
96    isInitializerStored,
97
98    /// isStoredOnce - This global is stored to, but only its initializer and
99    /// one other value is ever stored to it.  If this global isStoredOnce, we
100    /// track the value stored to it in StoredOnceValue below.  This is only
101    /// tracked for scalar globals.
102    isStoredOnce,
103
104    /// isStored - This global is stored to by multiple values or something else
105    /// that we cannot track.
106    isStored
107  } StoredType;
108
109  /// StoredOnceValue - If only one value (besides the initializer constant) is
110  /// ever stored to this global, keep track of what value it is.
111  Value *StoredOnceValue;
112
113  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
114  /// null/false.  When the first accessing function is noticed, it is recorded.
115  /// When a second different accessing function is noticed,
116  /// HasMultipleAccessingFunctions is set to true.
117  Function *AccessingFunction;
118  bool HasMultipleAccessingFunctions;
119
120  /// HasNonInstructionUser - Set to true if this global has a user that is not
121  /// an instruction (e.g. a constant expr or GV initializer).
122  bool HasNonInstructionUser;
123
124  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
125  bool HasPHIUser;
126
127  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
128                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
129                   HasNonInstructionUser(false), HasPHIUser(false) {}
130};
131
132
133
134/// ConstantIsDead - Return true if the specified constant is (transitively)
135/// dead.  The constant may be used by other constants (e.g. constant arrays and
136/// constant exprs) as long as they are dead, but it cannot be used by anything
137/// else.
138static bool ConstantIsDead(Constant *C) {
139  if (isa<GlobalValue>(C)) return false;
140
141  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
142    if (Constant *CU = dyn_cast<Constant>(*UI)) {
143      if (!ConstantIsDead(CU)) return false;
144    } else
145      return false;
146  return true;
147}
148
149
150/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
151/// structure.  If the global has its address taken, return true to indicate we
152/// can't do anything with it.
153///
154static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
155                          std::set<PHINode*> &PHIUsers) {
156  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
157    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
158      GS.HasNonInstructionUser = true;
159
160      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
161
162    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
163      if (!GS.HasMultipleAccessingFunctions) {
164        Function *F = I->getParent()->getParent();
165        if (GS.AccessingFunction == 0)
166          GS.AccessingFunction = F;
167        else if (GS.AccessingFunction != F)
168          GS.HasMultipleAccessingFunctions = true;
169      }
170      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
171        GS.isLoaded = true;
172        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
173      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
174        // Don't allow a store OF the address, only stores TO the address.
175        if (SI->getOperand(0) == V) return true;
176
177        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
178
179        // If this is a direct store to the global (i.e., the global is a scalar
180        // value, not an aggregate), keep more specific information about
181        // stores.
182        if (GS.StoredType != GlobalStatus::isStored) {
183          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
184            Value *StoredVal = SI->getOperand(0);
185            if (StoredVal == GV->getInitializer()) {
186              if (GS.StoredType < GlobalStatus::isInitializerStored)
187                GS.StoredType = GlobalStatus::isInitializerStored;
188            } else if (isa<LoadInst>(StoredVal) &&
189                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
190              // G = G
191              if (GS.StoredType < GlobalStatus::isInitializerStored)
192                GS.StoredType = GlobalStatus::isInitializerStored;
193            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
194              GS.StoredType = GlobalStatus::isStoredOnce;
195              GS.StoredOnceValue = StoredVal;
196            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
197                       GS.StoredOnceValue == StoredVal) {
198              // noop.
199            } else {
200              GS.StoredType = GlobalStatus::isStored;
201            }
202          } else {
203            GS.StoredType = GlobalStatus::isStored;
204          }
205        }
206      } else if (isa<GetElementPtrInst>(I)) {
207        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
208      } else if (isa<SelectInst>(I)) {
209        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
210      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
211        // PHI nodes we can check just like select or GEP instructions, but we
212        // have to be careful about infinite recursion.
213        if (PHIUsers.insert(PN).second)  // Not already visited.
214          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
215        GS.HasPHIUser = true;
216      } else if (isa<CmpInst>(I)) {
217      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
218        if (I->getOperand(1) == V)
219          GS.StoredType = GlobalStatus::isStored;
220        if (I->getOperand(2) == V)
221          GS.isLoaded = true;
222      } else if (isa<MemSetInst>(I)) {
223        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
224        GS.StoredType = GlobalStatus::isStored;
225      } else {
226        return true;  // Any other non-load instruction might take address!
227      }
228    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
229      GS.HasNonInstructionUser = true;
230      // We might have a dead and dangling constant hanging off of here.
231      if (!ConstantIsDead(C))
232        return true;
233    } else {
234      GS.HasNonInstructionUser = true;
235      // Otherwise must be some other user.
236      return true;
237    }
238
239  return false;
240}
241
242static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
243  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
244  if (!CI) return 0;
245  unsigned IdxV = CI->getZExtValue();
246
247  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
248    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
249  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
250    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
251  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
252    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
253  } else if (isa<ConstantAggregateZero>(Agg)) {
254    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
255      if (IdxV < STy->getNumElements())
256        return Constant::getNullValue(STy->getElementType(IdxV));
257    } else if (const SequentialType *STy =
258               dyn_cast<SequentialType>(Agg->getType())) {
259      return Constant::getNullValue(STy->getElementType());
260    }
261  } else if (isa<UndefValue>(Agg)) {
262    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
263      if (IdxV < STy->getNumElements())
264        return UndefValue::get(STy->getElementType(IdxV));
265    } else if (const SequentialType *STy =
266               dyn_cast<SequentialType>(Agg->getType())) {
267      return UndefValue::get(STy->getElementType());
268    }
269  }
270  return 0;
271}
272
273
274/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
275/// users of the global, cleaning up the obvious ones.  This is largely just a
276/// quick scan over the use list to clean up the easy and obvious cruft.  This
277/// returns true if it made a change.
278static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
279  bool Changed = false;
280  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
281    User *U = *UI++;
282
283    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
284      if (Init) {
285        // Replace the load with the initializer.
286        LI->replaceAllUsesWith(Init);
287        LI->eraseFromParent();
288        Changed = true;
289      }
290    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
291      // Store must be unreachable or storing Init into the global.
292      SI->eraseFromParent();
293      Changed = true;
294    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
295      if (CE->getOpcode() == Instruction::GetElementPtr) {
296        Constant *SubInit = 0;
297        if (Init)
298          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
299        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
300      } else if (CE->getOpcode() == Instruction::BitCast &&
301                 isa<PointerType>(CE->getType())) {
302        // Pointer cast, delete any stores and memsets to the global.
303        Changed |= CleanupConstantGlobalUsers(CE, 0);
304      }
305
306      if (CE->use_empty()) {
307        CE->destroyConstant();
308        Changed = true;
309      }
310    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
311      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
312      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
313      // and will invalidate our notion of what Init is.
314      Constant *SubInit = 0;
315      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
316        ConstantExpr *CE =
317          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
318        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
319          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
320      }
321      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
322
323      if (GEP->use_empty()) {
324        GEP->eraseFromParent();
325        Changed = true;
326      }
327    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
328      if (MI->getRawDest() == V) {
329        MI->eraseFromParent();
330        Changed = true;
331      }
332
333    } else if (Constant *C = dyn_cast<Constant>(U)) {
334      // If we have a chain of dead constantexprs or other things dangling from
335      // us, and if they are all dead, nuke them without remorse.
336      if (ConstantIsDead(C)) {
337        C->destroyConstant();
338        // This could have invalidated UI, start over from scratch.
339        CleanupConstantGlobalUsers(V, Init);
340        return true;
341      }
342    }
343  }
344  return Changed;
345}
346
347/// isSafeSROAElementUse - Return true if the specified instruction is a safe
348/// user of a derived expression from a global that we want to SROA.
349static bool isSafeSROAElementUse(Value *V) {
350  // We might have a dead and dangling constant hanging off of here.
351  if (Constant *C = dyn_cast<Constant>(V))
352    return ConstantIsDead(C);
353
354  Instruction *I = dyn_cast<Instruction>(V);
355  if (!I) return false;
356
357  // Loads are ok.
358  if (isa<LoadInst>(I)) return true;
359
360  // Stores *to* the pointer are ok.
361  if (StoreInst *SI = dyn_cast<StoreInst>(I))
362    return SI->getOperand(0) != V;
363
364  // Otherwise, it must be a GEP.
