GlobalOpt.cpp revision 20eef0f652c5358059d6d0f7f8cf585d971fb28b
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/StringExtras.h"
33#include <algorithm>
34#include <set>
35using namespace llvm;
36
37STATISTIC(NumMarked    , "Number of globals marked constant");
38STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
39STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
40STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
41STATISTIC(NumDeleted   , "Number of globals deleted");
42STATISTIC(NumFnDeleted , "Number of functions deleted");
43STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
44STATISTIC(NumLocalized , "Number of globals localized");
45STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
46STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
47STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
48
49namespace {
50  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
51    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
52      AU.addRequired<TargetData>();
53    }
54    static char ID; // Pass identification, replacement for typeid
55    GlobalOpt() : ModulePass((intptr_t)&ID) {}
56
57    bool runOnModule(Module &M);
58
59  private:
60    GlobalVariable *FindGlobalCtors(Module &M);
61    bool OptimizeFunctions(Module &M);
62    bool OptimizeGlobalVars(Module &M);
63    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
64    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
65  };
66
67  char GlobalOpt::ID = 0;
68  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
69}
70
71ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
72
73/// GlobalStatus - As we analyze each global, keep track of some information
74/// about it.  If we find out that the address of the global is taken, none of
75/// this info will be accurate.
76struct VISIBILITY_HIDDEN GlobalStatus {
77  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
78  /// loaded it can be deleted.
79  bool isLoaded;
80
81  /// StoredType - Keep track of what stores to the global look like.
82  ///
83  enum StoredType {
84    /// NotStored - There is no store to this global.  It can thus be marked
85    /// constant.
86    NotStored,
87
88    /// isInitializerStored - This global is stored to, but the only thing
89    /// stored is the constant it was initialized with.  This is only tracked
90    /// for scalar globals.
91    isInitializerStored,
92
93    /// isStoredOnce - This global is stored to, but only its initializer and
94    /// one other value is ever stored to it.  If this global isStoredOnce, we
95    /// track the value stored to it in StoredOnceValue below.  This is only
96    /// tracked for scalar globals.
97    isStoredOnce,
98
99    /// isStored - This global is stored to by multiple values or something else
100    /// that we cannot track.
101    isStored
102  } StoredType;
103
104  /// StoredOnceValue - If only one value (besides the initializer constant) is
105  /// ever stored to this global, keep track of what value it is.
106  Value *StoredOnceValue;
107
108  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
109  /// null/false.  When the first accessing function is noticed, it is recorded.
110  /// When a second different accessing function is noticed,
111  /// HasMultipleAccessingFunctions is set to true.
112  Function *AccessingFunction;
113  bool HasMultipleAccessingFunctions;
114
115  /// HasNonInstructionUser - Set to true if this global has a user that is not
116  /// an instruction (e.g. a constant expr or GV initializer).
117  bool HasNonInstructionUser;
118
119  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
120  bool HasPHIUser;
121
122  /// isNotSuitableForSRA - Keep track of whether any SRA preventing users of
123  /// the global exist.  Such users include GEP instruction with variable
124  /// indexes, and non-gep/load/store users like constant expr casts.
125  bool isNotSuitableForSRA;
126
127  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
128                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
129                   HasNonInstructionUser(false), HasPHIUser(false),
130                   isNotSuitableForSRA(false) {}
131};
132
133
134
135/// ConstantIsDead - Return true if the specified constant is (transitively)
136/// dead.  The constant may be used by other constants (e.g. constant arrays and
137/// constant exprs) as long as they are dead, but it cannot be used by anything
138/// else.
139static bool ConstantIsDead(Constant *C) {
140  if (isa<GlobalValue>(C)) return false;
141
142  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
143    if (Constant *CU = dyn_cast<Constant>(*UI)) {
144      if (!ConstantIsDead(CU)) return false;
145    } else
146      return false;
147  return true;
148}
149
150
151/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
152/// structure.  If the global has its address taken, return true to indicate we
153/// can't do anything with it.
154///
155static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
156                          std::set<PHINode*> &PHIUsers) {
157  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
158    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
159      GS.HasNonInstructionUser = true;
160
161      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
162      if (CE->getOpcode() != Instruction::GetElementPtr)
163        GS.isNotSuitableForSRA = true;
164      else if (!GS.isNotSuitableForSRA) {
165        // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
166        // don't like < 3 operand CE's, and we don't like non-constant integer
167        // indices.
168        if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
169          GS.isNotSuitableForSRA = true;
170        else {
171          for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
172            if (!isa<ConstantInt>(CE->getOperand(i))) {
173              GS.isNotSuitableForSRA = true;
174              break;
175            }
176        }
177      }
178
179    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
180      if (!GS.HasMultipleAccessingFunctions) {
181        Function *F = I->getParent()->getParent();
182        if (GS.AccessingFunction == 0)
183          GS.AccessingFunction = F;
184        else if (GS.AccessingFunction != F)
185          GS.HasMultipleAccessingFunctions = true;
186      }
187      if (isa<LoadInst>(I)) {
188        GS.isLoaded = true;
189      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
190        // Don't allow a store OF the address, only stores TO the address.
191        if (SI->getOperand(0) == V) return true;
192
193        // If this is a direct store to the global (i.e., the global is a scalar
194        // value, not an aggregate), keep more specific information about
195        // stores.
196        if (GS.StoredType != GlobalStatus::isStored)
197          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
198            Value *StoredVal = SI->getOperand(0);
199            if (StoredVal == GV->getInitializer()) {
200              if (GS.StoredType < GlobalStatus::isInitializerStored)
201                GS.StoredType = GlobalStatus::isInitializerStored;
202            } else if (isa<LoadInst>(StoredVal) &&
203                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
204              // G = G
205              if (GS.StoredType < GlobalStatus::isInitializerStored)
206                GS.StoredType = GlobalStatus::isInitializerStored;
207            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
208              GS.StoredType = GlobalStatus::isStoredOnce;
209              GS.StoredOnceValue = StoredVal;
210            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
211                       GS.StoredOnceValue == StoredVal) {
212              // noop.
213            } else {
214              GS.StoredType = GlobalStatus::isStored;
215            }
216          } else {
217            GS.StoredType = GlobalStatus::isStored;
218          }
219      } else if (isa<GetElementPtrInst>(I)) {
220        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221
222        // If the first two indices are constants, this can be SRA'd.
223        if (isa<GlobalVariable>(I->getOperand(0))) {
224          if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
225              !cast<Constant>(I->getOperand(1))->isNullValue() ||
226              !isa<ConstantInt>(I->getOperand(2)))
227            GS.isNotSuitableForSRA = true;
228        } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
229          if (CE->getOpcode() != Instruction::GetElementPtr ||
230              CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
231              !isa<Constant>(I->getOperand(0)) ||
232              !cast<Constant>(I->getOperand(0))->isNullValue())
233            GS.isNotSuitableForSRA = true;
234        } else {
235          GS.isNotSuitableForSRA = true;
236        }
237      } else if (isa<SelectInst>(I)) {
238        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
239        GS.isNotSuitableForSRA = true;
240      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
241        // PHI nodes we can check just like select or GEP instructions, but we
242        // have to be careful about infinite recursion.
243        if (PHIUsers.insert(PN).second)  // Not already visited.
244          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
245        GS.isNotSuitableForSRA = true;
246        GS.HasPHIUser = true;
247      } else if (isa<CmpInst>(I)) {
248        GS.isNotSuitableForSRA = true;
249      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
250        if (I->getOperand(1) == V)
251          GS.StoredType = GlobalStatus::isStored;
252        if (I->getOperand(2) == V)
253          GS.isLoaded = true;
254        GS.isNotSuitableForSRA = true;
255      } else if (isa<MemSetInst>(I)) {
256        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
257        GS.StoredType = GlobalStatus::isStored;
258        GS.isNotSuitableForSRA = true;
259      } else {
260        return true;  // Any other non-load instruction might take address!
261      }
262    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
263      GS.HasNonInstructionUser = true;
264      // We might have a dead and dangling constant hanging off of here.
