GlobalOpt.cpp revision 28f4d2fb94b9057d8daba2128867fde276a37d1b
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumMarked    , "Number of globals marked constant");
44STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
45STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
46STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
47STATISTIC(NumDeleted   , "Number of globals deleted");
48STATISTIC(NumFnDeleted , "Number of functions deleted");
49STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
50STATISTIC(NumLocalized , "Number of globals localized");
51STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
52STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
53STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
54STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
55STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
56STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
57
58namespace {
59  struct GlobalOpt : public ModulePass {
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61    }
62    static char ID; // Pass identification, replacement for typeid
63    GlobalOpt() : ModulePass(&ID) {}
64
65    bool runOnModule(Module &M);
66
67  private:
68    GlobalVariable *FindGlobalCtors(Module &M);
69    bool OptimizeFunctions(Module &M);
70    bool OptimizeGlobalVars(Module &M);
71    bool OptimizeGlobalAliases(Module &M);
72    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
73    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
74  };
75}
76
77char GlobalOpt::ID = 0;
78static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
79
80ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
81
82namespace {
83
84/// GlobalStatus - As we analyze each global, keep track of some information
85/// about it.  If we find out that the address of the global is taken, none of
86/// this info will be accurate.
87struct GlobalStatus {
88  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
89  /// loaded it can be deleted.
90  bool isLoaded;
91
92  /// StoredType - Keep track of what stores to the global look like.
93  ///
94  enum StoredType {
95    /// NotStored - There is no store to this global.  It can thus be marked
96    /// constant.
97    NotStored,
98
99    /// isInitializerStored - This global is stored to, but the only thing
100    /// stored is the constant it was initialized with.  This is only tracked
101    /// for scalar globals.
102    isInitializerStored,
103
104    /// isStoredOnce - This global is stored to, but only its initializer and
105    /// one other value is ever stored to it.  If this global isStoredOnce, we
106    /// track the value stored to it in StoredOnceValue below.  This is only
107    /// tracked for scalar globals.
108    isStoredOnce,
109
110    /// isStored - This global is stored to by multiple values or something else
111    /// that we cannot track.
112    isStored
113  } StoredType;
114
115  /// StoredOnceValue - If only one value (besides the initializer constant) is
116  /// ever stored to this global, keep track of what value it is.
117  Value *StoredOnceValue;
118
119  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
120  /// null/false.  When the first accessing function is noticed, it is recorded.
121  /// When a second different accessing function is noticed,
122  /// HasMultipleAccessingFunctions is set to true.
123  Function *AccessingFunction;
124  bool HasMultipleAccessingFunctions;
125
126  /// HasNonInstructionUser - Set to true if this global has a user that is not
127  /// an instruction (e.g. a constant expr or GV initializer).
128  bool HasNonInstructionUser;
129
130  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
131  bool HasPHIUser;
132
133  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
134                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
135                   HasNonInstructionUser(false), HasPHIUser(false) {}
136};
137
138}
139
140// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
141// by constants itself.  Note that constants cannot be cyclic, so this test is
142// pretty easy to implement recursively.
143//
144static bool SafeToDestroyConstant(Constant *C) {
145  if (isa<GlobalValue>(C)) return false;
146
147  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
148    if (Constant *CU = dyn_cast<Constant>(*UI)) {
149      if (!SafeToDestroyConstant(CU)) return false;
150    } else
151      return false;
152  return true;
153}
154
155
156/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157/// structure.  If the global has its address taken, return true to indicate we
158/// can't do anything with it.
159///
160static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
161                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
162  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
163    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
164      GS.HasNonInstructionUser = true;
165
166      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
167
168    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
169      if (!GS.HasMultipleAccessingFunctions) {
170        Function *F = I->getParent()->getParent();
171        if (GS.AccessingFunction == 0)
172          GS.AccessingFunction = F;
173        else if (GS.AccessingFunction != F)
174          GS.HasMultipleAccessingFunctions = true;
175      }
176      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
177        GS.isLoaded = true;
178        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
179      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
180        // Don't allow a store OF the address, only stores TO the address.