365  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
366  if (GEPI == 0) return false;
367
368  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
369      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
370    return false;
371
372  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
373       I != E; ++I)
374    if (!isSafeSROAElementUse(*I))
375      return false;
376  return true;
377}
378
379
380/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
381/// Look at it and its uses and decide whether it is safe to SROA this global.
382///
383static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
384  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
385  if (!isa<GetElementPtrInst>(U) &&
386      (!isa<ConstantExpr>(U) ||
387       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
388    return false;
389
390  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
391  // don't like < 3 operand CE's, and we don't like non-constant integer
392  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
393  // value of C.
394  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
395      !cast<Constant>(U->getOperand(1))->isNullValue() ||
396      !isa<ConstantInt>(U->getOperand(2)))
397    return false;
398
399  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
400  ++GEPI;  // Skip over the pointer index.
401
402  // If this is a use of an array allocation, do a bit more checking for sanity.
403  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
404    uint64_t NumElements = AT->getNumElements();
405    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
406
407    // Check to make sure that index falls within the array.  If not,
408    // something funny is going on, so we won't do the optimization.
409    //
410    if (Idx->getZExtValue() >= NumElements)
411      return false;
412
413    // We cannot scalar repl this level of the array unless any array
414    // sub-indices are in-range constants.  In particular, consider:
415    // A[0][i].  We cannot know that the user isn't doing invalid things like
416    // allowing i to index an out-of-range subscript that accesses A[1].
417    //
418    // Scalar replacing *just* the outer index of the array is probably not
419    // going to be a win anyway, so just give up.
420    for (++GEPI; // Skip array index.
421         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
422         ++GEPI) {
423      uint64_t NumElements;
424      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
425        NumElements = SubArrayTy->getNumElements();
426      else
427        NumElements = cast<VectorType>(*GEPI)->getNumElements();
428
429      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
430      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
431        return false;
432    }
433  }
434
435  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
436    if (!isSafeSROAElementUse(*I))
437      return false;
438  return true;
439}
440
441/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
442/// is safe for us to perform this transformation.
443///
444static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
445  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
446       UI != E; ++UI) {
447    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
448      return false;
449  }
450  return true;
451}
452
453
454/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
455/// variable.  This opens the door for other optimizations by exposing the
456/// behavior of the program in a more fine-grained way.  We have determined that
457/// this transformation is safe already.  We return the first global variable we
458/// insert so that the caller can reprocess it.
459static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
460  // Make sure this global only has simple uses that we can SRA.
461  if (!GlobalUsersSafeToSRA(GV))
462    return 0;
463
464  assert(GV->hasInternalLinkage() && !GV->isConstant());
465  Constant *Init = GV->getInitializer();
466  const Type *Ty = Init->getType();
467
468  std::vector<GlobalVariable*> NewGlobals;
469  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
470
471  // Get the alignment of the global, either explicit or target-specific.
472  unsigned StartAlignment = GV->getAlignment();
473  if (StartAlignment == 0)
474    StartAlignment = TD.getABITypeAlignment(GV->getType());
475
476  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
477    NewGlobals.reserve(STy->getNumElements());
478    const StructLayout &Layout = *TD.getStructLayout(STy);
479    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
480      Constant *In = getAggregateConstantElement(Init,
481                                            ConstantInt::get(Type::Int32Ty, i));
482      assert(In && "Couldn't get element of initializer?");
483      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
484                                               GlobalVariable::InternalLinkage,
485                                               In, GV->getName()+"."+utostr(i),
486                                               (Module *)NULL,
487                                               GV->isThreadLocal());
488      Globals.insert(GV, NGV);
489      NewGlobals.push_back(NGV);
490
491      // Calculate the known alignment of the field.  If the original aggregate
492      // had 256 byte alignment for example, something might depend on that:
493      // propagate info to each field.
494      uint64_t FieldOffset = Layout.getElementOffset(i);
495      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
496      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
497        NGV->setAlignment(NewAlign);
498    }
499  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
500    unsigned NumElements = 0;
501    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
502      NumElements = ATy->getNumElements();
503    else
504      NumElements = cast<VectorType>(STy)->getNumElements();
505
506    if (NumElements > 16 && GV->hasNUsesOrMore(16))
507      return 0; // It's not worth it.
508    NewGlobals.reserve(NumElements);
509
510    uint64_t EltSize = TD.getABITypeSize(STy->getElementType());
511    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
512    for (unsigned i = 0, e = NumElements; i != e; ++i) {
513      Constant *In = getAggregateConstantElement(Init,
514                                            ConstantInt::get(Type::Int32Ty, i));
515      assert(In && "Couldn't get element of initializer?");
516
517      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
518                                               GlobalVariable::InternalLinkage,
519                                               In, GV->getName()+"."+utostr(i),
520                                               (Module *)NULL,
521                                               GV->isThreadLocal());
522      Globals.insert(GV, NGV);
523      NewGlobals.push_back(NGV);
524
525      // Calculate the known alignment of the field.  If the original aggregate
526      // had 256 byte alignment for example, something might depend on that:
527      // propagate info to each field.
528      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
529      if (NewAlign > EltAlign)
530        NGV->setAlignment(NewAlign);
531    }
532  }
533
534  if (NewGlobals.empty())
535    return 0;
536
537  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
538
539  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
540
541  // Loop over all of the uses of the global, replacing the constantexpr geps,
542  // with smaller constantexpr geps or direct references.
543  while (!GV->use_empty()) {
544    User *GEP = GV->use_back();
545    assert(((isa<ConstantExpr>(GEP) &&
546             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
547            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
548
549    // Ignore the 1th operand, which has to be zero or else the program is quite
550    // broken (undefined).  Get the 2nd operand, which is the structure or array
551    // index.
552    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
553    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
554
555    Value *NewPtr = NewGlobals[Val];
556
557    // Form a shorter GEP if needed.
558    if (GEP->getNumOperands() > 3) {
559      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
560        SmallVector<Constant*, 8> Idxs;
561        Idxs.push_back(NullInt);
562        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
563          Idxs.push_back(CE->getOperand(i));
564        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
565                                                &Idxs[0], Idxs.size());
566      } else {
567        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
568        SmallVector<Value*, 8> Idxs;
569        Idxs.push_back(NullInt);
570        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
571          Idxs.push_back(GEPI->getOperand(i));
572        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
573                                           GEPI->getName()+"."+utostr(Val), GEPI);
574      }
575    }
576    GEP->replaceAllUsesWith(NewPtr);
577
578    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
579      GEPI->eraseFromParent();
580    else
581      cast<ConstantExpr>(GEP)->destroyConstant();
582  }
583
584  // Delete the old global, now that it is dead.
585  Globals.erase(GV);
586  ++NumSRA;
587
588  // Loop over the new globals array deleting any globals that are obviously
589  // dead.  This can arise due to scalarization of a structure or an array that
590  // has elements that are dead.
591  unsigned FirstGlobal = 0;
592  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
593    if (NewGlobals[i]->use_empty()) {
594      Globals.erase(NewGlobals[i]);
595      if (FirstGlobal == i) ++FirstGlobal;
596    }
597
598  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
599}
600
601/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
602/// value will trap if the value is dynamically null.  PHIs keeps track of any
603/// phi nodes we've seen to avoid reprocessing them.
604static bool AllUsesOfValueWillTrapIfNull(Value *V,
605                                         SmallPtrSet<PHINode*, 8> &PHIs) {
606  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
607    if (isa<LoadInst>(*UI)) {
608      // Will trap.
609    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
610      if (SI->getOperand(0) == V) {
611        //cerr << "NONTRAPPING USE: " << **UI;
612        return false;  // Storing the value.
613      }
614    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
615      if (CI->getOperand(0) != V) {
616        //cerr << "NONTRAPPING USE: " << **UI;
617        return false;  // Not calling the ptr
618      }
619    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
620      if (II->getOperand(0) != V) {
621        //cerr << "NONTRAPPING USE: " << **UI;
622        return false;  // Not calling the ptr
623      }
624    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
625      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
626    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
627      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
628    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
629      // If we've already seen this phi node, ignore it, it has already been
630      // checked.