265      if (!ConstantIsDead(C))
266        return true;
267    } else {
268      GS.HasNonInstructionUser = true;
269      // Otherwise must be some other user.
270      return true;
271    }
272
273  return false;
274}
275
276static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
277  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
278  if (!CI) return 0;
279  unsigned IdxV = CI->getZExtValue();
280
281  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
282    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
283  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
284    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
285  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
286    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
287  } else if (isa<ConstantAggregateZero>(Agg)) {
288    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
289      if (IdxV < STy->getNumElements())
290        return Constant::getNullValue(STy->getElementType(IdxV));
291    } else if (const SequentialType *STy =
292               dyn_cast<SequentialType>(Agg->getType())) {
293      return Constant::getNullValue(STy->getElementType());
294    }
295  } else if (isa<UndefValue>(Agg)) {
296    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
297      if (IdxV < STy->getNumElements())
298        return UndefValue::get(STy->getElementType(IdxV));
299    } else if (const SequentialType *STy =
300               dyn_cast<SequentialType>(Agg->getType())) {
301      return UndefValue::get(STy->getElementType());
302    }
303  }
304  return 0;
305}
306
307
308/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
309/// users of the global, cleaning up the obvious ones.  This is largely just a
310/// quick scan over the use list to clean up the easy and obvious cruft.  This
311/// returns true if it made a change.
312static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
313  bool Changed = false;
314  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
315    User *U = *UI++;
316
317    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
318      if (Init) {
319        // Replace the load with the initializer.
320        LI->replaceAllUsesWith(Init);
321        LI->eraseFromParent();
322        Changed = true;
323      }
324    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
325      // Store must be unreachable or storing Init into the global.
326      SI->eraseFromParent();
327      Changed = true;
328    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
329      if (CE->getOpcode() == Instruction::GetElementPtr) {
330        Constant *SubInit = 0;
331        if (Init)
332          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
333        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
334      } else if (CE->getOpcode() == Instruction::BitCast &&
335                 isa<PointerType>(CE->getType())) {
336        // Pointer cast, delete any stores and memsets to the global.
337        Changed |= CleanupConstantGlobalUsers(CE, 0);
338      }
339
340      if (CE->use_empty()) {
341        CE->destroyConstant();
342        Changed = true;
343      }
344    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
345      Constant *SubInit = 0;
346      ConstantExpr *CE =
347        dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
348      if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
349        SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
350      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
351
352      if (GEP->use_empty()) {
353        GEP->eraseFromParent();
354        Changed = true;
355      }
356    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
357      if (MI->getRawDest() == V) {
358        MI->eraseFromParent();
359        Changed = true;
360      }
361
362    } else if (Constant *C = dyn_cast<Constant>(U)) {
363      // If we have a chain of dead constantexprs or other things dangling from
364      // us, and if they are all dead, nuke them without remorse.
365      if (ConstantIsDead(C)) {
366        C->destroyConstant();
367        // This could have invalidated UI, start over from scratch.
368        CleanupConstantGlobalUsers(V, Init);
369        return true;
370      }
371    }
372  }
373  return Changed;
374}
375
376/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
377/// variable.  This opens the door for other optimizations by exposing the
378/// behavior of the program in a more fine-grained way.  We have determined that
379/// this transformation is safe already.  We return the first global variable we
380/// insert so that the caller can reprocess it.
381static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
382  assert(GV->hasInternalLinkage() && !GV->isConstant());
383  Constant *Init = GV->getInitializer();
384  const Type *Ty = Init->getType();
385
386  std::vector<GlobalVariable*> NewGlobals;
387  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
388
389  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
390    NewGlobals.reserve(STy->getNumElements());
391    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
392      Constant *In = getAggregateConstantElement(Init,
393                                            ConstantInt::get(Type::Int32Ty, i));
394      assert(In && "Couldn't get element of initializer?");
395      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
396                                               GlobalVariable::InternalLinkage,
397                                               In, GV->getName()+"."+utostr(i),
398                                               (Module *)NULL,
399                                               GV->isThreadLocal());
400      Globals.insert(GV, NGV);
401      NewGlobals.push_back(NGV);
402    }
403  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
404    unsigned NumElements = 0;
405    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
406      NumElements = ATy->getNumElements();
407    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
408      NumElements = PTy->getNumElements();
409    else
410      assert(0 && "Unknown aggregate sequential type!");
411
412    if (NumElements > 16 && GV->hasNUsesOrMore(16))
413      return 0; // It's not worth it.
414    NewGlobals.reserve(NumElements);
415    for (unsigned i = 0, e = NumElements; i != e; ++i) {
416      Constant *In = getAggregateConstantElement(Init,
417                                            ConstantInt::get(Type::Int32Ty, i));
418      assert(In && "Couldn't get element of initializer?");
419
420      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
421                                               GlobalVariable::InternalLinkage,
422                                               In, GV->getName()+"."+utostr(i),
423                                               (Module *)NULL,
424                                               GV->isThreadLocal());
425      Globals.insert(GV, NGV);
426      NewGlobals.push_back(NGV);
427    }
428  }
429
430  if (NewGlobals.empty())
431    return 0;
432
433  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
434
435  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
436
437  // Loop over all of the uses of the global, replacing the constantexpr geps,
438  // with smaller constantexpr geps or direct references.
439  while (!GV->use_empty()) {
440    User *GEP = GV->use_back();
441    assert(((isa<ConstantExpr>(GEP) &&
442             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
443            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
444
445    // Ignore the 1th operand, which has to be zero or else the program is quite
446    // broken (undefined).  Get the 2nd operand, which is the structure or array
447    // index.
448    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
449    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
450
451    Value *NewPtr = NewGlobals[Val];
452
453    // Form a shorter GEP if needed.
454    if (GEP->getNumOperands() > 3)
455      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
456        SmallVector<Constant*, 8> Idxs;
457        Idxs.push_back(NullInt);
458        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
459          Idxs.push_back(CE->getOperand(i));
460        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
461                                                &Idxs[0], Idxs.size());
462      } else {
463        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
464        SmallVector<Value*, 8> Idxs;
465        Idxs.push_back(NullInt);
466        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
467          Idxs.push_back(GEPI->getOperand(i));
468        NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
469                                       GEPI->getName()+"."+utostr(Val), GEPI);
470      }
471    GEP->replaceAllUsesWith(NewPtr);
472
473    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
474      GEPI->eraseFromParent();
475    else
476      cast<ConstantExpr>(GEP)->destroyConstant();
477  }
478
479  // Delete the old global, now that it is dead.
480  Globals.erase(GV);
481  ++NumSRA;
482
483  // Loop over the new globals array deleting any globals that are obviously
484  // dead.  This can arise due to scalarization of a structure or an array that
485  // has elements that are dead.
486  unsigned FirstGlobal = 0;
487  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
488    if (NewGlobals[i]->use_empty()) {
489      Globals.erase(NewGlobals[i]);
490      if (FirstGlobal == i) ++FirstGlobal;
491    }
492
493  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
494}
495
496/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
497/// value will trap if the value is dynamically null.  PHIs keeps track of any
498/// phi nodes we've seen to avoid reprocessing them.
499static bool AllUsesOfValueWillTrapIfNull(Value *V,
500                                         SmallPtrSet<PHINode*, 8> &PHIs) {
501  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
502    if (isa<LoadInst>(*UI)) {
503      // Will trap.
504    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
505      if (SI->getOperand(0) == V) {
506        //cerr << "NONTRAPPING USE: " << **UI;
507        return false;  // Storing the value.
508      }
509    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
510      if (CI->getOperand(0) != V) {
511        //cerr << "NONTRAPPING USE: " << **UI;
512        return false;  // Not calling the ptr
513      }
514    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
515      if (II->getOperand(0) != V) {
516        //cerr << "NONTRAPPING USE: " << **UI;
517        return false;  // Not calling the ptr
518      }
519    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
520      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
521    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
522      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
523    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
524      // If we've already seen this phi node, ignore it, it has already been
525      // checked.