181        if (SI->getOperand(0) == V) return true;
182
183        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
184
185        // If this is a direct store to the global (i.e., the global is a scalar
186        // value, not an aggregate), keep more specific information about
187        // stores.
188        if (GS.StoredType != GlobalStatus::isStored) {
189          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
190            Value *StoredVal = SI->getOperand(0);
191            if (StoredVal == GV->getInitializer()) {
192              if (GS.StoredType < GlobalStatus::isInitializerStored)
193                GS.StoredType = GlobalStatus::isInitializerStored;
194            } else if (isa<LoadInst>(StoredVal) &&
195                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
196              // G = G
197              if (GS.StoredType < GlobalStatus::isInitializerStored)
198                GS.StoredType = GlobalStatus::isInitializerStored;
199            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
200              GS.StoredType = GlobalStatus::isStoredOnce;
201              GS.StoredOnceValue = StoredVal;
202            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
203                       GS.StoredOnceValue == StoredVal) {
204              // noop.
205            } else {
206              GS.StoredType = GlobalStatus::isStored;
207            }
208          } else {
209            GS.StoredType = GlobalStatus::isStored;
210          }
211        }
212      } else if (isa<GetElementPtrInst>(I)) {
213        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
214      } else if (isa<SelectInst>(I)) {
215        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
217        // PHI nodes we can check just like select or GEP instructions, but we
218        // have to be careful about infinite recursion.
219        if (PHIUsers.insert(PN))  // Not already visited.
220          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221        GS.HasPHIUser = true;
222      } else if (isa<CmpInst>(I)) {
223      } else if (isa<MemTransferInst>(I)) {
224        if (I->getOperand(1) == V)
225          GS.StoredType = GlobalStatus::isStored;
226        if (I->getOperand(2) == V)
227          GS.isLoaded = true;
228      } else if (isa<MemSetInst>(I)) {
229        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
230        GS.StoredType = GlobalStatus::isStored;
231      } else {
232        return true;  // Any other non-load instruction might take address!
233      }
234    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
235      GS.HasNonInstructionUser = true;
236      // We might have a dead and dangling constant hanging off of here.
237      if (!SafeToDestroyConstant(C))
238        return true;
239    } else {
240      GS.HasNonInstructionUser = true;
241      // Otherwise must be some other user.
242      return true;
243    }
244
245  return false;
246}
247
248static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
249                                             LLVMContext &Context) {
250  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
251  if (!CI) return 0;
252  unsigned IdxV = CI->getZExtValue();
253
254  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
255    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
256  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
257    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
258  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
259    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
260  } else if (isa<ConstantAggregateZero>(Agg)) {
261    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
262      if (IdxV < STy->getNumElements())
263        return Constant::getNullValue(STy->getElementType(IdxV));
264    } else if (const SequentialType *STy =
265               dyn_cast<SequentialType>(Agg->getType())) {
266      return Constant::getNullValue(STy->getElementType());
267    }
268  } else if (isa<UndefValue>(Agg)) {
269    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
270      if (IdxV < STy->getNumElements())
271        return UndefValue::get(STy->getElementType(IdxV));
272    } else if (const SequentialType *STy =
273               dyn_cast<SequentialType>(Agg->getType())) {
274      return UndefValue::get(STy->getElementType());
275    }
276  }
277  return 0;
278}
279
280
281/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
282/// users of the global, cleaning up the obvious ones.  This is largely just a
283/// quick scan over the use list to clean up the easy and obvious cruft.  This
284/// returns true if it made a change.
285static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
286                                       LLVMContext &Context) {
287  bool Changed = false;
288  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
289    User *U = *UI++;
290
291    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292      if (Init) {
293        // Replace the load with the initializer.