631      if (PHIs.insert(PN))
632        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
633    } else if (isa<ICmpInst>(*UI) &&
634               isa<ConstantPointerNull>(UI->getOperand(1))) {
635      // Ignore setcc X, null
636    } else {
637      //cerr << "NONTRAPPING USE: " << **UI;
638      return false;
639    }
640  return true;
641}
642
643/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
644/// from GV will trap if the loaded value is null.  Note that this also permits
645/// comparisons of the loaded value against null, as a special case.
646static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
647  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
648    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
649      SmallPtrSet<PHINode*, 8> PHIs;
650      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
651        return false;
652    } else if (isa<StoreInst>(*UI)) {
653      // Ignore stores to the global.
654    } else {
655      // We don't know or understand this user, bail out.
656      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
657      return false;
658    }
659
660  return true;
661}
662
663static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
664  bool Changed = false;
665  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
666    Instruction *I = cast<Instruction>(*UI++);
667    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
668      LI->setOperand(0, NewV);
669      Changed = true;
670    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
671      if (SI->getOperand(1) == V) {
672        SI->setOperand(1, NewV);
673        Changed = true;
674      }
675    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
676      if (I->getOperand(0) == V) {
677        // Calling through the pointer!  Turn into a direct call, but be careful
678        // that the pointer is not also being passed as an argument.
679        I->setOperand(0, NewV);
680        Changed = true;
681        bool PassedAsArg = false;
682        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
683          if (I->getOperand(i) == V) {
684            PassedAsArg = true;
685            I->setOperand(i, NewV);
686          }
687
688        if (PassedAsArg) {
689          // Being passed as an argument also.  Be careful to not invalidate UI!
690          UI = V->use_begin();
691        }
692      }
693    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
694      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
695                                ConstantExpr::getCast(CI->getOpcode(),
696                                                      NewV, CI->getType()));
697      if (CI->use_empty()) {
698        Changed = true;
699        CI->eraseFromParent();
700      }
701    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
702      // Should handle GEP here.
703      SmallVector<Constant*, 8> Idxs;
704      Idxs.reserve(GEPI->getNumOperands()-1);
705      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
706        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
707          Idxs.push_back(C);
708        else
709          break;
710      if (Idxs.size() == GEPI->getNumOperands()-1)
711        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
712                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
713                                                               Idxs.size()));
714      if (GEPI->use_empty()) {
715        Changed = true;
716        GEPI->eraseFromParent();
717      }
718    }
719  }
720
721  return Changed;
722}
723
724
725/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
726/// value stored into it.  If there are uses of the loaded value that would trap
727/// if the loaded value is dynamically null, then we know that they cannot be
728/// reachable with a null optimize away the load.
729static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
730  std::vector<LoadInst*> Loads;
731  bool Changed = false;
732
733  // Replace all uses of loads with uses of uses of the stored value.
734  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
735       GUI != E; ++GUI)
736    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
737      Loads.push_back(LI);
738      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
739    } else {
740      // If we get here we could have stores, selects, or phi nodes whose values
741      // are loaded.
742      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
743              isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
744             "Only expect load and stores!");
745    }
746
747  if (Changed) {
748    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
749    ++NumGlobUses;
750  }
751
752  // Delete all of the loads we can, keeping track of whether we nuked them all!
753  bool AllLoadsGone = true;
754  while (!Loads.empty()) {
755    LoadInst *L = Loads.back();
756    if (L->use_empty()) {
757      L->eraseFromParent();
758      Changed = true;
759    } else {
760      AllLoadsGone = false;
761    }
762    Loads.pop_back();
763  }
764
765  // If we nuked all of the loads, then none of the stores are needed either,
766  // nor is the global.
767  if (AllLoadsGone) {
768    DOUT << "  *** GLOBAL NOW DEAD!\n";
769    CleanupConstantGlobalUsers(GV, 0);
770    if (GV->use_empty()) {
771      GV->eraseFromParent();
772      ++NumDeleted;
773    }
774    Changed = true;
775  }
776  return Changed;
777}
778
779/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
780/// instructions that are foldable.
781static void ConstantPropUsersOf(Value *V) {
782  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
783    if (Instruction *I = dyn_cast<Instruction>(*UI++))
784      if (Constant *NewC = ConstantFoldInstruction(I)) {
785        I->replaceAllUsesWith(NewC);
786
787        // Advance UI to the next non-I use to avoid invalidating it!
788        // Instructions could multiply use V.
789        while (UI != E && *UI == I)
790          ++UI;
791        I->eraseFromParent();
792      }
793}
794
795/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
796/// variable, and transforms the program as if it always contained the result of
797/// the specified malloc.  Because it is always the result of the specified
798/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
799/// malloc into a global, and any loads of GV as uses of the new global.
800static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
801                                                     MallocInst *MI) {
802  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
803  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
804
805  if (NElements->getZExtValue() != 1) {
806    // If we have an array allocation, transform it to a single element
807    // allocation to make the code below simpler.
808    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
809                                 NElements->getZExtValue());
810    MallocInst *NewMI =
811      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
812                     MI->getAlignment(), MI->getName(), MI);
813    Value* Indices[2];
814    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
815    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
816                                              NewMI->getName()+".el0", MI);
817    MI->replaceAllUsesWith(NewGEP);
818    MI->eraseFromParent();
819    MI = NewMI;
820  }
821
822  // Create the new global variable.  The contents of the malloc'd memory is
823  // undefined, so initialize with an undef value.
824  Constant *Init = UndefValue::get(MI->getAllocatedType());
825  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
826                                             GlobalValue::InternalLinkage, Init,
827                                             GV->getName()+".body",
828                                             (Module *)NULL,
829                                             GV->isThreadLocal());
830  // FIXME: This new global should have the alignment returned by malloc.  Code
831  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
832  // this would only guarantee some lower alignment.
833  GV->getParent()->getGlobalList().insert(GV, NewGV);
834
835  // Anything that used the malloc now uses the global directly.
836  MI->replaceAllUsesWith(NewGV);
837
838  Constant *RepValue = NewGV;
839  if (NewGV->getType() != GV->getType()->getElementType())
840    RepValue = ConstantExpr::getBitCast(RepValue,
841                                        GV->getType()->getElementType());
842
843  // If there is a comparison against null, we will insert a global bool to
844  // keep track of whether the global was initialized yet or not.
845  GlobalVariable *InitBool =
846    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
847                       ConstantInt::getFalse(), GV->getName()+".init",
848                       (Module *)NULL, GV->isThreadLocal());
849  bool InitBoolUsed = false;
850
851  // Loop over all uses of GV, processing them in turn.
852  std::vector<StoreInst*> Stores;
853  while (!GV->use_empty())
854    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
855      while (!LI->use_empty()) {
856        Use &LoadUse = LI->use_begin().getUse();
857        if (!isa<ICmpInst>(LoadUse.getUser()))
858          LoadUse = RepValue;
859        else {
860          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
861          // Replace the cmp X, 0 with a use of the bool value.
862          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
863          InitBoolUsed = true;
864          switch (CI->getPredicate()) {
865          default: assert(0 && "Unknown ICmp Predicate!");
866          case ICmpInst::ICMP_ULT:
867          case ICmpInst::ICMP_SLT:
868            LV = ConstantInt::getFalse();   // X < null -> always false
869            break;
870          case ICmpInst::ICMP_ULE:
871          case ICmpInst::ICMP_SLE:
872          case ICmpInst::ICMP_EQ:
873            LV = BinaryOperator::createNot(LV, "notinit", CI);
874            break;
875          case ICmpInst::ICMP_NE:
876          case ICmpInst::ICMP_UGE:
877          case ICmpInst::ICMP_SGE:
878          case ICmpInst::ICMP_UGT:
879          case ICmpInst::ICMP_SGT:
880            break;  // no change.
881          }
882          CI->replaceAllUsesWith(LV);
883          CI->eraseFromParent();
884        }
885      }
886      LI->eraseFromParent();
887    } else {
888      StoreInst *SI = cast<StoreInst>(GV->use_back());
889      // The global is initialized when the store to it occurs.
890      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
891      SI->eraseFromParent();
892    }
893
894  // If the initialization boolean was used, insert it, otherwise delete it.
895  if (!InitBoolUsed) {
896    while (!InitBool->use_empty())  // Delete initializations
897      cast<Instruction>(InitBool->use_back())->eraseFromParent();
898    delete InitBool;
899  } else
900    GV->getParent()->getGlobalList().insert(GV, InitBool);
901
902
903  // Now the GV is dead, nuke it and the malloc.
