GlobalOpt.cpp revision 26f8c27c34b44f7d87de74d1de2128c1a02855bf
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <map>
38#include <set>
39using namespace llvm;
40
41STATISTIC(NumMarked    , "Number of globals marked constant");
42STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
43STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
44STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
45STATISTIC(NumDeleted   , "Number of globals deleted");
46STATISTIC(NumFnDeleted , "Number of functions deleted");
47STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
48STATISTIC(NumLocalized , "Number of globals localized");
49STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
50STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
51STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
52STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
53
54namespace {
55  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
56    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
57      AU.addRequired<TargetData>();
58    }
59    static char ID; // Pass identification, replacement for typeid
60    GlobalOpt() : ModulePass(&ID) {}
61
62    bool runOnModule(Module &M);
63
64  private:
65    GlobalVariable *FindGlobalCtors(Module &M);
66    bool OptimizeFunctions(Module &M);
67    bool OptimizeGlobalVars(Module &M);
68    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
69    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
70  };
71}
72
73char GlobalOpt::ID = 0;
74static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
75
76ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
77
78namespace {
79
80/// GlobalStatus - As we analyze each global, keep track of some information
81/// about it.  If we find out that the address of the global is taken, none of
82/// this info will be accurate.
83struct VISIBILITY_HIDDEN GlobalStatus {
84  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
85  /// loaded it can be deleted.
86  bool isLoaded;
87
88  /// StoredType - Keep track of what stores to the global look like.
89  ///
90  enum StoredType {
91    /// NotStored - There is no store to this global.  It can thus be marked
92    /// constant.
93    NotStored,
94
95    /// isInitializerStored - This global is stored to, but the only thing
96    /// stored is the constant it was initialized with.  This is only tracked
97    /// for scalar globals.
98    isInitializerStored,
99
100    /// isStoredOnce - This global is stored to, but only its initializer and
101    /// one other value is ever stored to it.  If this global isStoredOnce, we
102    /// track the value stored to it in StoredOnceValue below.  This is only
103    /// tracked for scalar globals.
104    isStoredOnce,
105
106    /// isStored - This global is stored to by multiple values or something else
107    /// that we cannot track.
108    isStored
109  } StoredType;
110
111  /// StoredOnceValue - If only one value (besides the initializer constant) is
112  /// ever stored to this global, keep track of what value it is.
113  Value *StoredOnceValue;
114
115  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
116  /// null/false.  When the first accessing function is noticed, it is recorded.
117  /// When a second different accessing function is noticed,
118  /// HasMultipleAccessingFunctions is set to true.
119  Function *AccessingFunction;
120  bool HasMultipleAccessingFunctions;
121
122  /// HasNonInstructionUser - Set to true if this global has a user that is not
123  /// an instruction (e.g. a constant expr or GV initializer).
124  bool HasNonInstructionUser;
125
126  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
127  bool HasPHIUser;
128
129  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
130                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
131                   HasNonInstructionUser(false), HasPHIUser(false) {}
132};
133
134}
135
136/// ConstantIsDead - Return true if the specified constant is (transitively)
137/// dead.  The constant may be used by other constants (e.g. constant arrays and
138/// constant exprs) as long as they are dead, but it cannot be used by anything
139/// else.
140static bool ConstantIsDead(Constant *C) {
141  if (isa<GlobalValue>(C)) return false;
142
143  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
144    if (Constant *CU = dyn_cast<Constant>(*UI)) {
145      if (!ConstantIsDead(CU)) return false;
146    } else
147      return false;
148  return true;
149}
150
151
152/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
153/// structure.  If the global has its address taken, return true to indicate we
154/// can't do anything with it.
155///
156static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
157                          std::set<PHINode*> &PHIUsers) {
158  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
160      GS.HasNonInstructionUser = true;
161
162      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
163
164    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
165      if (!GS.HasMultipleAccessingFunctions) {
166        Function *F = I->getParent()->getParent();
167        if (GS.AccessingFunction == 0)
168          GS.AccessingFunction = F;
169        else if (GS.AccessingFunction != F)
170          GS.HasMultipleAccessingFunctions = true;
171      }
172      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
173        GS.isLoaded = true;
174        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
175      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
176        // Don't allow a store OF the address, only stores TO the address.
177        if (SI->getOperand(0) == V) return true;
178
179        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
180
181        // If this is a direct store to the global (i.e., the global is a scalar
182        // value, not an aggregate), keep more specific information about
183        // stores.
184        if (GS.StoredType != GlobalStatus::isStored) {
185          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
186            Value *StoredVal = SI->getOperand(0);
187            if (StoredVal == GV->getInitializer()) {
188              if (GS.StoredType < GlobalStatus::isInitializerStored)
189                GS.StoredType = GlobalStatus::isInitializerStored;
190            } else if (isa<LoadInst>(StoredVal) &&
191                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
192              // G = G
193              if (GS.StoredType < GlobalStatus::isInitializerStored)
194                GS.StoredType = GlobalStatus::isInitializerStored;
195            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
196              GS.StoredType = GlobalStatus::isStoredOnce;
197              GS.StoredOnceValue = StoredVal;
198            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
199                       GS.StoredOnceValue == StoredVal) {
200              // noop.
201            } else {
202              GS.StoredType = GlobalStatus::isStored;
203            }
204          } else {
205            GS.StoredType = GlobalStatus::isStored;
206          }
207        }
208      } else if (isa<GetElementPtrInst>(I)) {
209        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
210      } else if (isa<SelectInst>(I)) {
211        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
212      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
213        // PHI nodes we can check just like select or GEP instructions, but we
214        // have to be careful about infinite recursion.
215        if (PHIUsers.insert(PN).second)  // Not already visited.
216          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
217        GS.HasPHIUser = true;
218      } else if (isa<CmpInst>(I)) {
219      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
220        if (I->getOperand(1) == V)
221          GS.StoredType = GlobalStatus::isStored;
222        if (I->getOperand(2) == V)
223          GS.isLoaded = true;
224      } else if (isa<MemSetInst>(I)) {
225        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
226        GS.StoredType = GlobalStatus::isStored;
227      } else {
228        return true;  // Any other non-load instruction might take address!
229      }
230    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
231      GS.HasNonInstructionUser = true;
232      // We might have a dead and dangling constant hanging off of here.
233      if (!ConstantIsDead(C))
234        return true;
235    } else {
236      GS.HasNonInstructionUser = true;
237      // Otherwise must be some other user.
238      return true;
239    }
240
241  return false;
242}
243
244static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
245  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
246  if (!CI) return 0;
247  unsigned IdxV = CI->getZExtValue();
248
249  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
250    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
251  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
252    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
253  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
254    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
255  } else if (isa<ConstantAggregateZero>(Agg)) {
256    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
257      if (IdxV < STy->getNumElements())
258        return Constant::getNullValue(STy->getElementType(IdxV));
259    } else if (const SequentialType *STy =
260               dyn_cast<SequentialType>(Agg->getType())) {
261      return Constant::getNullValue(STy->getElementType());
262    }
263  } else if (isa<UndefValue>(Agg)) {
264    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
265      if (IdxV < STy->getNumElements())
266        return UndefValue::get(STy->getElementType(IdxV));
267    } else if (const SequentialType *STy =
268               dyn_cast<SequentialType>(Agg->getType())) {
269      return UndefValue::get(STy->getElementType());
270    }
271  }
272  return 0;
273}
274
275
276/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
277/// users of the global, cleaning up the obvious ones.  This is largely just a
278/// quick scan over the use list to clean up the easy and obvious cruft.  This
279/// returns true if it made a change.
280static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
281  bool Changed = false;
282  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
283    User *U = *UI++;
284
285    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
286      if (Init) {
287        // Replace the load with the initializer.
288        LI->replaceAllUsesWith(Init);
289        LI->eraseFromParent();
290        Changed = true;
291      }
292    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
293      // Store must be unreachable or storing Init into the global.
294      SI->eraseFromParent();
295      Changed = true;
296    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
297      if (CE->getOpcode() == Instruction::GetElementPtr) {
298        Constant *SubInit = 0;
299        if (Init)
300          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
301        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
302      } else if (CE->getOpcode() == Instruction::BitCast &&
303                 isa<PointerType>(CE->getType())) {
304        // Pointer cast, delete any stores and memsets to the global.
305        Changed |= CleanupConstantGlobalUsers(CE, 0);
306      }
307
308      if (CE->use_empty()) {
309        CE->destroyConstant();
310        Changed = true;
311      }
312    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
313      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
314      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
315      // and will invalidate our notion of what Init is.