526      if (PHIs.insert(PN))
527        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
528    } else if (isa<ICmpInst>(*UI) &&
529               isa<ConstantPointerNull>(UI->getOperand(1))) {
530      // Ignore setcc X, null
531    } else {
532      //cerr << "NONTRAPPING USE: " << **UI;
533      return false;
534    }
535  return true;
536}
537
538/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
539/// from GV will trap if the loaded value is null.  Note that this also permits
540/// comparisons of the loaded value against null, as a special case.
541static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
542  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
543    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
544      SmallPtrSet<PHINode*, 8> PHIs;
545      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
546        return false;
547    } else if (isa<StoreInst>(*UI)) {
548      // Ignore stores to the global.
549    } else {
550      // We don't know or understand this user, bail out.
551      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
552      return false;
553    }
554
555  return true;
556}
557
558static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
559  bool Changed = false;
560  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
561    Instruction *I = cast<Instruction>(*UI++);
562    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
563      LI->setOperand(0, NewV);
564      Changed = true;
565    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
566      if (SI->getOperand(1) == V) {
567        SI->setOperand(1, NewV);
568        Changed = true;
569      }
570    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
571      if (I->getOperand(0) == V) {
572        // Calling through the pointer!  Turn into a direct call, but be careful
573        // that the pointer is not also being passed as an argument.
574        I->setOperand(0, NewV);
575        Changed = true;
576        bool PassedAsArg = false;
577        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
578          if (I->getOperand(i) == V) {
579            PassedAsArg = true;
580            I->setOperand(i, NewV);
581          }
582
583        if (PassedAsArg) {
584          // Being passed as an argument also.  Be careful to not invalidate UI!
585          UI = V->use_begin();
586        }
587      }
588    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
589      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
590                                ConstantExpr::getCast(CI->getOpcode(),
591                                                      NewV, CI->getType()));
592      if (CI->use_empty()) {
593        Changed = true;
594        CI->eraseFromParent();
595      }
596    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
597      // Should handle GEP here.
598      SmallVector<Constant*, 8> Idxs;
599      Idxs.reserve(GEPI->getNumOperands()-1);
600      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
601        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
602          Idxs.push_back(C);
603        else
604          break;
605      if (Idxs.size() == GEPI->getNumOperands()-1)
606        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
607                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
608                                                               Idxs.size()));
609      if (GEPI->use_empty()) {
610        Changed = true;
611        GEPI->eraseFromParent();
612      }
613    }
614  }
615
616  return Changed;
617}
618
619
620/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
621/// value stored into it.  If there are uses of the loaded value that would trap
622/// if the loaded value is dynamically null, then we know that they cannot be
623/// reachable with a null optimize away the load.
624static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
625  std::vector<LoadInst*> Loads;
626  bool Changed = false;
627
628  // Replace all uses of loads with uses of uses of the stored value.
629  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
630       GUI != E; ++GUI)
631    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
632      Loads.push_back(LI);
633      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
634    } else {
635      // If we get here we could have stores, selects, or phi nodes whose values
636      // are loaded.
637      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
638              isa<SelectInst>(*GUI)) &&
639             "Only expect load and stores!");
640    }
641
642  if (Changed) {
643    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
644    ++NumGlobUses;
645  }
646
647  // Delete all of the loads we can, keeping track of whether we nuked them all!
648  bool AllLoadsGone = true;
649  while (!Loads.empty()) {
650    LoadInst *L = Loads.back();
651    if (L->use_empty()) {
652      L->eraseFromParent();
653      Changed = true;
654    } else {
655      AllLoadsGone = false;
656    }
657    Loads.pop_back();
658  }
659
660  // If we nuked all of the loads, then none of the stores are needed either,
661  // nor is the global.
662  if (AllLoadsGone) {
663    DOUT << "  *** GLOBAL NOW DEAD!\n";
664    CleanupConstantGlobalUsers(GV, 0);
665    if (GV->use_empty()) {
666      GV->eraseFromParent();
667      ++NumDeleted;
668    }
669    Changed = true;
670  }
671  return Changed;
672}
673
674/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
675/// instructions that are foldable.
676static void ConstantPropUsersOf(Value *V) {
677  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
678    if (Instruction *I = dyn_cast<Instruction>(*UI++))
679      if (Constant *NewC = ConstantFoldInstruction(I)) {
680        I->replaceAllUsesWith(NewC);
681
682        // Advance UI to the next non-I use to avoid invalidating it!
683        // Instructions could multiply use V.
684        while (UI != E && *UI == I)
685          ++UI;
686        I->eraseFromParent();
687      }
688}
689
690/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
691/// variable, and transforms the program as if it always contained the result of
692/// the specified malloc.  Because it is always the result of the specified
693/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
694/// malloc into a global, and any loads of GV as uses of the new global.
695static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
696                                                     MallocInst *MI) {
697  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
698  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
699
700  if (NElements->getZExtValue() != 1) {
701    // If we have an array allocation, transform it to a single element
702    // allocation to make the code below simpler.
703    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
704                                 NElements->getZExtValue());
705    MallocInst *NewMI =
706      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
707                     MI->getAlignment(), MI->getName(), MI);
708    Value* Indices[2];
709    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
710    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
711                                          NewMI->getName()+".el0", MI);
712    MI->replaceAllUsesWith(NewGEP);
713    MI->eraseFromParent();
714    MI = NewMI;
715  }
716
717  // Create the new global variable.  The contents of the malloc'd memory is
718  // undefined, so initialize with an undef value.
719  Constant *Init = UndefValue::get(MI->getAllocatedType());
720  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
721                                             GlobalValue::InternalLinkage, Init,
722                                             GV->getName()+".body",
723                                             (Module *)NULL,
724                                             GV->isThreadLocal());
725  GV->getParent()->getGlobalList().insert(GV, NewGV);
726
727  // Anything that used the malloc now uses the global directly.
728  MI->replaceAllUsesWith(NewGV);
729
730  Constant *RepValue = NewGV;
731  if (NewGV->getType() != GV->getType()->getElementType())
732    RepValue = ConstantExpr::getBitCast(RepValue,
733                                        GV->getType()->getElementType());
734
735  // If there is a comparison against null, we will insert a global bool to
736  // keep track of whether the global was initialized yet or not.
737  GlobalVariable *InitBool =
738    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
739                       ConstantInt::getFalse(), GV->getName()+".init",
740                       (Module *)NULL, GV->isThreadLocal());
741  bool InitBoolUsed = false;
742
743  // Loop over all uses of GV, processing them in turn.
744  std::vector<StoreInst*> Stores;
745  while (!GV->use_empty())
746    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
747      while (!LI->use_empty()) {
748        Use &LoadUse = LI->use_begin().getUse();
749        if (!isa<ICmpInst>(LoadUse.getUser()))
750          LoadUse = RepValue;
751        else {
752          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
753          // Replace the cmp X, 0 with a use of the bool value.
754          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
755          InitBoolUsed = true;
756          switch (CI->getPredicate()) {
757          default: assert(0 && "Unknown ICmp Predicate!");
758          case ICmpInst::ICMP_ULT:
759          case ICmpInst::ICMP_SLT:
760            LV = ConstantInt::getFalse();   // X < null -> always false
761            break;
762          case ICmpInst::ICMP_ULE:
763          case ICmpInst::ICMP_SLE:
764          case ICmpInst::ICMP_EQ:
765            LV = BinaryOperator::createNot(LV, "notinit", CI);
766            break;
767          case ICmpInst::ICMP_NE:
768          case ICmpInst::ICMP_UGE:
769          case ICmpInst::ICMP_SGE:
770          case ICmpInst::ICMP_UGT:
771          case ICmpInst::ICMP_SGT:
772            break;  // no change.
773          }
774          CI->replaceAllUsesWith(LV);
775          CI->eraseFromParent();
776        }
777      }
778      LI->eraseFromParent();
779    } else {
780      StoreInst *SI = cast<StoreInst>(GV->use_back());
781      // The global is initialized when the store to it occurs.
782      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
783      SI->eraseFromParent();
784    }
785
786  // If the initialization boolean was used, insert it, otherwise delete it.