904  GV->eraseFromParent();
905  MI->eraseFromParent();
906
907  // To further other optimizations, loop over all users of NewGV and try to
908  // constant prop them.  This will promote GEP instructions with constant
909  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
910  ConstantPropUsersOf(NewGV);
911  if (RepValue != NewGV)
912    ConstantPropUsersOf(RepValue);
913
914  return NewGV;
915}
916
917/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
918/// to make sure that there are no complex uses of V.  We permit simple things
919/// like dereferencing the pointer, but not storing through the address, unless
920/// it is to the specified global.
921static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
922                                                      GlobalVariable *GV,
923                                              SmallPtrSet<PHINode*, 8> &PHIs) {
924  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
925    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
926      // Fine, ignore.
927    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
928      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
929        return false;  // Storing the pointer itself... bad.
930      // Otherwise, storing through it, or storing into GV... fine.
931    } else if (isa<GetElementPtrInst>(*UI)) {
932      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
933                                                     GV, PHIs))
934        return false;
935    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
936      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
937      // cycles.
938      if (PHIs.insert(PN))
939        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
940          return false;
941    } else {
942      return false;
943    }
944  return true;
945}
946
947/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
948/// somewhere.  Transform all uses of the allocation into loads from the
949/// global and uses of the resultant pointer.  Further, delete the store into
950/// GV.  This assumes that these value pass the
951/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
952static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
953                                          GlobalVariable *GV) {
954  while (!Alloc->use_empty()) {
955    Instruction *U = cast<Instruction>(*Alloc->use_begin());
956    Instruction *InsertPt = U;
957    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
958      // If this is the store of the allocation into the global, remove it.
959      if (SI->getOperand(1) == GV) {
960        SI->eraseFromParent();
961        continue;
962      }
963    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
964      // Insert the load in the corresponding predecessor, not right before the
965      // PHI.
966      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
967      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
968    }
969
970    // Insert a load from the global, and use it instead of the malloc.
971    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
972    U->replaceUsesOfWith(Alloc, NL);
973  }
974}
975
976/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
977/// GV are simple enough to perform HeapSRA, return true.
978static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
979                                                 MallocInst *MI) {
980  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
981       ++UI)
982    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
983      // We permit two users of the load: setcc comparing against the null
984      // pointer, and a getelementptr of a specific form.
985      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
986           ++UI) {
987        // Comparison against null is ok.
988        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
989          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
990            return false;
991          continue;
992        }
993
994        // getelementptr is also ok, but only a simple form.
995        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
996          // Must index into the array and into the struct.
997          if (GEPI->getNumOperands() < 3)
998            return false;
999
1000          // Otherwise the GEP is ok.
1001          continue;
1002        }
1003
1004        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
1005          // We have a phi of a load from the global.  We can only handle this
1006          // if the other PHI'd values are actually the same.  In this case,
1007          // the rewriter will just drop the phi entirely.
1008          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1009            Value *IV = PN->getIncomingValue(i);
1010            if (IV == LI) continue;  // Trivial the same.
1011
1012            // If the phi'd value is from the malloc that initializes the value,
1013            // we can xform it.
1014            if (IV == MI) continue;
1015
1016            // Otherwise, we don't know what it is.
1017            return false;
1018          }
1019          return true;
1020        }
1021
1022        // Otherwise we don't know what this is, not ok.
1023        return false;
1024      }
1025    }
1026  return true;
1027}
1028
1029/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
1030/// value, lazily creating it on demand.
1031static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
1032                              const std::vector<GlobalVariable*> &FieldGlobals,
1033                              std::vector<Value *> &InsertedLoadsForPtr) {
1034  if (InsertedLoadsForPtr.size() <= FieldNo)
1035    InsertedLoadsForPtr.resize(FieldNo+1);
1036  if (InsertedLoadsForPtr[FieldNo] == 0)
1037    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1038                                                Load->getName()+".f" +
1039                                                utostr(FieldNo), Load);
1040  return InsertedLoadsForPtr[FieldNo];
1041}
1042
1043/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1044/// the load, rewrite the derived value to use the HeapSRoA'd load.
1045static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1046                               const std::vector<GlobalVariable*> &FieldGlobals,
1047                                    std::vector<Value *> &InsertedLoadsForPtr) {
1048  // If this is a comparison against null, handle it.
1049  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1050    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1051    // If we have a setcc of the loaded pointer, we can use a setcc of any
1052    // field.
1053    Value *NPtr;
1054    if (InsertedLoadsForPtr.empty()) {
1055      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
1056    } else {
1057      NPtr = InsertedLoadsForPtr.back();
1058    }
1059
1060    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1061                              Constant::getNullValue(NPtr->getType()),
1062                              SCI->getName(), SCI);
1063    SCI->replaceAllUsesWith(New);
1064    SCI->eraseFromParent();
1065    return;
1066  }
1067
1068  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1069  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1070    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1071           && "Unexpected GEPI!");
1072
1073    // Load the pointer for this field.
1074    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1075    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1076                                    FieldGlobals, InsertedLoadsForPtr);
1077
1078    // Create the new GEP idx vector.
1079    SmallVector<Value*, 8> GEPIdx;
1080    GEPIdx.push_back(GEPI->getOperand(1));
1081    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1082
1083    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx.begin(), GEPIdx.end(),
1084                                             GEPI->getName(), GEPI);
1085    GEPI->replaceAllUsesWith(NGEPI);
1086    GEPI->eraseFromParent();
1087    return;
1088  }
1089
1090  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
1091  // potentially the original malloc.  Insert phi nodes for each field, then
1092  // process uses of the PHI.
1093  PHINode *PN = cast<PHINode>(LoadUser);
1094  std::vector<Value *> PHIsForField;
1095  PHIsForField.resize(FieldGlobals.size());
1096  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1097    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1098
1099    PHINode *FieldPN = PHINode::Create(LoadV->getType(),
1100                                       PN->getName()+"."+utostr(i), PN);
1101    // Fill in the predecessor values.
1102    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1103      // Each predecessor either uses the load or the original malloc.
1104      Value *InVal = PN->getIncomingValue(pred);
1105      BasicBlock *BB = PN->getIncomingBlock(pred);
1106      Value *NewVal;
1107      if (isa<MallocInst>(InVal)) {
1108        // Insert a reload from the global in the predecessor.
1109        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1110                                 PHIsForField);
1111      } else {
1112        NewVal = InsertedLoadsForPtr[i];
1113      }
1114      FieldPN->addIncoming(NewVal, BB);
1115    }
1116    PHIsForField[i] = FieldPN;
1117  }
1118
1119  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1120  // will never insert a load.
1121  while (!PN->use_empty())
1122    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1123  PN->eraseFromParent();
1124}
1125
1126/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1127/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1128/// use FieldGlobals instead.  All uses of loaded values satisfy
1129/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1130static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1131                             const std::vector<GlobalVariable*> &FieldGlobals) {
1132  std::vector<Value *> InsertedLoadsForPtr;
1133  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1134  while (!Load->use_empty())
1135    RewriteHeapSROALoadUser(Load, Load->use_back(),
1136                            FieldGlobals, InsertedLoadsForPtr);
1137}
1138
1139/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1140/// it up into multiple allocations of arrays of the fields.
1141static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1142  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1143  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1144
1145  // There is guaranteed to be at least one use of the malloc (storing
1146  // it into GV).  If there are other uses, change them to be uses of
1147  // the global to simplify later code.  This also deletes the store
1148  // into GV.
1149  ReplaceUsesOfMallocWithGlobal(MI, GV);
1150
1151  // Okay, at this point, there are no users of the malloc.  Insert N
1152  // new mallocs at the same place as MI, and N globals.