316      Constant *SubInit = 0;
317      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
318        ConstantExpr *CE =
319          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
320        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
321          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
322      }
323      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
324
325      if (GEP->use_empty()) {
326        GEP->eraseFromParent();
327        Changed = true;
328      }
329    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
330      if (MI->getRawDest() == V) {
331        MI->eraseFromParent();
332        Changed = true;
333      }
334
335    } else if (Constant *C = dyn_cast<Constant>(U)) {
336      // If we have a chain of dead constantexprs or other things dangling from
337      // us, and if they are all dead, nuke them without remorse.
338      if (ConstantIsDead(C)) {
339        C->destroyConstant();
340        // This could have invalidated UI, start over from scratch.
341        CleanupConstantGlobalUsers(V, Init);
342        return true;
343      }
344    }
345  }
346  return Changed;
347}
348
349/// isSafeSROAElementUse - Return true if the specified instruction is a safe
350/// user of a derived expression from a global that we want to SROA.
351static bool isSafeSROAElementUse(Value *V) {
352  // We might have a dead and dangling constant hanging off of here.
353  if (Constant *C = dyn_cast<Constant>(V))
354    return ConstantIsDead(C);
355
356  Instruction *I = dyn_cast<Instruction>(V);
357  if (!I) return false;
358
359  // Loads are ok.
360  if (isa<LoadInst>(I)) return true;
361
362  // Stores *to* the pointer are ok.
363  if (StoreInst *SI = dyn_cast<StoreInst>(I))
364    return SI->getOperand(0) != V;
365
366  // Otherwise, it must be a GEP.
367  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
368  if (GEPI == 0) return false;
369
370  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
371      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
372    return false;
373
374  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
375       I != E; ++I)
376    if (!isSafeSROAElementUse(*I))
377      return false;
378  return true;
379}
380
381
382/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
383/// Look at it and its uses and decide whether it is safe to SROA this global.
384///
385static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
386  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
387  if (!isa<GetElementPtrInst>(U) &&
388      (!isa<ConstantExpr>(U) ||
389       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
390    return false;
391
392  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
393  // don't like < 3 operand CE's, and we don't like non-constant integer
394  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
395  // value of C.
396  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
397      !cast<Constant>(U->getOperand(1))->isNullValue() ||
398      !isa<ConstantInt>(U->getOperand(2)))
399    return false;
400
401  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
402  ++GEPI;  // Skip over the pointer index.
403
404  // If this is a use of an array allocation, do a bit more checking for sanity.
405  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
406    uint64_t NumElements = AT->getNumElements();
407    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
408
409    // Check to make sure that index falls within the array.  If not,
410    // something funny is going on, so we won't do the optimization.
411    //
412    if (Idx->getZExtValue() >= NumElements)
413      return false;
414
415    // We cannot scalar repl this level of the array unless any array
416    // sub-indices are in-range constants.  In particular, consider:
417    // A[0][i].  We cannot know that the user isn't doing invalid things like
418    // allowing i to index an out-of-range subscript that accesses A[1].
419    //
420    // Scalar replacing *just* the outer index of the array is probably not
421    // going to be a win anyway, so just give up.
422    for (++GEPI; // Skip array index.
423         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
424         ++GEPI) {
425      uint64_t NumElements;
426      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
427        NumElements = SubArrayTy->getNumElements();
428      else
429        NumElements = cast<VectorType>(*GEPI)->getNumElements();
430
431      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
432      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
433        return false;
434    }
435  }
436
437  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
438    if (!isSafeSROAElementUse(*I))
439      return false;
440  return true;
441}
442
443/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
444/// is safe for us to perform this transformation.
445///
446static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
447  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
448       UI != E; ++UI) {
449    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
450      return false;
451  }
452  return true;
453}
454
455
456/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
457/// variable.  This opens the door for other optimizations by exposing the
458/// behavior of the program in a more fine-grained way.  We have determined that
459/// this transformation is safe already.  We return the first global variable we
460/// insert so that the caller can reprocess it.
461static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
462  // Make sure this global only has simple uses that we can SRA.
463  if (!GlobalUsersSafeToSRA(GV))
464    return 0;
465
466  assert(GV->hasInternalLinkage() && !GV->isConstant());
467  Constant *Init = GV->getInitializer();
468  const Type *Ty = Init->getType();
469
470  std::vector<GlobalVariable*> NewGlobals;
471  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
472
473  // Get the alignment of the global, either explicit or target-specific.
474  unsigned StartAlignment = GV->getAlignment();
475  if (StartAlignment == 0)
476    StartAlignment = TD.getABITypeAlignment(GV->getType());
477
478  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
479    NewGlobals.reserve(STy->getNumElements());
480    const StructLayout &Layout = *TD.getStructLayout(STy);
481    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
482      Constant *In = getAggregateConstantElement(Init,
483                                            ConstantInt::get(Type::Int32Ty, i));
484      assert(In && "Couldn't get element of initializer?");
485      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
486                                               GlobalVariable::InternalLinkage,
487                                               In, GV->getName()+"."+utostr(i),
488                                               (Module *)NULL,
489                                               GV->isThreadLocal(),
490                                               GV->getType()->getAddressSpace());
491      Globals.insert(GV, NGV);
492      NewGlobals.push_back(NGV);
493
494      // Calculate the known alignment of the field.  If the original aggregate
495      // had 256 byte alignment for example, something might depend on that:
496      // propagate info to each field.
497      uint64_t FieldOffset = Layout.getElementOffset(i);
498      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
499      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
500        NGV->setAlignment(NewAlign);
501    }
502  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
503    unsigned NumElements = 0;
504    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
505      NumElements = ATy->getNumElements();
506    else
507      NumElements = cast<VectorType>(STy)->getNumElements();
508
509    if (NumElements > 16 && GV->hasNUsesOrMore(16))
510      return 0; // It's not worth it.
511    NewGlobals.reserve(NumElements);
512
513    uint64_t EltSize = TD.getABITypeSize(STy->getElementType());
514    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
515    for (unsigned i = 0, e = NumElements; i != e; ++i) {
516      Constant *In = getAggregateConstantElement(Init,
517                                            ConstantInt::get(Type::Int32Ty, i));
518      assert(In && "Couldn't get element of initializer?");
519
520      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
521                                               GlobalVariable::InternalLinkage,
522                                               In, GV->getName()+"."+utostr(i),
523                                               (Module *)NULL,
524                                               GV->isThreadLocal(),
525                                               GV->getType()->getAddressSpace());
526      Globals.insert(GV, NGV);
527      NewGlobals.push_back(NGV);
528
529      // Calculate the known alignment of the field.  If the original aggregate
530      // had 256 byte alignment for example, something might depend on that:
531      // propagate info to each field.
532      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
533      if (NewAlign > EltAlign)
534        NGV->setAlignment(NewAlign);
535    }
536  }
537
538  if (NewGlobals.empty())
539    return 0;
540
541  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
542
543  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
544
545  // Loop over all of the uses of the global, replacing the constantexpr geps,
546  // with smaller constantexpr geps or direct references.
547  while (!GV->use_empty()) {
548    User *GEP = GV->use_back();
549    assert(((isa<ConstantExpr>(GEP) &&
550             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
551            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
552
553    // Ignore the 1th operand, which has to be zero or else the program is quite
554    // broken (undefined).  Get the 2nd operand, which is the structure or array
555    // index.
556    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
557    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
558
559    Value *NewPtr = NewGlobals[Val];
560
561    // Form a shorter GEP if needed.
562    if (GEP->getNumOperands() > 3) {
563      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
564        SmallVector<Constant*, 8> Idxs;
565        Idxs.push_back(NullInt);
566        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
567          Idxs.push_back(CE->getOperand(i));
568        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
569                                                &Idxs[0], Idxs.size());
570      } else {
571        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
572        SmallVector<Value*, 8> Idxs;
573        Idxs.push_back(NullInt);
574        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
575          Idxs.push_back(GEPI->getOperand(i));
576        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
577                                           GEPI->getName()+"."+utostr(Val), GEPI);
578      }
579    }
580    GEP->replaceAllUsesWith(NewPtr);
581
582    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
583      GEPI->eraseFromParent();
584    else
585      cast<ConstantExpr>(GEP)->destroyConstant();
586  }
587
588  // Delete the old global, now that it is dead.
589  Globals.erase(GV);
590  ++NumSRA;
591
592  // Loop over the new globals array deleting any globals that are obviously
593  // dead.  This can arise due to scalarization of a structure or an array that
594  // has elements that are dead.