294        LI->replaceAllUsesWith(Init);
295        LI->eraseFromParent();
296        Changed = true;
297      }
298    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299      // Store must be unreachable or storing Init into the global.
300      SI->eraseFromParent();
301      Changed = true;
302    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303      if (CE->getOpcode() == Instruction::GetElementPtr) {
304        Constant *SubInit = 0;
305        if (Init)
306          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
307        Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
308      } else if (CE->getOpcode() == Instruction::BitCast &&
309                 isa<PointerType>(CE->getType())) {
310        // Pointer cast, delete any stores and memsets to the global.
311        Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
312      }
313
314      if (CE->use_empty()) {
315        CE->destroyConstant();
316        Changed = true;
317      }
318    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321      // and will invalidate our notion of what Init is.
322      Constant *SubInit = 0;
323      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324        ConstantExpr *CE =
325          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
326        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
328      }
329      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
330
331      if (GEP->use_empty()) {
332        GEP->eraseFromParent();
333        Changed = true;
334      }
335    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
336      if (MI->getRawDest() == V) {
337        MI->eraseFromParent();
338        Changed = true;
339      }
340
341    } else if (Constant *C = dyn_cast<Constant>(U)) {
342      // If we have a chain of dead constantexprs or other things dangling from
343      // us, and if they are all dead, nuke them without remorse.
344      if (SafeToDestroyConstant(C)) {
345        C->destroyConstant();
346        // This could have invalidated UI, start over from scratch.
347        CleanupConstantGlobalUsers(V, Init, Context);
348        return true;
349      }
350    }
351  }
352  return Changed;
353}
354
355/// isSafeSROAElementUse - Return true if the specified instruction is a safe
356/// user of a derived expression from a global that we want to SROA.
357static bool isSafeSROAElementUse(Value *V) {
358  // We might have a dead and dangling constant hanging off of here.
359  if (Constant *C = dyn_cast<Constant>(V))
360    return SafeToDestroyConstant(C);
361
362  Instruction *I = dyn_cast<Instruction>(V);
363  if (!I) return false;
364
365  // Loads are ok.
366  if (isa<LoadInst>(I)) return true;
367
368  // Stores *to* the pointer are ok.
369  if (StoreInst *SI = dyn_cast<StoreInst>(I))
370    return SI->getOperand(0) != V;
371
372  // Otherwise, it must be a GEP.
373  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
374  if (GEPI == 0) return false;
375
376  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
377      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
378    return false;
379
380  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
381       I != E; ++I)
382    if (!isSafeSROAElementUse(*I))
383      return false;
384  return true;
385}
386
387
388/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389/// Look at it and its uses and decide whether it is safe to SROA this global.
390///
391static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393  if (!isa<GetElementPtrInst>(U) &&
394      (!isa<ConstantExpr>(U) ||
395       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
396    return false;
397
398  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
399  // don't like < 3 operand CE's, and we don't like non-constant integer
400  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
401  // value of C.
402  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403      !cast<Constant>(U->getOperand(1))->isNullValue() ||
404      !isa<ConstantInt>(U->getOperand(2)))
405    return false;
406
407  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408  ++GEPI;  // Skip over the pointer index.
409
410  // If this is a use of an array allocation, do a bit more checking for sanity.
411  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412    uint64_t NumElements = AT->getNumElements();
413    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
414
415    // Check to make sure that index falls within the array.  If not,
416    // something funny is going on, so we won't do the optimization.
417    //
418    if (Idx->getZExtValue() >= NumElements)
419      return false;
420
421    // We cannot scalar repl this level of the array unless any array
422    // sub-indices are in-range constants.  In particular, consider:
423    // A[0][i].  We cannot know that the user isn't doing invalid things like
424    // allowing i to index an out-of-range subscript that accesses A[1].
425    //
426    // Scalar replacing *just* the outer index of the array is probably not
427    // going to be a win anyway, so just give up.
428    for (++GEPI; // Skip array index.