787  if (!InitBoolUsed) {
788    while (!InitBool->use_empty())  // Delete initializations
789      cast<Instruction>(InitBool->use_back())->eraseFromParent();
790    delete InitBool;
791  } else
792    GV->getParent()->getGlobalList().insert(GV, InitBool);
793
794
795  // Now the GV is dead, nuke it and the malloc.
796  GV->eraseFromParent();
797  MI->eraseFromParent();
798
799  // To further other optimizations, loop over all users of NewGV and try to
800  // constant prop them.  This will promote GEP instructions with constant
801  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
802  ConstantPropUsersOf(NewGV);
803  if (RepValue != NewGV)
804    ConstantPropUsersOf(RepValue);
805
806  return NewGV;
807}
808
809/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
810/// to make sure that there are no complex uses of V.  We permit simple things
811/// like dereferencing the pointer, but not storing through the address, unless
812/// it is to the specified global.
813static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
814                                                      GlobalVariable *GV,
815                                              SmallPtrSet<PHINode*, 8> &PHIs) {
816  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI)
817    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
818      // Fine, ignore.
819    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
820      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
821        return false;  // Storing the pointer itself... bad.
822      // Otherwise, storing through it, or storing into GV... fine.
823    } else if (isa<GetElementPtrInst>(*UI) || isa<SelectInst>(*UI) ||
824               isa<BitCastInst>(*UI)) {
825      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
826                                                     GV, PHIs))
827        return false;
828    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
829      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
830      // cycles.
831      if (PHIs.insert(PN))
832        return ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs);
833    } else {
834      return false;
835    }
836  return true;
837}
838
839/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
840/// somewhere.  Transform all uses of the allocation into loads from the
841/// global and uses of the resultant pointer.  Further, delete the store into
842/// GV.  This assumes that these value pass the
843/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
844static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
845                                          GlobalVariable *GV) {
846  while (!Alloc->use_empty()) {
847    Instruction *U = cast<Instruction>(*Alloc->use_begin());
848    Instruction *InsertPt = U;
849    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
850      // If this is the store of the allocation into the global, remove it.
851      if (SI->getOperand(1) == GV) {
852        SI->eraseFromParent();
853        continue;
854      }
855    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
856      // Insert the load in the corresponding predecessor, not right before the
857      // PHI.
858      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
859      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
860    }
861
862    // Insert a load from the global, and use it instead of the malloc.
863    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
864    U->replaceUsesOfWith(Alloc, NL);
865  }
866}
867
868/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
869/// GV are simple enough to perform HeapSRA, return true.
870static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV) {
871  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
872       ++UI)
873    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
874      // We permit two users of the load: setcc comparing against the null
875      // pointer, and a getelementptr of a specific form.
876      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
877           ++UI) {
878        // Comparison against null is ok.
879        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
880          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
881            return false;
882          continue;
883        }
884
885        // getelementptr is also ok, but only a simple form.
886        GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI);
887        if (!GEPI) return false;
888
889        // Must index into the array and into the struct.
890        if (GEPI->getNumOperands() < 3)
891          return false;
892
893        // Otherwise the GEP is ok.
894        continue;
895      }
896    }
897  return true;
898}
899
900/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
901/// value, lazily creating it on demand.
902static Value *GetHeapSROALoad(LoadInst *Load, unsigned FieldNo,
903                              const std::vector<GlobalVariable*> &FieldGlobals,
904                              std::vector<Value *> &InsertedLoadsForPtr) {
905  if (InsertedLoadsForPtr.size() <= FieldNo)
906    InsertedLoadsForPtr.resize(FieldNo+1);
907  if (InsertedLoadsForPtr[FieldNo] == 0)
908    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
909                                                Load->getName()+".f" +
910                                                utostr(FieldNo), Load);
911  return InsertedLoadsForPtr[FieldNo];
912}
913
914/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
915/// the load, rewrite the derived value to use the HeapSRoA'd load.
916static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
917                               const std::vector<GlobalVariable*> &FieldGlobals,
918                                    std::vector<Value *> &InsertedLoadsForPtr) {
919  // If this is a comparison against null, handle it.
920  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
921    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
922    // If we have a setcc of the loaded pointer, we can use a setcc of any
923    // field.
924    Value *NPtr;
925    if (InsertedLoadsForPtr.empty()) {
926      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
927    } else {
928      NPtr = InsertedLoadsForPtr.back();
929    }
930
931    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
932                              Constant::getNullValue(NPtr->getType()),
933                              SCI->getName(), SCI);
934    SCI->replaceAllUsesWith(New);
935    SCI->eraseFromParent();
936    return;
937  }
938
939  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
940  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
941    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
942           && "Unexpected GEPI!");
943
944    // Load the pointer for this field.
945    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
946    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
947                                    FieldGlobals, InsertedLoadsForPtr);
948
949    // Create the new GEP idx vector.
950    SmallVector<Value*, 8> GEPIdx;
951    GEPIdx.push_back(GEPI->getOperand(1));
952    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
953
954    Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
955                                         GEPI->getName(), GEPI);
956    GEPI->replaceAllUsesWith(NGEPI);
957    GEPI->eraseFromParent();
958    return;
959  }
960
961  // Handle PHI nodes.  All PHI nodes must be merging in the same values, so
962  // just treat them like a copy.
963  PHINode *PN = cast<PHINode>(LoadUser);
964  while (!PN->use_empty())
965    RewriteHeapSROALoadUser(Load, PN->use_back(),
966                            FieldGlobals, InsertedLoadsForPtr);
967  PN->eraseFromParent();
968}
969
970/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
971/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
972/// use FieldGlobals instead.  All uses of loaded values satisfy
973/// GlobalLoadUsesSimpleEnoughForHeapSRA.
974static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
975                             const std::vector<GlobalVariable*> &FieldGlobals) {
976  std::vector<Value *> InsertedLoadsForPtr;
977  //InsertedLoadsForPtr.resize(FieldGlobals.size());
978  while (!Load->use_empty())
979    RewriteHeapSROALoadUser(Load, Load->use_back(),
980                            FieldGlobals, InsertedLoadsForPtr);
981}
982
983/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
984/// it up into multiple allocations of arrays of the fields.
985static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
986  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
987  const StructType *STy = cast<StructType>(MI->getAllocatedType());
988
989  // There is guaranteed to be at least one use of the malloc (storing
990  // it into GV).  If there are other uses, change them to be uses of
991  // the global to simplify later code.  This also deletes the store
992  // into GV.
993  ReplaceUsesOfMallocWithGlobal(MI, GV);
994
995  // Okay, at this point, there are no users of the malloc.  Insert N
996  // new mallocs at the same place as MI, and N globals.
997  std::vector<GlobalVariable*> FieldGlobals;
998  std::vector<MallocInst*> FieldMallocs;
999
1000  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1001    const Type *FieldTy = STy->getElementType(FieldNo);
1002    const Type *PFieldTy = PointerType::get(FieldTy);
1003
1004    GlobalVariable *NGV =
1005      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1006                         Constant::getNullValue(PFieldTy),
1007                         GV->getName() + ".f" + utostr(FieldNo), GV,
1008                         GV->isThreadLocal());
1009    FieldGlobals.push_back(NGV);
1010
1011    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1012                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1013    FieldMallocs.push_back(NMI);
1014    new StoreInst(NMI, NGV, MI);
1015  }
1016
1017  // The tricky aspect of this transformation is handling the case when malloc
1018  // fails.  In the original code, malloc failing would set the result pointer
1019  // of malloc to null.  In this case, some mallocs could succeed and others
1020  // could fail.  As such, we emit code that looks like this:
1021  //    F0 = malloc(field0)
1022  //    F1 = malloc(field1)
1023  //    F2 = malloc(field2)
1024  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1025  //      if (F0) { free(F0); F0 = 0; }
1026  //      if (F1) { free(F1); F1 = 0; }
1027  //      if (F2) { free(F2); F2 = 0; }
1028  //    }
1029  Value *RunningOr = 0;
1030  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1031    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1032                             Constant::getNullValue(FieldMallocs[i]->getType()),
1033                                  "isnull", MI);
1034    if (!RunningOr)
1035      RunningOr = Cond;   // First seteq
1036    else
1037      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1038  }
1039
1040  // Split the basic block at the old malloc.