595  unsigned FirstGlobal = 0;
596  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
597    if (NewGlobals[i]->use_empty()) {
598      Globals.erase(NewGlobals[i]);
599      if (FirstGlobal == i) ++FirstGlobal;
600    }
601
602  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
603}
604
605/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
606/// value will trap if the value is dynamically null.  PHIs keeps track of any
607/// phi nodes we've seen to avoid reprocessing them.
608static bool AllUsesOfValueWillTrapIfNull(Value *V,
609                                         SmallPtrSet<PHINode*, 8> &PHIs) {
610  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
611    if (isa<LoadInst>(*UI)) {
612      // Will trap.
613    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
614      if (SI->getOperand(0) == V) {
615        //cerr << "NONTRAPPING USE: " << **UI;
616        return false;  // Storing the value.
617      }
618    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
619      if (CI->getOperand(0) != V) {
620        //cerr << "NONTRAPPING USE: " << **UI;
621        return false;  // Not calling the ptr
622      }
623    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
624      if (II->getOperand(0) != V) {
625        //cerr << "NONTRAPPING USE: " << **UI;
626        return false;  // Not calling the ptr
627      }
628    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
629      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
630    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
631      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
632    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
633      // If we've already seen this phi node, ignore it, it has already been
634      // checked.
635      if (PHIs.insert(PN))
636        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
637    } else if (isa<ICmpInst>(*UI) &&
638               isa<ConstantPointerNull>(UI->getOperand(1))) {
639      // Ignore setcc X, null
640    } else {
641      //cerr << "NONTRAPPING USE: " << **UI;
642      return false;
643    }
644  return true;
645}
646
647/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
648/// from GV will trap if the loaded value is null.  Note that this also permits
649/// comparisons of the loaded value against null, as a special case.
650static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
651  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
652    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
653      SmallPtrSet<PHINode*, 8> PHIs;
654      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
655        return false;
656    } else if (isa<StoreInst>(*UI)) {
657      // Ignore stores to the global.
658    } else {
659      // We don't know or understand this user, bail out.
660      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
661      return false;
662    }
663
664  return true;
665}
666
667static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
668  bool Changed = false;
669  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
670    Instruction *I = cast<Instruction>(*UI++);
671    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
672      LI->setOperand(0, NewV);
673      Changed = true;
674    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
675      if (SI->getOperand(1) == V) {
676        SI->setOperand(1, NewV);
677        Changed = true;
678      }
679    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
680      if (I->getOperand(0) == V) {
681        // Calling through the pointer!  Turn into a direct call, but be careful
682        // that the pointer is not also being passed as an argument.
683        I->setOperand(0, NewV);
684        Changed = true;
685        bool PassedAsArg = false;
686        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
687          if (I->getOperand(i) == V) {
688            PassedAsArg = true;
689            I->setOperand(i, NewV);
690          }
691
692        if (PassedAsArg) {
693          // Being passed as an argument also.  Be careful to not invalidate UI!
694          UI = V->use_begin();
695        }
696      }
697    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
698      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
699                                ConstantExpr::getCast(CI->getOpcode(),
700                                                      NewV, CI->getType()));
701      if (CI->use_empty()) {
702        Changed = true;
703        CI->eraseFromParent();
704      }
705    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
706      // Should handle GEP here.
707      SmallVector<Constant*, 8> Idxs;
708      Idxs.reserve(GEPI->getNumOperands()-1);
709      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
710           i != e; ++i)
711        if (Constant *C = dyn_cast<Constant>(*i))
712          Idxs.push_back(C);
713        else
714          break;
715      if (Idxs.size() == GEPI->getNumOperands()-1)
716        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
717                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
718                                                               Idxs.size()));
719      if (GEPI->use_empty()) {
720        Changed = true;
721        GEPI->eraseFromParent();
722      }
723    }
724  }
725
726  return Changed;
727}
728
729
730/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
731/// value stored into it.  If there are uses of the loaded value that would trap
732/// if the loaded value is dynamically null, then we know that they cannot be
733/// reachable with a null optimize away the load.
734static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
735  std::vector<LoadInst*> Loads;
736  bool Changed = false;
737
738  // Replace all uses of loads with uses of uses of the stored value.
739  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
740       GUI != E; ++GUI)
741    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
742      Loads.push_back(LI);
743      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
744    } else {
745      // If we get here we could have stores, selects, or phi nodes whose values
746      // are loaded.
747      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
748              isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
749             "Only expect load and stores!");
750    }
751
752  if (Changed) {
753    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
754    ++NumGlobUses;
755  }
756
757  // Delete all of the loads we can, keeping track of whether we nuked them all!
758  bool AllLoadsGone = true;
759  while (!Loads.empty()) {
760    LoadInst *L = Loads.back();
761    if (L->use_empty()) {
762      L->eraseFromParent();
763      Changed = true;
764    } else {
765      AllLoadsGone = false;
766    }
767    Loads.pop_back();
768  }
769
770  // If we nuked all of the loads, then none of the stores are needed either,
771  // nor is the global.
772  if (AllLoadsGone) {
773    DOUT << "  *** GLOBAL NOW DEAD!\n";
774    CleanupConstantGlobalUsers(GV, 0);
775    if (GV->use_empty()) {
776      GV->eraseFromParent();
777      ++NumDeleted;
778    }
779    Changed = true;
780  }
781  return Changed;
782}
783
784/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
785/// instructions that are foldable.
786static void ConstantPropUsersOf(Value *V) {
787  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
788    if (Instruction *I = dyn_cast<Instruction>(*UI++))
789      if (Constant *NewC = ConstantFoldInstruction(I)) {
790        I->replaceAllUsesWith(NewC);
791
792        // Advance UI to the next non-I use to avoid invalidating it!
793        // Instructions could multiply use V.
794        while (UI != E && *UI == I)
795          ++UI;
796        I->eraseFromParent();
797      }
798}
799
800/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
801/// variable, and transforms the program as if it always contained the result of
802/// the specified malloc.  Because it is always the result of the specified
803/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
804/// malloc into a global, and any loads of GV as uses of the new global.
805static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
806                                                     MallocInst *MI) {
807  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
808  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
809
810  if (NElements->getZExtValue() != 1) {
811    // If we have an array allocation, transform it to a single element
812    // allocation to make the code below simpler.
813    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
814                                 NElements->getZExtValue());
815    MallocInst *NewMI =
816      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
817                     MI->getAlignment(), MI->getName(), MI);
818    Value* Indices[2];
819    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
820    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
821                                              NewMI->getName()+".el0", MI);
822    MI->replaceAllUsesWith(NewGEP);
823    MI->eraseFromParent();
824    MI = NewMI;
825  }
826
827  // Create the new global variable.  The contents of the malloc'd memory is
828  // undefined, so initialize with an undef value.
829  Constant *Init = UndefValue::get(MI->getAllocatedType());
830  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
831                                             GlobalValue::InternalLinkage, Init,
832                                             GV->getName()+".body",
833                                             (Module *)NULL,
834                                             GV->isThreadLocal());
835  // FIXME: This new global should have the alignment returned by malloc.  Code
836  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
837  // this would only guarantee some lower alignment.
838  GV->getParent()->getGlobalList().insert(GV, NewGV);
839
840  // Anything that used the malloc now uses the global directly.
841  MI->replaceAllUsesWith(NewGV);
842
843  Constant *RepValue = NewGV;
844  if (NewGV->getType() != GV->getType()->getElementType())
845    RepValue = ConstantExpr::getBitCast(RepValue,
846                                        GV->getType()->getElementType());
847
848  // If there is a comparison against null, we will insert a global bool to
849  // keep track of whether the global was initialized yet or not.
850  GlobalVariable *InitBool =
851    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
852                       ConstantInt::getFalse(), GV->getName()+".init",
853                       (Module *)NULL, GV->isThreadLocal());
854  bool InitBoolUsed = false;
855
856  // Loop over all uses of GV, processing them in turn.
857  std::vector<StoreInst*> Stores;
858  while (!GV->use_empty())
859    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
860      while (!LI->use_empty()) {
861        Use &LoadUse = LI->use_begin().getUse();
862        if (!isa<ICmpInst>(LoadUse.getUser()))
863          LoadUse = RepValue;
864        else {
865          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
866          // Replace the cmp X, 0 with a use of the bool value.
867          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
868          InitBoolUsed = true;
869          switch (CI->getPredicate()) {
870          default: assert(0 && "Unknown ICmp Predicate!");
871          case ICmpInst::ICMP_ULT:
872          case ICmpInst::ICMP_SLT:
873            LV = ConstantInt::getFalse();   // X < null -> always false
874            break;
875          case ICmpInst::ICMP_ULE:
876          case ICmpInst::ICMP_SLE:
877          case ICmpInst::ICMP_EQ:
878            LV = BinaryOperator::CreateNot(LV, "notinit", CI);
879            break;
880          case ICmpInst::ICMP_NE:
881          case ICmpInst::ICMP_UGE:
882          case ICmpInst::ICMP_SGE:
883          case ICmpInst::ICMP_UGT:
884          case ICmpInst::ICMP_SGT:
885            break;  // no change.