429         GEPI != E;
430         ++GEPI) {
431      uint64_t NumElements;
432      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433        NumElements = SubArrayTy->getNumElements();
434      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
435        NumElements = SubVectorTy->getNumElements();
436      else {
437        assert(isa<StructType>(*GEPI) &&
438               "Indexed GEP type is not array, vector, or struct!");
439        continue;
440      }
441
442      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
443      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
444        return false;
445    }
446  }
447
448  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
449    if (!isSafeSROAElementUse(*I))
450      return false;
451  return true;
452}
453
454/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
455/// is safe for us to perform this transformation.
456///
457static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
458  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
459       UI != E; ++UI) {
460    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
461      return false;
462  }
463  return true;
464}
465
466
467/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468/// variable.  This opens the door for other optimizations by exposing the
469/// behavior of the program in a more fine-grained way.  We have determined that
470/// this transformation is safe already.  We return the first global variable we
471/// insert so that the caller can reprocess it.
472static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
473                                 LLVMContext &Context) {
474  // Make sure this global only has simple uses that we can SRA.
475  if (!GlobalUsersSafeToSRA(GV))
476    return 0;
477
478  assert(GV->hasLocalLinkage() && !GV->isConstant());
479  Constant *Init = GV->getInitializer();
480  const Type *Ty = Init->getType();
481
482  std::vector<GlobalVariable*> NewGlobals;
483  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
484
485  // Get the alignment of the global, either explicit or target-specific.
486  unsigned StartAlignment = GV->getAlignment();
487  if (StartAlignment == 0)
488    StartAlignment = TD.getABITypeAlignment(GV->getType());
489
490  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
491    NewGlobals.reserve(STy->getNumElements());
492    const StructLayout &Layout = *TD.getStructLayout(STy);
493    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
494      Constant *In = getAggregateConstantElement(Init,
495                                ConstantInt::get(Type::getInt32Ty(Context), i),
496                                    Context);
497      assert(In && "Couldn't get element of initializer?");
498      GlobalVariable *NGV = new GlobalVariable(Context,
499                                               STy->getElementType(i), false,
500                                               GlobalVariable::InternalLinkage,
501                                               In, GV->getName()+"."+Twine(i),
502                                               GV->isThreadLocal(),
503                                              GV->getType()->getAddressSpace());
504      Globals.insert(GV, NGV);
505      NewGlobals.push_back(NGV);
506
507      // Calculate the known alignment of the field.  If the original aggregate
508      // had 256 byte alignment for example, something might depend on that:
509      // propagate info to each field.
510      uint64_t FieldOffset = Layout.getElementOffset(i);
511      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
512      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
513        NGV->setAlignment(NewAlign);
514    }
515  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
516    unsigned NumElements = 0;
517    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
518      NumElements = ATy->getNumElements();
519    else
520      NumElements = cast<VectorType>(STy)->getNumElements();
521
522    if (NumElements > 16 && GV->hasNUsesOrMore(16))
523      return 0; // It's not worth it.
524    NewGlobals.reserve(NumElements);
525
526    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
527    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
528    for (unsigned i = 0, e = NumElements; i != e; ++i) {
529      Constant *In = getAggregateConstantElement(Init,
530                                ConstantInt::get(Type::getInt32Ty(Context), i),
531                                    Context);
532      assert(In && "Couldn't get element of initializer?");
533
534      GlobalVariable *NGV = new GlobalVariable(Context,
535                                               STy->getElementType(), false,
536                                               GlobalVariable::InternalLinkage,
537                                               In, GV->getName()+"."+Twine(i),
538                                               GV->isThreadLocal(),
539                                              GV->getType()->getAddressSpace());
540      Globals.insert(GV, NGV);
541      NewGlobals.push_back(NGV);
542
543      // Calculate the known alignment of the field.  If the original aggregate
544      // had 256 byte alignment for example, something might depend on that:
545      // propagate info to each field.