1153  std::vector<GlobalVariable*> FieldGlobals;
1154  std::vector<MallocInst*> FieldMallocs;
1155
1156  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1157    const Type *FieldTy = STy->getElementType(FieldNo);
1158    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1159
1160    GlobalVariable *NGV =
1161      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1162                         Constant::getNullValue(PFieldTy),
1163                         GV->getName() + ".f" + utostr(FieldNo), GV,
1164                         GV->isThreadLocal());
1165    FieldGlobals.push_back(NGV);
1166
1167    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1168                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1169    FieldMallocs.push_back(NMI);
1170    new StoreInst(NMI, NGV, MI);
1171  }
1172
1173  // The tricky aspect of this transformation is handling the case when malloc
1174  // fails.  In the original code, malloc failing would set the result pointer
1175  // of malloc to null.  In this case, some mallocs could succeed and others
1176  // could fail.  As such, we emit code that looks like this:
1177  //    F0 = malloc(field0)
1178  //    F1 = malloc(field1)
1179  //    F2 = malloc(field2)
1180  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1181  //      if (F0) { free(F0); F0 = 0; }
1182  //      if (F1) { free(F1); F1 = 0; }
1183  //      if (F2) { free(F2); F2 = 0; }
1184  //    }
1185  Value *RunningOr = 0;
1186  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1187    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1188                             Constant::getNullValue(FieldMallocs[i]->getType()),
1189                                  "isnull", MI);
1190    if (!RunningOr)
1191      RunningOr = Cond;   // First seteq
1192    else
1193      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1194  }
1195
1196  // Split the basic block at the old malloc.
1197  BasicBlock *OrigBB = MI->getParent();
1198  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1199
1200  // Create the block to check the first condition.  Put all these blocks at the
1201  // end of the function as they are unlikely to be executed.
1202  BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1203                                                OrigBB->getParent());
1204
1205  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1206  // branch on RunningOr.
1207  OrigBB->getTerminator()->eraseFromParent();
1208  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1209
1210  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1211  // pointer, because some may be null while others are not.
1212  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1213    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1214    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1215                              Constant::getNullValue(GVVal->getType()),
1216                              "tmp", NullPtrBlock);
1217    BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1218    BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1219    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1220
1221    // Fill in FreeBlock.
1222    new FreeInst(GVVal, FreeBlock);
1223    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1224                  FreeBlock);
1225    BranchInst::Create(NextBlock, FreeBlock);
1226
1227    NullPtrBlock = NextBlock;
1228  }
1229
1230  BranchInst::Create(ContBB, NullPtrBlock);
1231
1232  // MI is no longer needed, remove it.
1233  MI->eraseFromParent();
1234
1235
1236  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1237  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1238  // of the per-field globals instead.
1239  while (!GV->use_empty()) {
1240    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1241      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1242      LI->eraseFromParent();
1243    } else {
1244      // Must be a store of null.
1245      StoreInst *SI = cast<StoreInst>(GV->use_back());
1246      assert(isa<Constant>(SI->getOperand(0)) &&
1247             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1248             "Unexpected heap-sra user!");
1249
1250      // Insert a store of null into each global.
1251      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1252        Constant *Null =
1253          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1254        new StoreInst(Null, FieldGlobals[i], SI);
1255      }
1256      // Erase the original store.
1257      SI->eraseFromParent();
1258    }
1259  }
1260
1261  // The old global is now dead, remove it.
1262  GV->eraseFromParent();
1263
1264  ++NumHeapSRA;
1265  return FieldGlobals[0];
1266}
1267
1268
1269// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1270// that only one value (besides its initializer) is ever stored to the global.
1271static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1272                                     Module::global_iterator &GVI,
1273                                     TargetData &TD) {
1274  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1275    StoredOnceVal = CI->getOperand(0);
1276  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1277    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1278    bool IsJustACast = true;
1279    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1280      if (!isa<Constant>(GEPI->getOperand(i)) ||
1281          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1282        IsJustACast = false;
1283        break;
1284      }
1285    if (IsJustACast)
1286      StoredOnceVal = GEPI->getOperand(0);
1287  }
1288
1289  // If we are dealing with a pointer global that is initialized to null and
1290  // only has one (non-null) value stored into it, then we can optimize any
1291  // users of the loaded value (often calls and loads) that would trap if the
1292  // value was null.
1293  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1294      GV->getInitializer()->isNullValue()) {
1295    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1296      if (GV->getInitializer()->getType() != SOVC->getType())
1297        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1298
1299      // Optimize away any trapping uses of the loaded value.
1300      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1301        return true;
1302    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1303      // If this is a malloc of an abstract type, don't touch it.
1304      if (!MI->getAllocatedType()->isSized())
1305        return false;
1306
1307      // We can't optimize this global unless all uses of it are *known* to be
1308      // of the malloc value, not of the null initializer value (consider a use
1309      // that compares the global's value against zero to see if the malloc has
1310      // been reached).  To do this, we check to see if all uses of the global
1311      // would trap if the global were null: this proves that they must all
1312      // happen after the malloc.
1313      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1314        return false;
1315
1316      // We can't optimize this if the malloc itself is used in a complex way,
1317      // for example, being stored into multiple globals.  This allows the
1318      // malloc to be stored into the specified global, loaded setcc'd, and
1319      // GEP'd.  These are all things we could transform to using the global
1320      // for.
1321      {
1322        SmallPtrSet<PHINode*, 8> PHIs;
1323        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1324          return false;
1325      }
1326
1327
1328      // If we have a global that is only initialized with a fixed size malloc,
1329      // transform the program to use global memory instead of malloc'd memory.
1330      // This eliminates dynamic allocation, avoids an indirection accessing the
1331      // data, and exposes the resultant global to further GlobalOpt.
1332      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1333        // Restrict this transformation to only working on small allocations
1334        // (2048 bytes currently), as we don't want to introduce a 16M global or
1335        // something.
1336        if (NElements->getZExtValue()*
1337                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
1338          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1339          return true;
1340        }
1341      }
1342
1343      // If the allocation is an array of structures, consider transforming this
1344      // into multiple malloc'd arrays, one for each field.  This is basically
1345      // SRoA for malloc'd memory.
1346      if (const StructType *AllocTy =
1347                  dyn_cast<StructType>(MI->getAllocatedType())) {
1348        // This the structure has an unreasonable number of fields, leave it
1349        // alone.
1350        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1351            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1352          GVI = PerformHeapAllocSRoA(GV, MI);
1353          return true;
1354        }
1355      }
1356    }
1357  }
1358
1359  return false;
1360}
1361
1362/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1363/// two values ever stored into GV are its initializer and OtherVal.  See if we
1364/// can shrink the global into a boolean and select between the two values
1365/// whenever it is used.  This exposes the values to other scalar optimizations.
1366static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1367  const Type *GVElType = GV->getType()->getElementType();
1368
1369  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1370  // an FP value or vector, don't do this optimization because a select between
1371  // them is very expensive and unlikely to lead to later simplification.
1372  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1373      isa<VectorType>(GVElType))
1374    return false;
1375
1376  // Walk the use list of the global seeing if all the uses are load or store.
1377  // If there is anything else, bail out.
1378  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1379    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1380      return false;
1381
1382  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1383
1384  // Create the new global, initializing it to false.
1385  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1386         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1387                                             GV->getName()+".b",
1388                                             (Module *)NULL,
1389                                             GV->isThreadLocal());
1390  GV->getParent()->getGlobalList().insert(GV, NewGV);
1391
1392  Constant *InitVal = GV->getInitializer();
1393  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1394
1395  // If initialized to zero and storing one into the global, we can use a cast
1396  // instead of a select to synthesize the desired value.
1397  bool IsOneZero = false;
1398  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1399    IsOneZero = InitVal->isNullValue() && CI->isOne();
1400
1401  while (!GV->use_empty()) {
1402    Instruction *UI = cast<Instruction>(GV->use_back());
1403    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1404      // Change the store into a boolean store.
1405      bool StoringOther = SI->getOperand(0) == OtherVal;
1406      // Only do this if we weren't storing a loaded value.
1407      Value *StoreVal;
1408      if (StoringOther || SI->getOperand(0) == InitVal)
1409        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1410      else {
1411        // Otherwise, we are storing a previously loaded copy.  To do this,
1412        // change the copy from copying the original value to just copying the
1413        // bool.
1414        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1415
1416        // If we're already replaced the input, StoredVal will be a cast or
1417        // select instruction.  If not, it will be a load of the original
1418        // global.
1419        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1420          assert(LI->getOperand(0) == GV && "Not a copy!");
1421          // Insert a new load, to preserve the saved value.
1422          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1423        } else {
1424          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1425                 "This is not a form that we understand!");
1426          StoreVal = StoredVal->getOperand(0);
1427          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1428        }
1429      }
1430      new StoreInst(StoreVal, NewGV, SI);
1431    } else {
1432      // Change the load into a load of bool then a select.