886          }
887          CI->replaceAllUsesWith(LV);
888          CI->eraseFromParent();
889        }
890      }
891      LI->eraseFromParent();
892    } else {
893      StoreInst *SI = cast<StoreInst>(GV->use_back());
894      // The global is initialized when the store to it occurs.
895      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
896      SI->eraseFromParent();
897    }
898
899  // If the initialization boolean was used, insert it, otherwise delete it.
900  if (!InitBoolUsed) {
901    while (!InitBool->use_empty())  // Delete initializations
902      cast<Instruction>(InitBool->use_back())->eraseFromParent();
903    delete InitBool;
904  } else
905    GV->getParent()->getGlobalList().insert(GV, InitBool);
906
907
908  // Now the GV is dead, nuke it and the malloc.
909  GV->eraseFromParent();
910  MI->eraseFromParent();
911
912  // To further other optimizations, loop over all users of NewGV and try to
913  // constant prop them.  This will promote GEP instructions with constant
914  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
915  ConstantPropUsersOf(NewGV);
916  if (RepValue != NewGV)
917    ConstantPropUsersOf(RepValue);
918
919  return NewGV;
920}
921
922/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
923/// to make sure that there are no complex uses of V.  We permit simple things
924/// like dereferencing the pointer, but not storing through the address, unless
925/// it is to the specified global.
926static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
927                                                      GlobalVariable *GV,
928                                              SmallPtrSet<PHINode*, 8> &PHIs) {
929  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
930    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
931      // Fine, ignore.
932    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
933      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
934        return false;  // Storing the pointer itself... bad.
935      // Otherwise, storing through it, or storing into GV... fine.
936    } else if (isa<GetElementPtrInst>(*UI)) {
937      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
938                                                     GV, PHIs))
939        return false;
940    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
941      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
942      // cycles.
943      if (PHIs.insert(PN))
944        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
945          return false;
946    } else {
947      return false;
948    }
949  return true;
950}
951
952/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
953/// somewhere.  Transform all uses of the allocation into loads from the
954/// global and uses of the resultant pointer.  Further, delete the store into
955/// GV.  This assumes that these value pass the
956/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
957static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
958                                          GlobalVariable *GV) {
959  while (!Alloc->use_empty()) {
960    Instruction *U = cast<Instruction>(*Alloc->use_begin());
961    Instruction *InsertPt = U;
962    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
963      // If this is the store of the allocation into the global, remove it.
964      if (SI->getOperand(1) == GV) {
965        SI->eraseFromParent();
966        continue;
967      }
968    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
969      // Insert the load in the corresponding predecessor, not right before the
970      // PHI.
971      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
972      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
973    }
974
975    // Insert a load from the global, and use it instead of the malloc.
976    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
977    U->replaceUsesOfWith(Alloc, NL);
978  }
979}
980
981/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
982/// GV are simple enough to perform HeapSRA, return true.
983static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
984                                                 MallocInst *MI) {
985  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
986       ++UI)
987    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
988      // We permit two users of the load: setcc comparing against the null
989      // pointer, and a getelementptr of a specific form.
990      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end();
991           UI != E; ++UI) {
992        // Comparison against null is ok.
993        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
994          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
995            return false;
996          continue;
997        }
998
999        // getelementptr is also ok, but only a simple form.
1000        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
1001          // Must index into the array and into the struct.
1002          if (GEPI->getNumOperands() < 3)
1003            return false;
1004
1005          // Otherwise the GEP is ok.
1006          continue;
1007        }
1008
1009        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
1010          // We have a phi of a load from the global.  We can only handle this
1011          // if the other PHI'd values are actually the same.  In this case,
1012          // the rewriter will just drop the phi entirely.
1013          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1014            Value *IV = PN->getIncomingValue(i);
1015            if (IV == LI) continue;  // Trivial the same.
1016
1017            // If the phi'd value is from the malloc that initializes the value,
1018            // we can xform it.
1019            if (IV == MI) continue;
1020
1021            // Otherwise, we don't know what it is.
1022            return false;
1023          }
1024          return true;
1025        }
1026
1027        // Otherwise we don't know what this is, not ok.
1028        return false;
1029      }
1030    }
1031  return true;
1032}
1033
1034/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
1035/// value, lazily creating it on demand.
1036static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
1037                              const std::vector<GlobalVariable*> &FieldGlobals,
1038                              std::vector<Value *> &InsertedLoadsForPtr) {
1039  if (InsertedLoadsForPtr.size() <= FieldNo)
1040    InsertedLoadsForPtr.resize(FieldNo+1);
1041  if (InsertedLoadsForPtr[FieldNo] == 0)
1042    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1043                                                Load->getName()+".f" +
1044                                                utostr(FieldNo), Load);
1045  return InsertedLoadsForPtr[FieldNo];
1046}
1047
1048/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1049/// the load, rewrite the derived value to use the HeapSRoA'd load.
1050static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1051                               const std::vector<GlobalVariable*> &FieldGlobals,
1052                                    std::vector<Value *> &InsertedLoadsForPtr) {
1053  // If this is a comparison against null, handle it.
1054  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1055    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1056    // If we have a setcc of the loaded pointer, we can use a setcc of any
1057    // field.
1058    Value *NPtr;
1059    if (InsertedLoadsForPtr.empty()) {
1060      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
1061    } else {
1062      NPtr = InsertedLoadsForPtr.back();
1063    }
1064
1065    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1066                              Constant::getNullValue(NPtr->getType()),
1067                              SCI->getName(), SCI);
1068    SCI->replaceAllUsesWith(New);
1069    SCI->eraseFromParent();
1070    return;
1071  }
1072
1073  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1074  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1075    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1076           && "Unexpected GEPI!");
1077
1078    // Load the pointer for this field.
1079    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1080    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1081                                    FieldGlobals, InsertedLoadsForPtr);
1082
1083    // Create the new GEP idx vector.
1084    SmallVector<Value*, 8> GEPIdx;
1085    GEPIdx.push_back(GEPI->getOperand(1));
1086    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1087
1088    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1089                                             GEPIdx.begin(), GEPIdx.end(),
1090                                             GEPI->getName(), GEPI);
1091    GEPI->replaceAllUsesWith(NGEPI);
1092    GEPI->eraseFromParent();
1093    return;
1094  }
1095
1096  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
1097  // potentially the original malloc.  Insert phi nodes for each field, then
1098  // process uses of the PHI.
1099  PHINode *PN = cast<PHINode>(LoadUser);
1100  std::vector<Value *> PHIsForField;
1101  PHIsForField.resize(FieldGlobals.size());
1102  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1103    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1104
1105    PHINode *FieldPN = PHINode::Create(LoadV->getType(),
1106                                       PN->getName()+"."+utostr(i), PN);
1107    // Fill in the predecessor values.
1108    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1109      // Each predecessor either uses the load or the original malloc.
1110      Value *InVal = PN->getIncomingValue(pred);
1111      BasicBlock *BB = PN->getIncomingBlock(pred);
1112      Value *NewVal;
1113      if (isa<MallocInst>(InVal)) {
1114        // Insert a reload from the global in the predecessor.
1115        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1116                                 PHIsForField);
1117      } else {
1118        NewVal = InsertedLoadsForPtr[i];
1119      }
1120      FieldPN->addIncoming(NewVal, BB);
1121    }
1122    PHIsForField[i] = FieldPN;
1123  }
1124
1125  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1126  // will never insert a load.
1127  while (!PN->use_empty())
1128    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1129  PN->eraseFromParent();
1130}
1131
1132/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1133/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1134/// use FieldGlobals instead.  All uses of loaded values satisfy
1135/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1136static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1137                             const std::vector<GlobalVariable*> &FieldGlobals) {
1138  std::vector<Value *> InsertedLoadsForPtr;
1139  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1140  while (!Load->use_empty())
1141    RewriteHeapSROALoadUser(Load, Load->use_back(),
1142                            FieldGlobals, InsertedLoadsForPtr);
1143}
1144
1145/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1146/// it up into multiple allocations of arrays of the fields.
1147static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1148  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1149  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1150
1151  // There is guaranteed to be at least one use of the malloc (storing
1152  // it into GV).  If there are other uses, change them to be uses of
1153  // the global to simplify later code.  This also deletes the store
1154  // into GV.