1041  BasicBlock *OrigBB = MI->getParent();
1042  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1043
1044  // Create the block to check the first condition.  Put all these blocks at the
1045  // end of the function as they are unlikely to be executed.
1046  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
1047                                            OrigBB->getParent());
1048
1049  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1050  // branch on RunningOr.
1051  OrigBB->getTerminator()->eraseFromParent();
1052  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
1053
1054  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1055  // pointer, because some may be null while others are not.
1056  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1057    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1058    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1059                              Constant::getNullValue(GVVal->getType()),
1060                              "tmp", NullPtrBlock);
1061    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
1062    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
1063    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1064
1065    // Fill in FreeBlock.
1066    new FreeInst(GVVal, FreeBlock);
1067    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1068                  FreeBlock);
1069    new BranchInst(NextBlock, FreeBlock);
1070
1071    NullPtrBlock = NextBlock;
1072  }
1073
1074  new BranchInst(ContBB, NullPtrBlock);
1075
1076
1077  // MI is no longer needed, remove it.
1078  MI->eraseFromParent();
1079
1080
1081  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1082  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1083  // of the per-field globals instead.
1084  while (!GV->use_empty()) {
1085    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1086      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1087      LI->eraseFromParent();
1088    } else {
1089      // Must be a store of null.
1090      StoreInst *SI = cast<StoreInst>(GV->use_back());
1091      assert(isa<Constant>(SI->getOperand(0)) &&
1092             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1093             "Unexpected heap-sra user!");
1094
1095      // Insert a store of null into each global.
1096      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1097        Constant *Null =
1098          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1099        new StoreInst(Null, FieldGlobals[i], SI);
1100      }
1101      // Erase the original store.
1102      SI->eraseFromParent();
1103    }
1104  }
1105
1106  // The old global is now dead, remove it.
1107  GV->eraseFromParent();
1108
1109  ++NumHeapSRA;
1110  return FieldGlobals[0];
1111}
1112
1113
1114// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1115// that only one value (besides its initializer) is ever stored to the global.
1116static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1117                                     Module::global_iterator &GVI,
1118                                     TargetData &TD) {
1119  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1120    StoredOnceVal = CI->getOperand(0);
1121  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1122    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1123    bool IsJustACast = true;
1124    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1125      if (!isa<Constant>(GEPI->getOperand(i)) ||
1126          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1127        IsJustACast = false;
1128        break;
1129      }
1130    if (IsJustACast)
1131      StoredOnceVal = GEPI->getOperand(0);
1132  }
1133
1134  // If we are dealing with a pointer global that is initialized to null and
1135  // only has one (non-null) value stored into it, then we can optimize any
1136  // users of the loaded value (often calls and loads) that would trap if the
1137  // value was null.
1138  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1139      GV->getInitializer()->isNullValue()) {
1140    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1141      if (GV->getInitializer()->getType() != SOVC->getType())
1142        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1143
1144      // Optimize away any trapping uses of the loaded value.
1145      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1146        return true;
1147    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1148      // If this is a malloc of an abstract type, don't touch it.
1149      if (!MI->getAllocatedType()->isSized())
1150        return false;
1151
1152      // We can't optimize this global unless all uses of it are *known* to be
1153      // of the malloc value, not of the null initializer value (consider a use
1154      // that compares the global's value against zero to see if the malloc has
1155      // been reached).  To do this, we check to see if all uses of the global
1156      // would trap if the global were null: this proves that they must all
1157      // happen after the malloc.
1158      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1159        return false;
1160
1161      // We can't optimize this if the malloc itself is used in a complex way,
1162      // for example, being stored into multiple globals.  This allows the
1163      // malloc to be stored into the specified global, loaded setcc'd, and
1164      // GEP'd.  These are all things we could transform to using the global
1165      // for.
1166      {
1167        SmallPtrSet<PHINode*, 8> PHIs;
1168        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1169          return false;
1170      }
1171
1172
1173      // If we have a global that is only initialized with a fixed size malloc,
1174      // transform the program to use global memory instead of malloc'd memory.
1175      // This eliminates dynamic allocation, avoids an indirection accessing the
1176      // data, and exposes the resultant global to further GlobalOpt.
1177      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1178        // Restrict this transformation to only working on small allocations
1179        // (2048 bytes currently), as we don't want to introduce a 16M global or
1180        // something.
1181        if (NElements->getZExtValue()*
1182                     TD.getTypeSize(MI->getAllocatedType()) < 2048) {
1183          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1184          return true;
1185        }
1186      }
1187
1188      // If the allocation is an array of structures, consider transforming this
1189      // into multiple malloc'd arrays, one for each field.  This is basically
1190      // SRoA for malloc'd memory.
1191      if (const StructType *AllocTy =
1192                  dyn_cast<StructType>(MI->getAllocatedType())) {
1193        // This the structure has an unreasonable number of fields, leave it
1194        // alone.
1195        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1196            GlobalLoadUsesSimpleEnoughForHeapSRA(GV)) {
1197          GVI = PerformHeapAllocSRoA(GV, MI);
1198          return true;
1199        }
1200      }
1201    }
1202  }
1203
1204  return false;
1205}
1206
1207/// ShrinkGlobalToBoolean - At this point, we have learned that the only two
1208/// values ever stored into GV are its initializer and OtherVal.
1209static void ShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1210  // Create the new global, initializing it to false.
1211  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1212         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1213                                             GV->getName()+".b",
1214                                             (Module *)NULL,
1215                                             GV->isThreadLocal());
1216  GV->getParent()->getGlobalList().insert(GV, NewGV);
1217
1218  Constant *InitVal = GV->getInitializer();
1219  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1220
1221  // If initialized to zero and storing one into the global, we can use a cast
1222  // instead of a select to synthesize the desired value.
1223  bool IsOneZero = false;
1224  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1225    IsOneZero = InitVal->isNullValue() && CI->isOne();
1226
1227  while (!GV->use_empty()) {
1228    Instruction *UI = cast<Instruction>(GV->use_back());
1229    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1230      // Change the store into a boolean store.
1231      bool StoringOther = SI->getOperand(0) == OtherVal;
1232      // Only do this if we weren't storing a loaded value.
1233      Value *StoreVal;
1234      if (StoringOther || SI->getOperand(0) == InitVal)
1235        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1236      else {
1237        // Otherwise, we are storing a previously loaded copy.  To do this,
1238        // change the copy from copying the original value to just copying the
1239        // bool.
1240        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1241
1242        // If we're already replaced the input, StoredVal will be a cast or
1243        // select instruction.  If not, it will be a load of the original
1244        // global.
1245        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1246          assert(LI->getOperand(0) == GV && "Not a copy!");
1247          // Insert a new load, to preserve the saved value.
1248          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1249        } else {
1250          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1251                 "This is not a form that we understand!");
1252          StoreVal = StoredVal->getOperand(0);
1253          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1254        }
1255      }
1256      new StoreInst(StoreVal, NewGV, SI);
1257    } else if (!UI->use_empty()) {
1258      // Change the load into a load of bool then a select.
1259      LoadInst *LI = cast<LoadInst>(UI);
1260      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1261      Value *NSI;
1262      if (IsOneZero)
1263        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1264      else
1265        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
1266      NSI->takeName(LI);
1267      LI->replaceAllUsesWith(NSI);
1268    }
1269    UI->eraseFromParent();
1270  }
1271
1272  GV->eraseFromParent();
1273}
1274
1275
1276/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1277/// it if possible.  If we make a change, return true.