1433      LoadInst *LI = cast<LoadInst>(UI);
1434      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1435      Value *NSI;
1436      if (IsOneZero)
1437        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1438      else
1439        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1440      NSI->takeName(LI);
1441      LI->replaceAllUsesWith(NSI);
1442    }
1443    UI->eraseFromParent();
1444  }
1445
1446  GV->eraseFromParent();
1447  return true;
1448}
1449
1450
1451/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1452/// it if possible.  If we make a change, return true.
1453bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1454                                      Module::global_iterator &GVI) {
1455  std::set<PHINode*> PHIUsers;
1456  GlobalStatus GS;
1457  GV->removeDeadConstantUsers();
1458
1459  if (GV->use_empty()) {
1460    DOUT << "GLOBAL DEAD: " << *GV;
1461    GV->eraseFromParent();
1462    ++NumDeleted;
1463    return true;
1464  }
1465
1466  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1467#if 0
1468    cerr << "Global: " << *GV;
1469    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1470    cerr << "  StoredType = ";
1471    switch (GS.StoredType) {
1472    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1473    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1474    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1475    case GlobalStatus::isStored: cerr << "stored\n"; break;
1476    }
1477    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1478      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1479    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1480      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1481                << "\n";
1482    cerr << "  HasMultipleAccessingFunctions =  "
1483              << GS.HasMultipleAccessingFunctions << "\n";
1484    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1485    cerr << "\n";
1486#endif
1487
1488    // If this is a first class global and has only one accessing function
1489    // and this function is main (which we know is not recursive we can make
1490    // this global a local variable) we replace the global with a local alloca
1491    // in this function.
1492    //
1493    // NOTE: It doesn't make sense to promote non first class types since we
1494    // are just replacing static memory to stack memory.
1495    if (!GS.HasMultipleAccessingFunctions &&
1496        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1497        GV->getType()->getElementType()->isFirstClassType() &&
1498        GS.AccessingFunction->getName() == "main" &&
1499        GS.AccessingFunction->hasExternalLinkage()) {
1500      DOUT << "LOCALIZING GLOBAL: " << *GV;
1501      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1502      const Type* ElemTy = GV->getType()->getElementType();
1503      // FIXME: Pass Global's alignment when globals have alignment
1504      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1505      if (!isa<UndefValue>(GV->getInitializer()))
1506        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1507
1508      GV->replaceAllUsesWith(Alloca);
1509      GV->eraseFromParent();
1510      ++NumLocalized;
1511      return true;
1512    }
1513
1514    // If the global is never loaded (but may be stored to), it is dead.
1515    // Delete it now.
1516    if (!GS.isLoaded) {
1517      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1518
1519      // Delete any stores we can find to the global.  We may not be able to
1520      // make it completely dead though.
1521      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1522
1523      // If the global is dead now, delete it.
1524      if (GV->use_empty()) {
1525        GV->eraseFromParent();
1526        ++NumDeleted;
1527        Changed = true;
1528      }
1529      return Changed;
1530
1531    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1532      DOUT << "MARKING CONSTANT: " << *GV;
1533      GV->setConstant(true);
1534
1535      // Clean up any obviously simplifiable users now.
1536      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1537
1538      // If the global is dead now, just nuke it.
1539      if (GV->use_empty()) {
1540        DOUT << "   *** Marking constant allowed us to simplify "
1541             << "all users and delete global!\n";
1542        GV->eraseFromParent();
1543        ++NumDeleted;
1544      }
1545
1546      ++NumMarked;
1547      return true;
1548    } else if (!GV->getInitializer()->getType()->isFirstClassType()) {
1549      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1550                                                 getAnalysis<TargetData>())) {
1551        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1552        return true;
1553      }
1554    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1555      // If the initial value for the global was an undef value, and if only
1556      // one other value was stored into it, we can just change the
1557      // initializer to be an undef value, then delete all stores to the
1558      // global.  This allows us to mark it constant.
1559      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1560        if (isa<UndefValue>(GV->getInitializer())) {
1561          // Change the initial value here.
1562          GV->setInitializer(SOVConstant);
1563
1564          // Clean up any obviously simplifiable users now.
1565          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1566
1567          if (GV->use_empty()) {
1568            DOUT << "   *** Substituting initializer allowed us to "
1569                 << "simplify all users and delete global!\n";
1570            GV->eraseFromParent();
1571            ++NumDeleted;
1572          } else {
1573            GVI = GV;
1574          }
1575          ++NumSubstitute;
1576          return true;
1577        }
1578
1579      // Try to optimize globals based on the knowledge that only one value
1580      // (besides its initializer) is ever stored to the global.
1581      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1582                                   getAnalysis<TargetData>()))
1583        return true;
1584
1585      // Otherwise, if the global was not a boolean, we can shrink it to be a
1586      // boolean.
1587      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1588        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1589          ++NumShrunkToBool;
1590          return true;
1591        }
1592    }
1593  }
1594  return false;
1595}
1596
1597/// OnlyCalledDirectly - Return true if the specified function is only called
1598/// directly.  In other words, its address is never taken.
1599static bool OnlyCalledDirectly(Function *F) {
1600  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1601    Instruction *User = dyn_cast<Instruction>(*UI);
1602    if (!User) return false;
1603    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1604
1605    // See if the function address is passed as an argument.
1606    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1607      if (User->getOperand(i) == F) return false;
1608  }
1609  return true;
1610}
1611
1612/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1613/// function, changing them to FastCC.
1614static void ChangeCalleesToFastCall(Function *F) {
1615  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1616    CallSite User(cast<Instruction>(*UI));
1617    User.setCallingConv(CallingConv::Fast);
1618  }
1619}
1620
1621static PAListPtr StripNest(const PAListPtr &Attrs) {
1622  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1623    if ((Attrs.getSlot(i).Attrs & ParamAttr::Nest) == 0)
1624      continue;
1625
1626    // There can be only one.
1627    return Attrs.removeAttr(Attrs.getSlot(i).Index, ParamAttr::Nest);
1628  }
1629
1630  return Attrs;
1631}
1632
1633static void RemoveNestAttribute(Function *F) {
1634  F->setParamAttrs(StripNest(F->getParamAttrs()));
1635  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1636    CallSite User(cast<Instruction>(*UI));
1637    User.setParamAttrs(StripNest(User.getParamAttrs()));
1638  }
1639}
1640
1641bool GlobalOpt::OptimizeFunctions(Module &M) {
1642  bool Changed = false;
1643  // Optimize functions.
1644  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1645    Function *F = FI++;
1646    F->removeDeadConstantUsers();
1647    if (F->use_empty() && (F->hasInternalLinkage() ||
1648                           F->hasLinkOnceLinkage())) {
1649      M.getFunctionList().erase(F);
1650      Changed = true;
1651      ++NumFnDeleted;
1652    } else if (F->hasInternalLinkage()) {
1653      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1654          OnlyCalledDirectly(F)) {
1655        // If this function has C calling conventions, is not a varargs
1656        // function, and is only called directly, promote it to use the Fast
1657        // calling convention.
1658        F->setCallingConv(CallingConv::Fast);
1659        ChangeCalleesToFastCall(F);
1660        ++NumFastCallFns;
1661        Changed = true;
1662      }
1663
1664      if (F->getParamAttrs().hasAttrSomewhere(ParamAttr::Nest) &&
1665          OnlyCalledDirectly(F)) {
1666        // The function is not used by a trampoline intrinsic, so it is safe
1667        // to remove the 'nest' attribute.
1668        RemoveNestAttribute(F);
1669        ++NumNestRemoved;
1670        Changed = true;
1671      }
1672    }
1673  }
1674  return Changed;
1675}
1676
1677bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1678  bool Changed = false;
1679  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1680       GVI != E; ) {
1681    GlobalVariable *GV = GVI++;
1682    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1683        GV->hasInitializer())
1684      Changed |= ProcessInternalGlobal(GV, GVI);
1685  }
1686  return Changed;
1687}
1688
1689/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1690/// initializers have an init priority of 65535.
1691GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1692  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1693       I != E; ++I)
1694    if (I->getName() == "llvm.global_ctors") {
1695      // Found it, verify it's an array of { int, void()* }.