1155  ReplaceUsesOfMallocWithGlobal(MI, GV);
1156
1157  // Okay, at this point, there are no users of the malloc.  Insert N
1158  // new mallocs at the same place as MI, and N globals.
1159  std::vector<GlobalVariable*> FieldGlobals;
1160  std::vector<MallocInst*> FieldMallocs;
1161
1162  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1163    const Type *FieldTy = STy->getElementType(FieldNo);
1164    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1165
1166    GlobalVariable *NGV =
1167      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1168                         Constant::getNullValue(PFieldTy),
1169                         GV->getName() + ".f" + utostr(FieldNo), GV,
1170                         GV->isThreadLocal());
1171    FieldGlobals.push_back(NGV);
1172
1173    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1174                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1175    FieldMallocs.push_back(NMI);
1176    new StoreInst(NMI, NGV, MI);
1177  }
1178
1179  // The tricky aspect of this transformation is handling the case when malloc
1180  // fails.  In the original code, malloc failing would set the result pointer
1181  // of malloc to null.  In this case, some mallocs could succeed and others
1182  // could fail.  As such, we emit code that looks like this:
1183  //    F0 = malloc(field0)
1184  //    F1 = malloc(field1)
1185  //    F2 = malloc(field2)
1186  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1187  //      if (F0) { free(F0); F0 = 0; }
1188  //      if (F1) { free(F1); F1 = 0; }
1189  //      if (F2) { free(F2); F2 = 0; }
1190  //    }
1191  Value *RunningOr = 0;
1192  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1193    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1194                             Constant::getNullValue(FieldMallocs[i]->getType()),
1195                                  "isnull", MI);
1196    if (!RunningOr)
1197      RunningOr = Cond;   // First seteq
1198    else
1199      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1200  }
1201
1202  // Split the basic block at the old malloc.
1203  BasicBlock *OrigBB = MI->getParent();
1204  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1205
1206  // Create the block to check the first condition.  Put all these blocks at the
1207  // end of the function as they are unlikely to be executed.
1208  BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1209                                                OrigBB->getParent());
1210
1211  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1212  // branch on RunningOr.
1213  OrigBB->getTerminator()->eraseFromParent();
1214  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1215
1216  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1217  // pointer, because some may be null while others are not.
1218  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1219    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1220    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1221                              Constant::getNullValue(GVVal->getType()),
1222                              "tmp", NullPtrBlock);
1223    BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1224    BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1225    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1226
1227    // Fill in FreeBlock.
1228    new FreeInst(GVVal, FreeBlock);
1229    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1230                  FreeBlock);
1231    BranchInst::Create(NextBlock, FreeBlock);
1232
1233    NullPtrBlock = NextBlock;
1234  }
1235
1236  BranchInst::Create(ContBB, NullPtrBlock);
1237
1238  // MI is no longer needed, remove it.
1239  MI->eraseFromParent();
1240
1241
1242  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1243  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1244  // of the per-field globals instead.
1245  while (!GV->use_empty()) {
1246    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1247      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1248      LI->eraseFromParent();
1249    } else {
1250      // Must be a store of null.
1251      StoreInst *SI = cast<StoreInst>(GV->use_back());
1252      assert(isa<Constant>(SI->getOperand(0)) &&
1253             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1254             "Unexpected heap-sra user!");
1255
1256      // Insert a store of null into each global.
1257      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1258        Constant *Null =
1259          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1260        new StoreInst(Null, FieldGlobals[i], SI);
1261      }
1262      // Erase the original store.
1263      SI->eraseFromParent();
1264    }
1265  }
1266
1267  // The old global is now dead, remove it.
1268  GV->eraseFromParent();
1269
1270  ++NumHeapSRA;
1271  return FieldGlobals[0];
1272}
1273
1274
1275// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1276// that only one value (besides its initializer) is ever stored to the global.
1277static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1278                                     Module::global_iterator &GVI,
1279                                     TargetData &TD) {
1280  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1281    StoredOnceVal = CI->getOperand(0);
1282  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1283    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1284    bool IsJustACast = true;
1285    for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
1286         i != e; ++i)
1287      if (!isa<Constant>(*i) ||
1288          !cast<Constant>(*i)->isNullValue()) {
1289        IsJustACast = false;
1290        break;
1291      }
1292    if (IsJustACast)
1293      StoredOnceVal = GEPI->getOperand(0);
1294  }
1295
1296  // If we are dealing with a pointer global that is initialized to null and
1297  // only has one (non-null) value stored into it, then we can optimize any
1298  // users of the loaded value (often calls and loads) that would trap if the
1299  // value was null.
1300  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1301      GV->getInitializer()->isNullValue()) {
1302    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1303      if (GV->getInitializer()->getType() != SOVC->getType())
1304        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1305
1306      // Optimize away any trapping uses of the loaded value.
1307      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1308        return true;
1309    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1310      // If this is a malloc of an abstract type, don't touch it.
1311      if (!MI->getAllocatedType()->isSized())
1312        return false;
1313
1314      // We can't optimize this global unless all uses of it are *known* to be
1315      // of the malloc value, not of the null initializer value (consider a use
1316      // that compares the global's value against zero to see if the malloc has
1317      // been reached).  To do this, we check to see if all uses of the global
1318      // would trap if the global were null: this proves that they must all
1319      // happen after the malloc.
1320      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1321        return false;
1322
1323      // We can't optimize this if the malloc itself is used in a complex way,
1324      // for example, being stored into multiple globals.  This allows the
1325      // malloc to be stored into the specified global, loaded setcc'd, and
1326      // GEP'd.  These are all things we could transform to using the global
1327      // for.
1328      {
1329        SmallPtrSet<PHINode*, 8> PHIs;
1330        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1331          return false;
1332      }
1333
1334
1335      // If we have a global that is only initialized with a fixed size malloc,
1336      // transform the program to use global memory instead of malloc'd memory.
1337      // This eliminates dynamic allocation, avoids an indirection accessing the
1338      // data, and exposes the resultant global to further GlobalOpt.
1339      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1340        // Restrict this transformation to only working on small allocations
1341        // (2048 bytes currently), as we don't want to introduce a 16M global or
1342        // something.
1343        if (NElements->getZExtValue()*
1344                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
1345          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1346          return true;
1347        }
1348      }
1349
1350      // If the allocation is an array of structures, consider transforming this
1351      // into multiple malloc'd arrays, one for each field.  This is basically
1352      // SRoA for malloc'd memory.
1353      if (const StructType *AllocTy =
1354                  dyn_cast<StructType>(MI->getAllocatedType())) {
1355        // This the structure has an unreasonable number of fields, leave it
1356        // alone.
1357        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1358            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1359          GVI = PerformHeapAllocSRoA(GV, MI);
1360          return true;
1361        }
1362      }
1363    }
1364  }
1365
1366  return false;
1367}
1368
1369/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1370/// two values ever stored into GV are its initializer and OtherVal.  See if we
1371/// can shrink the global into a boolean and select between the two values
1372/// whenever it is used.  This exposes the values to other scalar optimizations.
1373static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1374  const Type *GVElType = GV->getType()->getElementType();
1375
1376  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1377  // an FP value or vector, don't do this optimization because a select between
1378  // them is very expensive and unlikely to lead to later simplification.
1379  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1380      isa<VectorType>(GVElType))
1381    return false;
1382
1383  // Walk the use list of the global seeing if all the uses are load or store.
1384  // If there is anything else, bail out.
1385  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1386    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1387      return false;
1388
1389  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1390
1391  // Create the new global, initializing it to false.
1392  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1393         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1394                                             GV->getName()+".b",
1395                                             (Module *)NULL,
1396                                             GV->isThreadLocal());
1397  GV->getParent()->getGlobalList().insert(GV, NewGV);
1398
1399  Constant *InitVal = GV->getInitializer();
1400  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1401
1402  // If initialized to zero and storing one into the global, we can use a cast
1403  // instead of a select to synthesize the desired value.
1404  bool IsOneZero = false;
1405  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1406    IsOneZero = InitVal->isNullValue() && CI->isOne();
1407
1408  while (!GV->use_empty()) {
1409    Instruction *UI = cast<Instruction>(GV->use_back());
1410    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1411      // Change the store into a boolean store.
1412      bool StoringOther = SI->getOperand(0) == OtherVal;
1413      // Only do this if we weren't storing a loaded value.
1414      Value *StoreVal;
1415      if (StoringOther || SI->getOperand(0) == InitVal)
1416        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1417      else {
1418        // Otherwise, we are storing a previously loaded copy.  To do this,
1419        // change the copy from copying the original value to just copying the
1420        // bool.