1278bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1279                                      Module::global_iterator &GVI) {
1280  std::set<PHINode*> PHIUsers;
1281  GlobalStatus GS;
1282  GV->removeDeadConstantUsers();
1283
1284  if (GV->use_empty()) {
1285    DOUT << "GLOBAL DEAD: " << *GV;
1286    GV->eraseFromParent();
1287    ++NumDeleted;
1288    return true;
1289  }
1290
1291  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1292#if 0
1293    cerr << "Global: " << *GV;
1294    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1295    cerr << "  StoredType = ";
1296    switch (GS.StoredType) {
1297    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1298    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1299    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1300    case GlobalStatus::isStored: cerr << "stored\n"; break;
1301    }
1302    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1303      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1304    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1305      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1306                << "\n";
1307    cerr << "  HasMultipleAccessingFunctions =  "
1308              << GS.HasMultipleAccessingFunctions << "\n";
1309    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1310    cerr << "  isNotSuitableForSRA = " << GS.isNotSuitableForSRA << "\n";
1311    cerr << "\n";
1312#endif
1313
1314    // If this is a first class global and has only one accessing function
1315    // and this function is main (which we know is not recursive we can make
1316    // this global a local variable) we replace the global with a local alloca
1317    // in this function.
1318    //
1319    // NOTE: It doesn't make sense to promote non first class types since we
1320    // are just replacing static memory to stack memory.
1321    if (!GS.HasMultipleAccessingFunctions &&
1322        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1323        GV->getType()->getElementType()->isFirstClassType() &&
1324        GS.AccessingFunction->getName() == "main" &&
1325        GS.AccessingFunction->hasExternalLinkage()) {
1326      DOUT << "LOCALIZING GLOBAL: " << *GV;
1327      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1328      const Type* ElemTy = GV->getType()->getElementType();
1329      // FIXME: Pass Global's alignment when globals have alignment
1330      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1331      if (!isa<UndefValue>(GV->getInitializer()))
1332        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1333
1334      GV->replaceAllUsesWith(Alloca);
1335      GV->eraseFromParent();
1336      ++NumLocalized;
1337      return true;
1338    }
1339
1340    // If the global is never loaded (but may be stored to), it is dead.
1341    // Delete it now.
1342    if (!GS.isLoaded) {
1343      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1344
1345      // Delete any stores we can find to the global.  We may not be able to
1346      // make it completely dead though.
1347      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1348
1349      // If the global is dead now, delete it.
1350      if (GV->use_empty()) {
1351        GV->eraseFromParent();
1352        ++NumDeleted;
1353        Changed = true;
1354      }
1355      return Changed;
1356
1357    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1358      DOUT << "MARKING CONSTANT: " << *GV;
1359      GV->setConstant(true);
1360
1361      // Clean up any obviously simplifiable users now.
1362      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1363
1364      // If the global is dead now, just nuke it.
1365      if (GV->use_empty()) {
1366        DOUT << "   *** Marking constant allowed us to simplify "
1367             << "all users and delete global!\n";
1368        GV->eraseFromParent();
1369        ++NumDeleted;
1370      }
1371
1372      ++NumMarked;
1373      return true;
1374    } else if (!GS.isNotSuitableForSRA &&
1375               !GV->getInitializer()->getType()->isFirstClassType()) {
1376      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
1377        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1378        return true;
1379      }
1380    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1381      // If the initial value for the global was an undef value, and if only
1382      // one other value was stored into it, we can just change the
1383      // initializer to be an undef value, then delete all stores to the
1384      // global.  This allows us to mark it constant.
1385      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1386        if (isa<UndefValue>(GV->getInitializer())) {
1387          // Change the initial value here.
1388          GV->setInitializer(SOVConstant);
1389
1390          // Clean up any obviously simplifiable users now.
1391          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1392
1393          if (GV->use_empty()) {
1394            DOUT << "   *** Substituting initializer allowed us to "
1395                 << "simplify all users and delete global!\n";
1396            GV->eraseFromParent();
1397            ++NumDeleted;
1398          } else {
1399            GVI = GV;
1400          }
1401          ++NumSubstitute;
1402          return true;
1403        }
1404
1405      // Try to optimize globals based on the knowledge that only one value
1406      // (besides its initializer) is ever stored to the global.
1407      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1408                                   getAnalysis<TargetData>()))
1409        return true;
1410
1411      // Otherwise, if the global was not a boolean, we can shrink it to be a
1412      // boolean.
1413      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1414        if (GV->getType()->getElementType() != Type::Int1Ty &&
1415            !GV->getType()->getElementType()->isFloatingPoint() &&
1416            !isa<VectorType>(GV->getType()->getElementType()) &&
1417            !GS.HasPHIUser && !GS.isNotSuitableForSRA) {
1418          DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1419          ShrinkGlobalToBoolean(GV, SOVConstant);
1420          ++NumShrunkToBool;
1421          return true;
1422        }
1423    }
1424  }
1425  return false;
1426}
1427
1428/// OnlyCalledDirectly - Return true if the specified function is only called
1429/// directly.  In other words, its address is never taken.
1430static bool OnlyCalledDirectly(Function *F) {
1431  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1432    Instruction *User = dyn_cast<Instruction>(*UI);
1433    if (!User) return false;
1434    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1435
1436    // See if the function address is passed as an argument.
1437    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1438      if (User->getOperand(i) == F) return false;
1439  }
1440  return true;
1441}
1442
1443/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1444/// function, changing them to FastCC.
1445static void ChangeCalleesToFastCall(Function *F) {
1446  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1447    Instruction *User = cast<Instruction>(*UI);
1448    if (CallInst *CI = dyn_cast<CallInst>(User))
1449      CI->setCallingConv(CallingConv::Fast);
1450    else
1451      cast<InvokeInst>(User)->setCallingConv(CallingConv::Fast);
1452  }
1453}
1454
1455bool GlobalOpt::OptimizeFunctions(Module &M) {
1456  bool Changed = false;
1457  // Optimize functions.
1458  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1459    Function *F = FI++;
1460    F->removeDeadConstantUsers();
1461    if (F->use_empty() && (F->hasInternalLinkage() ||
1462                           F->hasLinkOnceLinkage())) {
1463      M.getFunctionList().erase(F);
1464      Changed = true;
1465      ++NumFnDeleted;
1466    } else if (F->hasInternalLinkage() &&
1467               F->getCallingConv() == CallingConv::C &&  !F->isVarArg() &&
1468               OnlyCalledDirectly(F)) {
1469      // If this function has C calling conventions, is not a varargs
1470      // function, and is only called directly, promote it to use the Fast
1471      // calling convention.
1472      F->setCallingConv(CallingConv::Fast);
1473      ChangeCalleesToFastCall(F);
1474      ++NumFastCallFns;
1475      Changed = true;
1476    }
1477  }
1478  return Changed;
1479}
1480
1481bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1482  bool Changed = false;
1483  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1484       GVI != E; ) {
1485    GlobalVariable *GV = GVI++;
1486    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1487        GV->hasInitializer())
1488      Changed |= ProcessInternalGlobal(GV, GVI);
1489  }
1490  return Changed;
1491}
1492
1493/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1494/// initializers have an init priority of 65535.
1495GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1496  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1497       I != E; ++I)
1498    if (I->getName() == "llvm.global_ctors") {
1499      // Found it, verify it's an array of { int, void()* }.
1500      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1501      if (!ATy) return 0;
1502      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1503      if (!STy || STy->getNumElements() != 2 ||
1504          STy->getElementType(0) != Type::Int32Ty) return 0;
1505      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1506      if (!PFTy) return 0;
1507      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1508      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1509          FTy->getNumParams() != 0)
1510        return 0;
1511
1512      // Verify that the initializer is simple enough for us to handle.
1513      if (!I->hasInitializer()) return 0;
1514      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1515      if (!CA) return 0;
1516      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1517        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1518          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1519            continue;
1520
1521          // Must have a function or null ptr.
1522          if (!isa<Function>(CS->getOperand(1)))
1523            return 0;
1524
1525          // Init priority must be standard.
1526          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1527          if (!CI || CI->getZExtValue() != 65535)
1528            return 0;
1529        } else {
1530          return 0;
1531        }
1532
1533      return I;
1534    }
1535  return 0;
1536}
1537
1538/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1539/// return a list of the functions and null terminator as a vector.