1696      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1697      if (!ATy) return 0;
1698      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1699      if (!STy || STy->getNumElements() != 2 ||
1700          STy->getElementType(0) != Type::Int32Ty) return 0;
1701      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1702      if (!PFTy) return 0;
1703      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1704      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1705          FTy->getNumParams() != 0)
1706        return 0;
1707
1708      // Verify that the initializer is simple enough for us to handle.
1709      if (!I->hasInitializer()) return 0;
1710      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1711      if (!CA) return 0;
1712      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1713        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1714          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1715            continue;
1716
1717          // Must have a function or null ptr.
1718          if (!isa<Function>(CS->getOperand(1)))
1719            return 0;
1720
1721          // Init priority must be standard.
1722          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1723          if (!CI || CI->getZExtValue() != 65535)
1724            return 0;
1725        } else {
1726          return 0;
1727        }
1728
1729      return I;
1730    }
1731  return 0;
1732}
1733
1734/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1735/// return a list of the functions and null terminator as a vector.
1736static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1737  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1738  std::vector<Function*> Result;
1739  Result.reserve(CA->getNumOperands());
1740  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1741    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1742    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1743  }
1744  return Result;
1745}
1746
1747/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1748/// specified array, returning the new global to use.
1749static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1750                                          const std::vector<Function*> &Ctors) {
1751  // If we made a change, reassemble the initializer list.
1752  std::vector<Constant*> CSVals;
1753  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1754  CSVals.push_back(0);
1755
1756  // Create the new init list.
1757  std::vector<Constant*> CAList;
1758  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1759    if (Ctors[i]) {
1760      CSVals[1] = Ctors[i];
1761    } else {
1762      const Type *FTy = FunctionType::get(Type::VoidTy,
1763                                          std::vector<const Type*>(), false);
1764      const PointerType *PFTy = PointerType::getUnqual(FTy);
1765      CSVals[1] = Constant::getNullValue(PFTy);
1766      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1767    }
1768    CAList.push_back(ConstantStruct::get(CSVals));
1769  }
1770
1771  // Create the array initializer.
1772  const Type *StructTy =
1773    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1774  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1775                                    CAList);
1776
1777  // If we didn't change the number of elements, don't create a new GV.
1778  if (CA->getType() == GCL->getInitializer()->getType()) {
1779    GCL->setInitializer(CA);
1780    return GCL;
1781  }
1782
1783  // Create the new global and insert it next to the existing list.
1784  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1785                                           GCL->getLinkage(), CA, "",
1786                                           (Module *)NULL,
1787                                           GCL->isThreadLocal());
1788  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1789  NGV->takeName(GCL);
1790
1791  // Nuke the old list, replacing any uses with the new one.
1792  if (!GCL->use_empty()) {
1793    Constant *V = NGV;
1794    if (V->getType() != GCL->getType())
1795      V = ConstantExpr::getBitCast(V, GCL->getType());
1796    GCL->replaceAllUsesWith(V);
1797  }
1798  GCL->eraseFromParent();
1799
1800  if (Ctors.size())
1801    return NGV;
1802  else
1803    return 0;
1804}
1805
1806
1807static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1808                        Value *V) {
1809  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1810  Constant *R = ComputedValues[V];
1811  assert(R && "Reference to an uncomputed value!");
1812  return R;
1813}
1814
1815/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1816/// enough for us to understand.  In particular, if it is a cast of something,
1817/// we punt.  We basically just support direct accesses to globals and GEP's of
1818/// globals.  This should be kept up to date with CommitValueTo.
1819static bool isSimpleEnoughPointerToCommit(Constant *C) {
1820  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1821    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1822      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1823    return !GV->isDeclaration();  // reject external globals.
1824  }
1825  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1826    // Handle a constantexpr gep.
1827    if (CE->getOpcode() == Instruction::GetElementPtr &&
1828        isa<GlobalVariable>(CE->getOperand(0))) {
1829      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1830      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1831        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1832      return GV->hasInitializer() &&
1833             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1834    }
1835  return false;
1836}
1837
1838/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1839/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1840/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1841static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1842                                   ConstantExpr *Addr, unsigned OpNo) {
1843  // Base case of the recursion.
1844  if (OpNo == Addr->getNumOperands()) {
1845    assert(Val->getType() == Init->getType() && "Type mismatch!");
1846    return Val;
1847  }
1848
1849  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1850    std::vector<Constant*> Elts;
1851
1852    // Break up the constant into its elements.
1853    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1854      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1855        Elts.push_back(CS->getOperand(i));
1856    } else if (isa<ConstantAggregateZero>(Init)) {
1857      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1858        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1859    } else if (isa<UndefValue>(Init)) {
1860      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1861        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1862    } else {
1863      assert(0 && "This code is out of sync with "
1864             " ConstantFoldLoadThroughGEPConstantExpr");
1865    }
1866
1867    // Replace the element that we are supposed to.
1868    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1869    unsigned Idx = CU->getZExtValue();
1870    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1871    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1872
1873    // Return the modified struct.
1874    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1875  } else {
1876    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1877    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1878
1879    // Break up the array into elements.
1880    std::vector<Constant*> Elts;
1881    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1882      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1883        Elts.push_back(CA->getOperand(i));
1884    } else if (isa<ConstantAggregateZero>(Init)) {
1885      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1886      Elts.assign(ATy->getNumElements(), Elt);
1887    } else if (isa<UndefValue>(Init)) {
1888      Constant *Elt = UndefValue::get(ATy->getElementType());
1889      Elts.assign(ATy->getNumElements(), Elt);
1890    } else {
1891      assert(0 && "This code is out of sync with "
1892             " ConstantFoldLoadThroughGEPConstantExpr");
1893    }
1894
1895    assert(CI->getZExtValue() < ATy->getNumElements());
1896    Elts[CI->getZExtValue()] =
1897      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1898    return ConstantArray::get(ATy, Elts);
1899  }
1900}
1901
1902/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1903/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1904static void CommitValueTo(Constant *Val, Constant *Addr) {
1905  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1906    assert(GV->hasInitializer());
1907    GV->setInitializer(Val);
1908    return;
1909  }
1910
1911  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1912  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1913
1914  Constant *Init = GV->getInitializer();
1915  Init = EvaluateStoreInto(Init, Val, CE, 2);
1916  GV->setInitializer(Init);
1917}
1918
1919/// ComputeLoadResult - Return the value that would be computed by a load from
1920/// P after the stores reflected by 'memory' have been performed.  If we can't
1921/// decide, return null.
1922static Constant *ComputeLoadResult(Constant *P,
1923                                const std::map<Constant*, Constant*> &Memory) {
1924  // If this memory location has been recently stored, use the stored value: it
1925  // is the most up-to-date.
1926  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1927  if (I != Memory.end()) return I->second;
1928
1929  // Access it.
1930  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1931    if (GV->hasInitializer())
1932      return GV->getInitializer();
1933    return 0;
1934  }
1935
1936  // Handle a constantexpr getelementptr.
1937  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1938    if (CE->getOpcode() == Instruction::GetElementPtr &&
1939        isa<GlobalVariable>(CE->getOperand(0))) {
1940      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1941      if (GV->hasInitializer())
1942        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1943    }
1944
1945  return 0;  // don't know how to evaluate.
1946}
1947
1948/// EvaluateFunction - Evaluate a call to function F, returning true if
1949/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1950/// arguments for the function.
1951static bool EvaluateFunction(Function *F, Constant *&RetVal,
1952                             const std::vector<Constant*> &ActualArgs,
1953                             std::vector<Function*> &CallStack,
1954                             std::map<Constant*, Constant*> &MutatedMemory,
1955                             std::vector<GlobalVariable*> &AllocaTmps) {
1956  // Check to see if this function is already executing (recursion).  If so,
1957  // bail out.  TODO: we might want to accept limited recursion.
1958  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1959    return false;
1960
1961  CallStack.push_back(F);
1962
1963  /// Values - As we compute SSA register values, we store their contents here.
1964  std::map<Value*, Constant*> Values;
1965
1966  // Initialize arguments to the incoming values specified.
1967  unsigned ArgNo = 0;
1968  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1969       ++AI, ++ArgNo)
1970    Values[AI] = ActualArgs[ArgNo];
1971
1972  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1973  /// we can only evaluate any one basic block at most once.  This set keeps
1974  /// track of what we have executed so we can detect recursive cases etc.
1975  std::set<BasicBlock*> ExecutedBlocks;
1976
1977  // CurInst - The current instruction we're evaluating.