1421        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1422
1423        // If we're already replaced the input, StoredVal will be a cast or
1424        // select instruction.  If not, it will be a load of the original
1425        // global.
1426        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1427          assert(LI->getOperand(0) == GV && "Not a copy!");
1428          // Insert a new load, to preserve the saved value.
1429          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1430        } else {
1431          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1432                 "This is not a form that we understand!");
1433          StoreVal = StoredVal->getOperand(0);
1434          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1435        }
1436      }
1437      new StoreInst(StoreVal, NewGV, SI);
1438    } else {
1439      // Change the load into a load of bool then a select.
1440      LoadInst *LI = cast<LoadInst>(UI);
1441      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1442      Value *NSI;
1443      if (IsOneZero)
1444        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1445      else
1446        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1447      NSI->takeName(LI);
1448      LI->replaceAllUsesWith(NSI);
1449    }
1450    UI->eraseFromParent();
1451  }
1452
1453  GV->eraseFromParent();
1454  return true;
1455}
1456
1457
1458/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1459/// it if possible.  If we make a change, return true.
1460bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1461                                      Module::global_iterator &GVI) {
1462  std::set<PHINode*> PHIUsers;
1463  GlobalStatus GS;
1464  GV->removeDeadConstantUsers();
1465
1466  if (GV->use_empty()) {
1467    DOUT << "GLOBAL DEAD: " << *GV;
1468    GV->eraseFromParent();
1469    ++NumDeleted;
1470    return true;
1471  }
1472
1473  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1474#if 0
1475    cerr << "Global: " << *GV;
1476    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1477    cerr << "  StoredType = ";
1478    switch (GS.StoredType) {
1479    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1480    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1481    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1482    case GlobalStatus::isStored: cerr << "stored\n"; break;
1483    }
1484    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1485      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1486    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1487      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1488                << "\n";
1489    cerr << "  HasMultipleAccessingFunctions =  "
1490              << GS.HasMultipleAccessingFunctions << "\n";
1491    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1492    cerr << "\n";
1493#endif
1494
1495    // If this is a first class global and has only one accessing function
1496    // and this function is main (which we know is not recursive we can make
1497    // this global a local variable) we replace the global with a local alloca
1498    // in this function.
1499    //
1500    // NOTE: It doesn't make sense to promote non single-value types since we
1501    // are just replacing static memory to stack memory.
1502    if (!GS.HasMultipleAccessingFunctions &&
1503        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1504        GV->getType()->getElementType()->isSingleValueType() &&
1505        GS.AccessingFunction->getName() == "main" &&
1506        GS.AccessingFunction->hasExternalLinkage()) {
1507      DOUT << "LOCALIZING GLOBAL: " << *GV;
1508      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1509      const Type* ElemTy = GV->getType()->getElementType();
1510      // FIXME: Pass Global's alignment when globals have alignment
1511      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1512      if (!isa<UndefValue>(GV->getInitializer()))
1513        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1514
1515      GV->replaceAllUsesWith(Alloca);
1516      GV->eraseFromParent();
1517      ++NumLocalized;
1518      return true;
1519    }
1520
1521    // If the global is never loaded (but may be stored to), it is dead.
1522    // Delete it now.
1523    if (!GS.isLoaded) {
1524      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1525
1526      // Delete any stores we can find to the global.  We may not be able to
1527      // make it completely dead though.
1528      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1529
1530      // If the global is dead now, delete it.
1531      if (GV->use_empty()) {
1532        GV->eraseFromParent();
1533        ++NumDeleted;
1534        Changed = true;
1535      }
1536      return Changed;
1537
1538    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1539      DOUT << "MARKING CONSTANT: " << *GV;
1540      GV->setConstant(true);
1541
1542      // Clean up any obviously simplifiable users now.
1543      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1544
1545      // If the global is dead now, just nuke it.
1546      if (GV->use_empty()) {
1547        DOUT << "   *** Marking constant allowed us to simplify "
1548             << "all users and delete global!\n";
1549        GV->eraseFromParent();
1550        ++NumDeleted;
1551      }
1552
1553      ++NumMarked;
1554      return true;
1555    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1556      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1557                                                 getAnalysis<TargetData>())) {
1558        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1559        return true;
1560      }
1561    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1562      // If the initial value for the global was an undef value, and if only
1563      // one other value was stored into it, we can just change the
1564      // initializer to be an undef value, then delete all stores to the
1565      // global.  This allows us to mark it constant.
1566      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1567        if (isa<UndefValue>(GV->getInitializer())) {
1568          // Change the initial value here.
1569          GV->setInitializer(SOVConstant);
1570
1571          // Clean up any obviously simplifiable users now.
1572          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1573
1574          if (GV->use_empty()) {
1575            DOUT << "   *** Substituting initializer allowed us to "
1576                 << "simplify all users and delete global!\n";
1577            GV->eraseFromParent();
1578            ++NumDeleted;
1579          } else {
1580            GVI = GV;
1581          }
1582          ++NumSubstitute;
1583          return true;
1584        }
1585
1586      // Try to optimize globals based on the knowledge that only one value
1587      // (besides its initializer) is ever stored to the global.
1588      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1589                                   getAnalysis<TargetData>()))
1590        return true;
1591
1592      // Otherwise, if the global was not a boolean, we can shrink it to be a
1593      // boolean.
1594      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1595        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1596          ++NumShrunkToBool;
1597          return true;
1598        }
1599    }
1600  }
1601  return false;
1602}
1603
1604/// OnlyCalledDirectly - Return true if the specified function is only called
1605/// directly.  In other words, its address is never taken.
1606static bool OnlyCalledDirectly(Function *F) {
1607  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1608    Instruction *User = dyn_cast<Instruction>(*UI);
1609    if (!User) return false;
1610    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1611
1612    // See if the function address is passed as an argument.
1613    for (User::op_iterator i = User->op_begin() + 1, e = User->op_end();
1614         i != e; ++i)
1615      if (*i == F) return false;
1616  }
1617  return true;
1618}
1619
1620/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1621/// function, changing them to FastCC.
1622static void ChangeCalleesToFastCall(Function *F) {
1623  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1624    CallSite User(cast<Instruction>(*UI));
1625    User.setCallingConv(CallingConv::Fast);
1626  }
1627}
1628
1629static PAListPtr StripNest(const PAListPtr &Attrs) {
1630  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1631    if ((Attrs.getSlot(i).Attrs & ParamAttr::Nest) == 0)
1632      continue;
1633
1634    // There can be only one.
1635    return Attrs.removeAttr(Attrs.getSlot(i).Index, ParamAttr::Nest);
1636  }
1637
1638  return Attrs;
1639}
1640
1641static void RemoveNestAttribute(Function *F) {
1642  F->setParamAttrs(StripNest(F->getParamAttrs()));
1643  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1644    CallSite User(cast<Instruction>(*UI));
1645    User.setParamAttrs(StripNest(User.getParamAttrs()));
1646  }
1647}
1648
1649bool GlobalOpt::OptimizeFunctions(Module &M) {
1650  bool Changed = false;
1651  // Optimize functions.
1652  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1653    Function *F = FI++;
1654    F->removeDeadConstantUsers();
1655    if (F->use_empty() && (F->hasInternalLinkage() ||
1656                           F->hasLinkOnceLinkage())) {
1657      M.getFunctionList().erase(F);
1658      Changed = true;
1659      ++NumFnDeleted;
1660    } else if (F->hasInternalLinkage()) {
1661      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1662          OnlyCalledDirectly(F)) {
1663        // If this function has C calling conventions, is not a varargs
1664        // function, and is only called directly, promote it to use the Fast
1665        // calling convention.
1666        F->setCallingConv(CallingConv::Fast);
1667        ChangeCalleesToFastCall(F);
1668        ++NumFastCallFns;
1669        Changed = true;
1670      }
1671
1672      if (F->getParamAttrs().hasAttrSomewhere(ParamAttr::Nest) &&
1673          OnlyCalledDirectly(F)) {
1674        // The function is not used by a trampoline intrinsic, so it is safe
1675        // to remove the 'nest' attribute.
1676        RemoveNestAttribute(F);
1677        ++NumNestRemoved;
1678        Changed = true;
1679      }
1680    }
1681  }
1682  return Changed;
1683}
1684
1685bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1686  bool Changed = false;
1687  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1688       GVI != E; ) {
1689    GlobalVariable *GV = GVI++;
1690    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1691        GV->hasInitializer())
1692      Changed |= ProcessInternalGlobal(GV, GVI);
1693  }
1694  return Changed;
1695}
1696
1697/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1698/// initializers have an init priority of 65535.