1540static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1541  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1542  std::vector<Function*> Result;
1543  Result.reserve(CA->getNumOperands());
1544  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1545    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1546    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1547  }
1548  return Result;
1549}
1550
1551/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1552/// specified array, returning the new global to use.
1553static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1554                                          const std::vector<Function*> &Ctors) {
1555  // If we made a change, reassemble the initializer list.
1556  std::vector<Constant*> CSVals;
1557  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1558  CSVals.push_back(0);
1559
1560  // Create the new init list.
1561  std::vector<Constant*> CAList;
1562  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1563    if (Ctors[i]) {
1564      CSVals[1] = Ctors[i];
1565    } else {
1566      const Type *FTy = FunctionType::get(Type::VoidTy,
1567                                          std::vector<const Type*>(), false);
1568      const PointerType *PFTy = PointerType::get(FTy);
1569      CSVals[1] = Constant::getNullValue(PFTy);
1570      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1571    }
1572    CAList.push_back(ConstantStruct::get(CSVals));
1573  }
1574
1575  // Create the array initializer.
1576  const Type *StructTy =
1577    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1578  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1579                                    CAList);
1580
1581  // If we didn't change the number of elements, don't create a new GV.
1582  if (CA->getType() == GCL->getInitializer()->getType()) {
1583    GCL->setInitializer(CA);
1584    return GCL;
1585  }
1586
1587  // Create the new global and insert it next to the existing list.
1588  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1589                                           GCL->getLinkage(), CA, "",
1590                                           (Module *)NULL,
1591                                           GCL->isThreadLocal());
1592  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1593  NGV->takeName(GCL);
1594
1595  // Nuke the old list, replacing any uses with the new one.
1596  if (!GCL->use_empty()) {
1597    Constant *V = NGV;
1598    if (V->getType() != GCL->getType())
1599      V = ConstantExpr::getBitCast(V, GCL->getType());
1600    GCL->replaceAllUsesWith(V);
1601  }
1602  GCL->eraseFromParent();
1603
1604  if (Ctors.size())
1605    return NGV;
1606  else
1607    return 0;
1608}
1609
1610
1611static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1612                        Value *V) {
1613  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1614  Constant *R = ComputedValues[V];
1615  assert(R && "Reference to an uncomputed value!");
1616  return R;
1617}
1618
1619/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1620/// enough for us to understand.  In particular, if it is a cast of something,
1621/// we punt.  We basically just support direct accesses to globals and GEP's of
1622/// globals.  This should be kept up to date with CommitValueTo.
1623static bool isSimpleEnoughPointerToCommit(Constant *C) {
1624  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1625    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1626      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1627    return !GV->isDeclaration();  // reject external globals.
1628  }
1629  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1630    // Handle a constantexpr gep.
1631    if (CE->getOpcode() == Instruction::GetElementPtr &&
1632        isa<GlobalVariable>(CE->getOperand(0))) {
1633      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1634      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1635        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1636      return GV->hasInitializer() &&
1637             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1638    }
1639  return false;
1640}
1641
1642/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1643/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1644/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1645static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1646                                   ConstantExpr *Addr, unsigned OpNo) {
1647  // Base case of the recursion.
1648  if (OpNo == Addr->getNumOperands()) {
1649    assert(Val->getType() == Init->getType() && "Type mismatch!");
1650    return Val;
1651  }
1652
1653  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1654    std::vector<Constant*> Elts;
1655
1656    // Break up the constant into its elements.
1657    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1658      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1659        Elts.push_back(CS->getOperand(i));
1660    } else if (isa<ConstantAggregateZero>(Init)) {
1661      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1662        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1663    } else if (isa<UndefValue>(Init)) {
1664      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1665        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1666    } else {
1667      assert(0 && "This code is out of sync with "
1668             " ConstantFoldLoadThroughGEPConstantExpr");
1669    }
1670
1671    // Replace the element that we are supposed to.
1672    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1673    unsigned Idx = CU->getZExtValue();
1674    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1675    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1676
1677    // Return the modified struct.
1678    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1679  } else {
1680    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1681    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1682
1683    // Break up the array into elements.
1684    std::vector<Constant*> Elts;
1685    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1686      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1687        Elts.push_back(CA->getOperand(i));
1688    } else if (isa<ConstantAggregateZero>(Init)) {
1689      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1690      Elts.assign(ATy->getNumElements(), Elt);
1691    } else if (isa<UndefValue>(Init)) {
1692      Constant *Elt = UndefValue::get(ATy->getElementType());
1693      Elts.assign(ATy->getNumElements(), Elt);
1694    } else {
1695      assert(0 && "This code is out of sync with "
1696             " ConstantFoldLoadThroughGEPConstantExpr");
1697    }
1698
1699    assert(CI->getZExtValue() < ATy->getNumElements());
1700    Elts[CI->getZExtValue()] =
1701      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1702    return ConstantArray::get(ATy, Elts);
1703  }
1704}
1705
1706/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1707/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1708static void CommitValueTo(Constant *Val, Constant *Addr) {
1709  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1710    assert(GV->hasInitializer());
1711    GV->setInitializer(Val);
1712    return;
1713  }
1714
1715  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1716  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1717
1718  Constant *Init = GV->getInitializer();
1719  Init = EvaluateStoreInto(Init, Val, CE, 2);
1720  GV->setInitializer(Init);
1721}
1722
1723/// ComputeLoadResult - Return the value that would be computed by a load from
1724/// P after the stores reflected by 'memory' have been performed.  If we can't
1725/// decide, return null.
1726static Constant *ComputeLoadResult(Constant *P,
1727                                const std::map<Constant*, Constant*> &Memory) {
1728  // If this memory location has been recently stored, use the stored value: it
1729  // is the most up-to-date.
1730  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1731  if (I != Memory.end()) return I->second;
1732
1733  // Access it.
1734  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1735    if (GV->hasInitializer())
1736      return GV->getInitializer();
1737    return 0;
1738  }
1739
1740  // Handle a constantexpr getelementptr.
1741  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1742    if (CE->getOpcode() == Instruction::GetElementPtr &&
1743        isa<GlobalVariable>(CE->getOperand(0))) {
1744      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1745      if (GV->hasInitializer())
1746        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1747    }
1748
1749  return 0;  // don't know how to evaluate.
1750}
1751
1752/// EvaluateFunction - Evaluate a call to function F, returning true if
1753/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1754/// arguments for the function.
1755static bool EvaluateFunction(Function *F, Constant *&RetVal,
1756                             const std::vector<Constant*> &ActualArgs,
1757                             std::vector<Function*> &CallStack,
1758                             std::map<Constant*, Constant*> &MutatedMemory,
1759                             std::vector<GlobalVariable*> &AllocaTmps) {
1760  // Check to see if this function is already executing (recursion).  If so,
1761  // bail out.  TODO: we might want to accept limited recursion.
1762  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1763    return false;
1764
1765  CallStack.push_back(F);
1766
1767  /// Values - As we compute SSA register values, we store their contents here.
1768  std::map<Value*, Constant*> Values;
1769
1770  // Initialize arguments to the incoming values specified.
1771  unsigned ArgNo = 0;
1772  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1773       ++AI, ++ArgNo)
1774    Values[AI] = ActualArgs[ArgNo];
1775
1776  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1777  /// we can only evaluate any one basic block at most once.  This set keeps
1778  /// track of what we have executed so we can detect recursive cases etc.
1779  std::set<BasicBlock*> ExecutedBlocks;
1780
1781  // CurInst - The current instruction we're evaluating.
1782  BasicBlock::iterator CurInst = F->begin()->begin();
1783
1784  // This is the main evaluation loop.
1785  while (1) {
1786    Constant *InstResult = 0;
1787
1788    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1789      if (SI->isVolatile()) return false;  // no volatile accesses.
1790      Constant *Ptr = getVal(Values, SI->getOperand(1));
1791      if (!isSimpleEnoughPointerToCommit(Ptr))
1792        // If this is too complex for us to commit, reject it.