1978  BasicBlock::iterator CurInst = F->begin()->begin();
1979
1980  // This is the main evaluation loop.
1981  while (1) {
1982    Constant *InstResult = 0;
1983
1984    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1985      if (SI->isVolatile()) return false;  // no volatile accesses.
1986      Constant *Ptr = getVal(Values, SI->getOperand(1));
1987      if (!isSimpleEnoughPointerToCommit(Ptr))
1988        // If this is too complex for us to commit, reject it.
1989        return false;
1990      Constant *Val = getVal(Values, SI->getOperand(0));
1991      MutatedMemory[Ptr] = Val;
1992    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1993      InstResult = ConstantExpr::get(BO->getOpcode(),
1994                                     getVal(Values, BO->getOperand(0)),
1995                                     getVal(Values, BO->getOperand(1)));
1996    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1997      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1998                                            getVal(Values, CI->getOperand(0)),
1999                                            getVal(Values, CI->getOperand(1)));
2000    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2001      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2002                                         getVal(Values, CI->getOperand(0)),
2003                                         CI->getType());
2004    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2005      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2006                                           getVal(Values, SI->getOperand(1)),
2007                                           getVal(Values, SI->getOperand(2)));
2008    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2009      Constant *P = getVal(Values, GEP->getOperand(0));
2010      SmallVector<Constant*, 8> GEPOps;
2011      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
2012        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
2013      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2014    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2015      if (LI->isVolatile()) return false;  // no volatile accesses.
2016      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2017                                     MutatedMemory);
2018      if (InstResult == 0) return false; // Could not evaluate load.
2019    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2020      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2021      const Type *Ty = AI->getType()->getElementType();
2022      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2023                                              GlobalValue::InternalLinkage,
2024                                              UndefValue::get(Ty),
2025                                              AI->getName()));
2026      InstResult = AllocaTmps.back();
2027    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2028      // Cannot handle inline asm.
2029      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2030
2031      // Resolve function pointers.
2032      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2033      if (!Callee) return false;  // Cannot resolve.
2034
2035      std::vector<Constant*> Formals;
2036      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
2037        Formals.push_back(getVal(Values, CI->getOperand(i)));
2038
2039      if (Callee->isDeclaration()) {
2040        // If this is a function we can constant fold, do it.
2041        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2042                                           Formals.size())) {
2043          InstResult = C;
2044        } else {
2045          return false;
2046        }
2047      } else {
2048        if (Callee->getFunctionType()->isVarArg())
2049          return false;
2050
2051        Constant *RetVal;
2052
2053        // Execute the call, if successful, use the return value.
2054        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2055                              MutatedMemory, AllocaTmps))
2056          return false;
2057        InstResult = RetVal;
2058      }
2059    } else if (isa<TerminatorInst>(CurInst)) {
2060      BasicBlock *NewBB = 0;
2061      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2062        if (BI->isUnconditional()) {
2063          NewBB = BI->getSuccessor(0);
2064        } else {
2065          ConstantInt *Cond =
2066            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2067          if (!Cond) return false;  // Cannot determine.
2068
2069          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2070        }
2071      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2072        ConstantInt *Val =
2073          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2074        if (!Val) return false;  // Cannot determine.
2075        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2076      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2077        if (RI->getNumOperands())
2078          RetVal = getVal(Values, RI->getOperand(0));
2079
2080        CallStack.pop_back();  // return from fn.
2081        return true;  // We succeeded at evaluating this ctor!
2082      } else {
2083        // invoke, unwind, unreachable.
2084        return false;  // Cannot handle this terminator.
2085      }
2086
2087      // Okay, we succeeded in evaluating this control flow.  See if we have
2088      // executed the new block before.  If so, we have a looping function,
2089      // which we cannot evaluate in reasonable time.
2090      if (!ExecutedBlocks.insert(NewBB).second)
2091        return false;  // looped!
2092
2093      // Okay, we have never been in this block before.  Check to see if there
2094      // are any PHI nodes.  If so, evaluate them with information about where
2095      // we came from.
2096      BasicBlock *OldBB = CurInst->getParent();
2097      CurInst = NewBB->begin();
2098      PHINode *PN;
2099      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2100        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2101
2102      // Do NOT increment CurInst.  We know that the terminator had no value.
2103      continue;
2104    } else {
2105      // Did not know how to evaluate this!
2106      return false;
2107    }
2108
2109    if (!CurInst->use_empty())
2110      Values[CurInst] = InstResult;
2111
2112    // Advance program counter.
2113    ++CurInst;
2114  }
2115}
2116
2117/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2118/// we can.  Return true if we can, false otherwise.
2119static bool EvaluateStaticConstructor(Function *F) {
2120  /// MutatedMemory - For each store we execute, we update this map.  Loads
2121  /// check this to get the most up-to-date value.  If evaluation is successful,
2122  /// this state is committed to the process.
2123  std::map<Constant*, Constant*> MutatedMemory;
2124
2125  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2126  /// to represent its body.  This vector is needed so we can delete the
2127  /// temporary globals when we are done.
2128  std::vector<GlobalVariable*> AllocaTmps;
2129
2130  /// CallStack - This is used to detect recursion.  In pathological situations
2131  /// we could hit exponential behavior, but at least there is nothing
2132  /// unbounded.
2133  std::vector<Function*> CallStack;
2134
2135  // Call the function.
2136  Constant *RetValDummy;
2137  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2138                                       CallStack, MutatedMemory, AllocaTmps);
2139  if (EvalSuccess) {
2140    // We succeeded at evaluation: commit the result.
2141    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2142         << F->getName() << "' to " << MutatedMemory.size()
2143         << " stores.\n";
2144    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2145         E = MutatedMemory.end(); I != E; ++I)
2146      CommitValueTo(I->second, I->first);
2147  }
2148
2149  // At this point, we are done interpreting.  If we created any 'alloca'
2150  // temporaries, release them now.
2151  while (!AllocaTmps.empty()) {
2152    GlobalVariable *Tmp = AllocaTmps.back();
2153    AllocaTmps.pop_back();
2154
2155    // If there are still users of the alloca, the program is doing something
2156    // silly, e.g. storing the address of the alloca somewhere and using it
2157    // later.  Since this is undefined, we'll just make it be null.
2158    if (!Tmp->use_empty())
2159      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2160    delete Tmp;
2161  }
2162
2163  return EvalSuccess;
2164}
2165
2166
2167
2168/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2169/// Return true if anything changed.
2170bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2171  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2172  bool MadeChange = false;
2173  if (Ctors.empty()) return false;
2174
2175  // Loop over global ctors, optimizing them when we can.
2176  for (unsigned i = 0; i != Ctors.size(); ++i) {
2177    Function *F = Ctors[i];
2178    // Found a null terminator in the middle of the list, prune off the rest of
2179    // the list.
2180    if (F == 0) {
2181      if (i != Ctors.size()-1) {
2182        Ctors.resize(i+1);
2183        MadeChange = true;
2184      }
2185      break;
2186    }
2187
2188    // We cannot simplify external ctor functions.
2189    if (F->empty()) continue;
2190
2191    // If we can evaluate the ctor at compile time, do.
2192    if (EvaluateStaticConstructor(F)) {
2193      Ctors.erase(Ctors.begin()+i);
2194      MadeChange = true;
2195      --i;
2196      ++NumCtorsEvaluated;
2197      continue;
2198    }
2199  }
2200
2201  if (!MadeChange) return false;
2202
2203  GCL = InstallGlobalCtors(GCL, Ctors);
2204  return true;
2205}
2206
2207
2208bool GlobalOpt::runOnModule(Module &M) {
2209  bool Changed = false;
2210
2211  // Try to find the llvm.globalctors list.
2212  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2213
2214  bool LocalChange = true;
2215  while (LocalChange) {
2216    LocalChange = false;
2217
2218    // Delete functions that are trivially dead, ccc -> fastcc
2219    LocalChange |= OptimizeFunctions(M);
2220
2221    // Optimize global_ctors list.
2222    if (GlobalCtors)
2223      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2224
2225    // Optimize non-address-taken globals.
2226    LocalChange |= OptimizeGlobalVars(M);
2227    Changed |= LocalChange;
2228  }
2229
2230  // TODO: Move all global ctors functions to the end of the module for code
2231  // layout.
2232
2233  return Changed;
2234}
2235