1699GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1700  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1701       I != E; ++I)
1702    if (I->getName() == "llvm.global_ctors") {
1703      // Found it, verify it's an array of { int, void()* }.
1704      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1705      if (!ATy) return 0;
1706      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1707      if (!STy || STy->getNumElements() != 2 ||
1708          STy->getElementType(0) != Type::Int32Ty) return 0;
1709      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1710      if (!PFTy) return 0;
1711      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1712      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1713          FTy->getNumParams() != 0)
1714        return 0;
1715
1716      // Verify that the initializer is simple enough for us to handle.
1717      if (!I->hasInitializer()) return 0;
1718      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1719      if (!CA) return 0;
1720      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1721        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1722          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1723            continue;
1724
1725          // Must have a function or null ptr.
1726          if (!isa<Function>(CS->getOperand(1)))
1727            return 0;
1728
1729          // Init priority must be standard.
1730          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1731          if (!CI || CI->getZExtValue() != 65535)
1732            return 0;
1733        } else {
1734          return 0;
1735        }
1736
1737      return I;
1738    }
1739  return 0;
1740}
1741
1742/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1743/// return a list of the functions and null terminator as a vector.
1744static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1745  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1746  std::vector<Function*> Result;
1747  Result.reserve(CA->getNumOperands());
1748  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1749    ConstantStruct *CS = cast<ConstantStruct>(*i);
1750    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1751  }
1752  return Result;
1753}
1754
1755/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1756/// specified array, returning the new global to use.
1757static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1758                                          const std::vector<Function*> &Ctors) {
1759  // If we made a change, reassemble the initializer list.
1760  std::vector<Constant*> CSVals;
1761  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1762  CSVals.push_back(0);
1763
1764  // Create the new init list.
1765  std::vector<Constant*> CAList;
1766  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1767    if (Ctors[i]) {
1768      CSVals[1] = Ctors[i];
1769    } else {
1770      const Type *FTy = FunctionType::get(Type::VoidTy,
1771                                          std::vector<const Type*>(), false);
1772      const PointerType *PFTy = PointerType::getUnqual(FTy);
1773      CSVals[1] = Constant::getNullValue(PFTy);
1774      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1775    }
1776    CAList.push_back(ConstantStruct::get(CSVals));
1777  }
1778
1779  // Create the array initializer.
1780  const Type *StructTy =
1781    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1782  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1783                                    CAList);
1784
1785  // If we didn't change the number of elements, don't create a new GV.
1786  if (CA->getType() == GCL->getInitializer()->getType()) {
1787    GCL->setInitializer(CA);
1788    return GCL;
1789  }
1790
1791  // Create the new global and insert it next to the existing list.
1792  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1793                                           GCL->getLinkage(), CA, "",
1794                                           (Module *)NULL,
1795                                           GCL->isThreadLocal());
1796  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1797  NGV->takeName(GCL);
1798
1799  // Nuke the old list, replacing any uses with the new one.
1800  if (!GCL->use_empty()) {
1801    Constant *V = NGV;
1802    if (V->getType() != GCL->getType())
1803      V = ConstantExpr::getBitCast(V, GCL->getType());
1804    GCL->replaceAllUsesWith(V);
1805  }
1806  GCL->eraseFromParent();
1807
1808  if (Ctors.size())
1809    return NGV;
1810  else
1811    return 0;
1812}
1813
1814
1815static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1816                        Value *V) {
1817  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1818  Constant *R = ComputedValues[V];
1819  assert(R && "Reference to an uncomputed value!");
1820  return R;
1821}
1822
1823/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1824/// enough for us to understand.  In particular, if it is a cast of something,
1825/// we punt.  We basically just support direct accesses to globals and GEP's of
1826/// globals.  This should be kept up to date with CommitValueTo.
1827static bool isSimpleEnoughPointerToCommit(Constant *C) {
1828  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1829    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1830      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1831    return !GV->isDeclaration();  // reject external globals.
1832  }
1833  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1834    // Handle a constantexpr gep.
1835    if (CE->getOpcode() == Instruction::GetElementPtr &&
1836        isa<GlobalVariable>(CE->getOperand(0))) {
1837      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1838      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1839        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1840      return GV->hasInitializer() &&
1841             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1842    }
1843  return false;
1844}
1845
1846/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1847/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1848/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1849static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1850                                   ConstantExpr *Addr, unsigned OpNo) {
1851  // Base case of the recursion.
1852  if (OpNo == Addr->getNumOperands()) {
1853    assert(Val->getType() == Init->getType() && "Type mismatch!");
1854    return Val;
1855  }
1856
1857  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1858    std::vector<Constant*> Elts;
1859
1860    // Break up the constant into its elements.
1861    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1862      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
1863        Elts.push_back(cast<Constant>(*i));
1864    } else if (isa<ConstantAggregateZero>(Init)) {
1865      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1866        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1867    } else if (isa<UndefValue>(Init)) {
1868      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1869        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1870    } else {
1871      assert(0 && "This code is out of sync with "
1872             " ConstantFoldLoadThroughGEPConstantExpr");
1873    }
1874
1875    // Replace the element that we are supposed to.
1876    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1877    unsigned Idx = CU->getZExtValue();
1878    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1879    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1880
1881    // Return the modified struct.
1882    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1883  } else {
1884    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1885    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1886
1887    // Break up the array into elements.
1888    std::vector<Constant*> Elts;
1889    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1890      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1891        Elts.push_back(cast<Constant>(*i));
1892    } else if (isa<ConstantAggregateZero>(Init)) {
1893      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1894      Elts.assign(ATy->getNumElements(), Elt);
1895    } else if (isa<UndefValue>(Init)) {
1896      Constant *Elt = UndefValue::get(ATy->getElementType());
1897      Elts.assign(ATy->getNumElements(), Elt);
1898    } else {
1899      assert(0 && "This code is out of sync with "
1900             " ConstantFoldLoadThroughGEPConstantExpr");
1901    }
1902
1903    assert(CI->getZExtValue() < ATy->getNumElements());
1904    Elts[CI->getZExtValue()] =
1905      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1906    return ConstantArray::get(ATy, Elts);
1907  }
1908}
1909
1910/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1911/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1912static void CommitValueTo(Constant *Val, Constant *Addr) {
1913  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1914    assert(GV->hasInitializer());
1915    GV->setInitializer(Val);
1916    return;
1917  }
1918
1919  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1920  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1921
1922  Constant *Init = GV->getInitializer();
1923  Init = EvaluateStoreInto(Init, Val, CE, 2);
1924  GV->setInitializer(Init);
1925}
1926
1927/// ComputeLoadResult - Return the value that would be computed by a load from
1928/// P after the stores reflected by 'memory' have been performed.  If we can't
1929/// decide, return null.
1930static Constant *ComputeLoadResult(Constant *P,
1931                                const std::map<Constant*, Constant*> &Memory) {
1932  // If this memory location has been recently stored, use the stored value: it
1933  // is the most up-to-date.
1934  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1935  if (I != Memory.end()) return I->second;
1936
1937  // Access it.
1938  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1939    if (GV->hasInitializer())
1940      return GV->getInitializer();
1941    return 0;
1942  }
1943
1944  // Handle a constantexpr getelementptr.
1945  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1946    if (CE->getOpcode() == Instruction::GetElementPtr &&
1947        isa<GlobalVariable>(CE->getOperand(0))) {
1948      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1949      if (GV->hasInitializer())
1950        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1951    }
1952
1953  return 0;  // don't know how to evaluate.
1954}
1955
1956/// EvaluateFunction - Evaluate a call to function F, returning true if
1957/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1958/// arguments for the function.
1959static bool EvaluateFunction(Function *F, Constant *&RetVal,
1960                             const std::vector<Constant*> &ActualArgs,
1961                             std::vector<Function*> &CallStack,
1962                             std::map<Constant*, Constant*> &MutatedMemory,
1963                             std::vector<GlobalVariable*> &AllocaTmps) {
1964  // Check to see if this function is already executing (recursion).  If so,
1965  // bail out.  TODO: we might want to accept limited recursion.
1966  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1967    return false;
1968
1969  CallStack.push_back(F);
1970
1971  /// Values - As we compute SSA register values, we store their contents here.
1972  std::map<Value*, Constant*> Values;
1973
1974  // Initialize arguments to the incoming values specified.
1975  unsigned ArgNo = 0;
1976  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1977       ++AI, ++ArgNo)
1978    Values[AI] = ActualArgs[ArgNo];
1979
1980  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1981  /// we can only evaluate any one basic block at most once.  This set keeps
1982  /// track of what we have executed so we can detect recursive cases etc.