1793        return false;
1794      Constant *Val = getVal(Values, SI->getOperand(0));
1795      MutatedMemory[Ptr] = Val;
1796    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1797      InstResult = ConstantExpr::get(BO->getOpcode(),
1798                                     getVal(Values, BO->getOperand(0)),
1799                                     getVal(Values, BO->getOperand(1)));
1800    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1801      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1802                                            getVal(Values, CI->getOperand(0)),
1803                                            getVal(Values, CI->getOperand(1)));
1804    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
1805      InstResult = ConstantExpr::getCast(CI->getOpcode(),
1806                                         getVal(Values, CI->getOperand(0)),
1807                                         CI->getType());
1808    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
1809      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
1810                                           getVal(Values, SI->getOperand(1)),
1811                                           getVal(Values, SI->getOperand(2)));
1812    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
1813      Constant *P = getVal(Values, GEP->getOperand(0));
1814      SmallVector<Constant*, 8> GEPOps;
1815      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1816        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
1817      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
1818    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
1819      if (LI->isVolatile()) return false;  // no volatile accesses.
1820      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
1821                                     MutatedMemory);
1822      if (InstResult == 0) return false; // Could not evaluate load.
1823    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
1824      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
1825      const Type *Ty = AI->getType()->getElementType();
1826      AllocaTmps.push_back(new GlobalVariable(Ty, false,
1827                                              GlobalValue::InternalLinkage,
1828                                              UndefValue::get(Ty),
1829                                              AI->getName()));
1830      InstResult = AllocaTmps.back();
1831    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
1832      // Cannot handle inline asm.
1833      if (isa<InlineAsm>(CI->getOperand(0))) return false;
1834
1835      // Resolve function pointers.
1836      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
1837      if (!Callee) return false;  // Cannot resolve.
1838
1839      std::vector<Constant*> Formals;
1840      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1841        Formals.push_back(getVal(Values, CI->getOperand(i)));
1842
1843      if (Callee->isDeclaration()) {
1844        // If this is a function we can constant fold, do it.
1845        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
1846                                           Formals.size())) {
1847          InstResult = C;
1848        } else {
1849          return false;
1850        }
1851      } else {
1852        if (Callee->getFunctionType()->isVarArg())
1853          return false;
1854
1855        Constant *RetVal;
1856
1857        // Execute the call, if successful, use the return value.
1858        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
1859                              MutatedMemory, AllocaTmps))
1860          return false;
1861        InstResult = RetVal;
1862      }
1863    } else if (isa<TerminatorInst>(CurInst)) {
1864      BasicBlock *NewBB = 0;
1865      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
1866        if (BI->isUnconditional()) {
1867          NewBB = BI->getSuccessor(0);
1868        } else {
1869          ConstantInt *Cond =
1870            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
1871          if (!Cond) return false;  // Cannot determine.
1872
1873          NewBB = BI->getSuccessor(!Cond->getZExtValue());
1874        }
1875      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
1876        ConstantInt *Val =
1877          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
1878        if (!Val) return false;  // Cannot determine.
1879        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
1880      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
1881        if (RI->getNumOperands())
1882          RetVal = getVal(Values, RI->getOperand(0));
1883
1884        CallStack.pop_back();  // return from fn.
1885        return true;  // We succeeded at evaluating this ctor!
1886      } else {
1887        // invoke, unwind, unreachable.
1888        return false;  // Cannot handle this terminator.
1889      }
1890
1891      // Okay, we succeeded in evaluating this control flow.  See if we have
1892      // executed the new block before.  If so, we have a looping function,
1893      // which we cannot evaluate in reasonable time.
1894      if (!ExecutedBlocks.insert(NewBB).second)
1895        return false;  // looped!
1896
1897      // Okay, we have never been in this block before.  Check to see if there
1898      // are any PHI nodes.  If so, evaluate them with information about where
1899      // we came from.
1900      BasicBlock *OldBB = CurInst->getParent();
1901      CurInst = NewBB->begin();
1902      PHINode *PN;
1903      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
1904        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
1905
1906      // Do NOT increment CurInst.  We know that the terminator had no value.
1907      continue;
1908    } else {
1909      // Did not know how to evaluate this!
1910      return false;
1911    }
1912
1913    if (!CurInst->use_empty())
1914      Values[CurInst] = InstResult;
1915
1916    // Advance program counter.
1917    ++CurInst;
1918  }
1919}
1920
1921/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
1922/// we can.  Return true if we can, false otherwise.
1923static bool EvaluateStaticConstructor(Function *F) {
1924  /// MutatedMemory - For each store we execute, we update this map.  Loads
1925  /// check this to get the most up-to-date value.  If evaluation is successful,
1926  /// this state is committed to the process.
1927  std::map<Constant*, Constant*> MutatedMemory;
1928
1929  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
1930  /// to represent its body.  This vector is needed so we can delete the
1931  /// temporary globals when we are done.
1932  std::vector<GlobalVariable*> AllocaTmps;
1933
1934  /// CallStack - This is used to detect recursion.  In pathological situations
1935  /// we could hit exponential behavior, but at least there is nothing
1936  /// unbounded.
1937  std::vector<Function*> CallStack;
1938
1939  // Call the function.
1940  Constant *RetValDummy;
1941  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
1942                                       CallStack, MutatedMemory, AllocaTmps);
1943  if (EvalSuccess) {
1944    // We succeeded at evaluation: commit the result.
1945    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
1946         << F->getName() << "' to " << MutatedMemory.size()
1947         << " stores.\n";
1948    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
1949         E = MutatedMemory.end(); I != E; ++I)
1950      CommitValueTo(I->second, I->first);
1951  }
1952
1953  // At this point, we are done interpreting.  If we created any 'alloca'
1954  // temporaries, release them now.
1955  while (!AllocaTmps.empty()) {
1956    GlobalVariable *Tmp = AllocaTmps.back();
1957    AllocaTmps.pop_back();
1958
1959    // If there are still users of the alloca, the program is doing something
1960    // silly, e.g. storing the address of the alloca somewhere and using it
1961    // later.  Since this is undefined, we'll just make it be null.
1962    if (!Tmp->use_empty())
1963      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
1964    delete Tmp;
1965  }
1966
1967  return EvalSuccess;
1968}
1969
1970
1971
1972/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
1973/// Return true if anything changed.
1974bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
1975  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
1976  bool MadeChange = false;
1977  if (Ctors.empty()) return false;
1978
1979  // Loop over global ctors, optimizing them when we can.
1980  for (unsigned i = 0; i != Ctors.size(); ++i) {
1981    Function *F = Ctors[i];
1982    // Found a null terminator in the middle of the list, prune off the rest of
1983    // the list.
1984    if (F == 0) {
1985      if (i != Ctors.size()-1) {
1986        Ctors.resize(i+1);
1987        MadeChange = true;
1988      }
1989      break;
1990    }
1991
1992    // We cannot simplify external ctor functions.
1993    if (F->empty()) continue;
1994
1995    // If we can evaluate the ctor at compile time, do.
1996    if (EvaluateStaticConstructor(F)) {
1997      Ctors.erase(Ctors.begin()+i);
1998      MadeChange = true;
1999      --i;
2000      ++NumCtorsEvaluated;
2001      continue;
2002    }
2003  }
2004
2005  if (!MadeChange) return false;
2006
2007  GCL = InstallGlobalCtors(GCL, Ctors);
2008  return true;
2009}
2010
2011
2012bool GlobalOpt::runOnModule(Module &M) {
2013  bool Changed = false;
2014
2015  // Try to find the llvm.globalctors list.
2016  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2017
2018  bool LocalChange = true;
2019  while (LocalChange) {
2020    LocalChange = false;
2021
2022    // Delete functions that are trivially dead, ccc -> fastcc
2023    LocalChange |= OptimizeFunctions(M);
2024
2025    // Optimize global_ctors list.
2026    if (GlobalCtors)
2027      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2028
2029    // Optimize non-address-taken globals.
2030    LocalChange |= OptimizeGlobalVars(M);
2031    Changed |= LocalChange;
2032  }
2033
2034  // TODO: Move all global ctors functions to the end of the module for code
2035  // layout.
2036
2037  return Changed;
2038}
2039