1983  std::set<BasicBlock*> ExecutedBlocks;
1984
1985  // CurInst - The current instruction we're evaluating.
1986  BasicBlock::iterator CurInst = F->begin()->begin();
1987
1988  // This is the main evaluation loop.
1989  while (1) {
1990    Constant *InstResult = 0;
1991
1992    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1993      if (SI->isVolatile()) return false;  // no volatile accesses.
1994      Constant *Ptr = getVal(Values, SI->getOperand(1));
1995      if (!isSimpleEnoughPointerToCommit(Ptr))
1996        // If this is too complex for us to commit, reject it.
1997        return false;
1998      Constant *Val = getVal(Values, SI->getOperand(0));
1999      MutatedMemory[Ptr] = Val;
2000    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2001      InstResult = ConstantExpr::get(BO->getOpcode(),
2002                                     getVal(Values, BO->getOperand(0)),
2003                                     getVal(Values, BO->getOperand(1)));
2004    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2005      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2006                                            getVal(Values, CI->getOperand(0)),
2007                                            getVal(Values, CI->getOperand(1)));
2008    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2009      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2010                                         getVal(Values, CI->getOperand(0)),
2011                                         CI->getType());
2012    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2013      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2014                                           getVal(Values, SI->getOperand(1)),
2015                                           getVal(Values, SI->getOperand(2)));
2016    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2017      Constant *P = getVal(Values, GEP->getOperand(0));
2018      SmallVector<Constant*, 8> GEPOps;
2019      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2020           i != e; ++i)
2021        GEPOps.push_back(getVal(Values, *i));
2022      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2023    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2024      if (LI->isVolatile()) return false;  // no volatile accesses.
2025      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2026                                     MutatedMemory);
2027      if (InstResult == 0) return false; // Could not evaluate load.
2028    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2029      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2030      const Type *Ty = AI->getType()->getElementType();
2031      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2032                                              GlobalValue::InternalLinkage,
2033                                              UndefValue::get(Ty),
2034                                              AI->getName()));
2035      InstResult = AllocaTmps.back();
2036    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2037      // Cannot handle inline asm.
2038      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2039
2040      // Resolve function pointers.
2041      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2042      if (!Callee) return false;  // Cannot resolve.
2043
2044      std::vector<Constant*> Formals;
2045      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2046           i != e; ++i)
2047        Formals.push_back(getVal(Values, *i));
2048
2049      if (Callee->isDeclaration()) {
2050        // If this is a function we can constant fold, do it.
2051        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2052                                           Formals.size())) {
2053          InstResult = C;
2054        } else {
2055          return false;
2056        }
2057      } else {
2058        if (Callee->getFunctionType()->isVarArg())
2059          return false;
2060
2061        Constant *RetVal;
2062
2063        // Execute the call, if successful, use the return value.
2064        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2065                              MutatedMemory, AllocaTmps))
2066          return false;
2067        InstResult = RetVal;
2068      }
2069    } else if (isa<TerminatorInst>(CurInst)) {
2070      BasicBlock *NewBB = 0;
2071      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2072        if (BI->isUnconditional()) {
2073          NewBB = BI->getSuccessor(0);
2074        } else {
2075          ConstantInt *Cond =
2076            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2077          if (!Cond) return false;  // Cannot determine.
2078
2079          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2080        }
2081      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2082        ConstantInt *Val =
2083          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2084        if (!Val) return false;  // Cannot determine.
2085        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2086      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2087        if (RI->getNumOperands())
2088          RetVal = getVal(Values, RI->getOperand(0));
2089
2090        CallStack.pop_back();  // return from fn.
2091        return true;  // We succeeded at evaluating this ctor!
2092      } else {
2093        // invoke, unwind, unreachable.
2094        return false;  // Cannot handle this terminator.
2095      }
2096
2097      // Okay, we succeeded in evaluating this control flow.  See if we have
2098      // executed the new block before.  If so, we have a looping function,
2099      // which we cannot evaluate in reasonable time.
2100      if (!ExecutedBlocks.insert(NewBB).second)
2101        return false;  // looped!
2102
2103      // Okay, we have never been in this block before.  Check to see if there
2104      // are any PHI nodes.  If so, evaluate them with information about where
2105      // we came from.
2106      BasicBlock *OldBB = CurInst->getParent();
2107      CurInst = NewBB->begin();
2108      PHINode *PN;
2109      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2110        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2111
2112      // Do NOT increment CurInst.  We know that the terminator had no value.
2113      continue;
2114    } else {
2115      // Did not know how to evaluate this!
2116      return false;
2117    }
2118
2119    if (!CurInst->use_empty())
2120      Values[CurInst] = InstResult;
2121
2122    // Advance program counter.
2123    ++CurInst;
2124  }
2125}
2126
2127/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2128/// we can.  Return true if we can, false otherwise.
2129static bool EvaluateStaticConstructor(Function *F) {
2130  /// MutatedMemory - For each store we execute, we update this map.  Loads
2131  /// check this to get the most up-to-date value.  If evaluation is successful,
2132  /// this state is committed to the process.
2133  std::map<Constant*, Constant*> MutatedMemory;
2134
2135  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2136  /// to represent its body.  This vector is needed so we can delete the
2137  /// temporary globals when we are done.
2138  std::vector<GlobalVariable*> AllocaTmps;
2139
2140  /// CallStack - This is used to detect recursion.  In pathological situations
2141  /// we could hit exponential behavior, but at least there is nothing
2142  /// unbounded.
2143  std::vector<Function*> CallStack;
2144
2145  // Call the function.
2146  Constant *RetValDummy;
2147  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2148                                       CallStack, MutatedMemory, AllocaTmps);
2149  if (EvalSuccess) {
2150    // We succeeded at evaluation: commit the result.
2151    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2152         << F->getName() << "' to " << MutatedMemory.size()
2153         << " stores.\n";
2154    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2155         E = MutatedMemory.end(); I != E; ++I)
2156      CommitValueTo(I->second, I->first);
2157  }
2158
2159  // At this point, we are done interpreting.  If we created any 'alloca'
2160  // temporaries, release them now.
2161  while (!AllocaTmps.empty()) {
2162    GlobalVariable *Tmp = AllocaTmps.back();
2163    AllocaTmps.pop_back();
2164
2165    // If there are still users of the alloca, the program is doing something
2166    // silly, e.g. storing the address of the alloca somewhere and using it
2167    // later.  Since this is undefined, we'll just make it be null.
2168    if (!Tmp->use_empty())
2169      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2170    delete Tmp;
2171  }
2172
2173  return EvalSuccess;
2174}
2175
2176
2177
2178/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2179/// Return true if anything changed.
2180bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2181  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2182  bool MadeChange = false;
2183  if (Ctors.empty()) return false;
2184
2185  // Loop over global ctors, optimizing them when we can.
2186  for (unsigned i = 0; i != Ctors.size(); ++i) {
2187    Function *F = Ctors[i];
2188    // Found a null terminator in the middle of the list, prune off the rest of
2189    // the list.
2190    if (F == 0) {
2191      if (i != Ctors.size()-1) {
2192        Ctors.resize(i+1);
2193        MadeChange = true;
2194      }
2195      break;
2196    }
2197
2198    // We cannot simplify external ctor functions.
2199    if (F->empty()) continue;
2200
2201    // If we can evaluate the ctor at compile time, do.
2202    if (EvaluateStaticConstructor(F)) {
2203      Ctors.erase(Ctors.begin()+i);
2204      MadeChange = true;
2205      --i;
2206      ++NumCtorsEvaluated;
2207      continue;
2208    }
2209  }
2210
2211  if (!MadeChange) return false;
2212
2213  GCL = InstallGlobalCtors(GCL, Ctors);
2214  return true;
2215}
2216
2217
2218bool GlobalOpt::runOnModule(Module &M) {
2219  bool Changed = false;
2220
2221  // Try to find the llvm.globalctors list.
2222  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2223
2224  bool LocalChange = true;
2225  while (LocalChange) {
2226    LocalChange = false;
2227
2228    // Delete functions that are trivially dead, ccc -> fastcc
2229    LocalChange |= OptimizeFunctions(M);
2230
2231    // Optimize global_ctors list.
2232    if (GlobalCtors)
2233      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2234
2235    // Optimize non-address-taken globals.
2236    LocalChange |= OptimizeGlobalVars(M);
2237    Changed |= LocalChange;
2238  }
2239
2240  // TODO: Move all global ctors functions to the end of the module for code
2241  // layout.
2242
2243  return Changed;
2244}
2245