546      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
547      if (NewAlign > EltAlign)
548        NGV->setAlignment(NewAlign);
549    }
550  }
551
552  if (NewGlobals.empty())
553    return 0;
554
555  DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV);
556
557  Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context));
558
559  // Loop over all of the uses of the global, replacing the constantexpr geps,
560  // with smaller constantexpr geps or direct references.
561  while (!GV->use_empty()) {
562    User *GEP = GV->use_back();
563    assert(((isa<ConstantExpr>(GEP) &&
564             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
565            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
566
567    // Ignore the 1th operand, which has to be zero or else the program is quite
568    // broken (undefined).  Get the 2nd operand, which is the structure or array
569    // index.
570    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
571    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
572
573    Value *NewPtr = NewGlobals[Val];
574
575    // Form a shorter GEP if needed.
576    if (GEP->getNumOperands() > 3) {
577      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
578        SmallVector<Constant*, 8> Idxs;
579        Idxs.push_back(NullInt);
580        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
581          Idxs.push_back(CE->getOperand(i));
582        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
583                                                &Idxs[0], Idxs.size());
584      } else {
585        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
586        SmallVector<Value*, 8> Idxs;
587        Idxs.push_back(NullInt);
588        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
589          Idxs.push_back(GEPI->getOperand(i));
590        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
591                                           GEPI->getName()+"."+Twine(Val),GEPI);
592      }
593    }
594    GEP->replaceAllUsesWith(NewPtr);
595
596    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
597      GEPI->eraseFromParent();
598    else
599      cast<ConstantExpr>(GEP)->destroyConstant();
600  }
601
602  // Delete the old global, now that it is dead.
603  Globals.erase(GV);
604  ++NumSRA;
605
606  // Loop over the new globals array deleting any globals that are obviously
607  // dead.  This can arise due to scalarization of a structure or an array that
608  // has elements that are dead.
609  unsigned FirstGlobal = 0;
610  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
611    if (NewGlobals[i]->use_empty()) {
612      Globals.erase(NewGlobals[i]);
613      if (FirstGlobal == i) ++FirstGlobal;
614    }
615
616  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
617}
618
619/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
620/// value will trap if the value is dynamically null.  PHIs keeps track of any
621/// phi nodes we've seen to avoid reprocessing them.
622static bool AllUsesOfValueWillTrapIfNull(Value *V,
623                                         SmallPtrSet<PHINode*, 8> &PHIs) {
624  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
625    if (isa<LoadInst>(*UI)) {
626      // Will trap.
627    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
628      if (SI->getOperand(0) == V) {
629        //cerr << "NONTRAPPING USE: " << **UI;
630        return false;  // Storing the value.
631      }
632    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
633      if (CI->getOperand(0) != V) {
634        //cerr << "NONTRAPPING USE: " << **UI;
635        return false;  // Not calling the ptr
636      }
637    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
638      if (II->getOperand(0) != V) {
639        //cerr << "NONTRAPPING USE: " << **UI;
640        return false;  // Not calling the ptr
641      }
642    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
643      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
644    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
645      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
646    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
647      // If we've already seen this phi node, ignore it, it has already been
648      // checked.
649      if (PHIs.insert(PN))
650        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
651    } else if (isa<ICmpInst>(*UI) &&
652               isa<ConstantPointerNull>(UI->getOperand(1))) {
653      // Ignore setcc X, null
654    } else {
655      //cerr << "NONTRAPPING USE: " << **UI;
656      return false;
657    }
658  return true;
659}
660
661/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
662/// from GV will trap if the loaded value is null.  Note that this also permits
663/// comparisons of the loaded value against null, as a special case.
664static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
665  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
666    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
667      SmallPtrSet<PHINode*, 8> PHIs;
668      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
669        return false;
670    } else if (isa<StoreInst>(*UI)) {
671      // Ignore stores to the global.
672    } else {
673      // We don't know or understand this user, bail out.
674      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
675      return false;
676    }
677
678  return true;
679}
680
681static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
682                                           LLVMContext &Context) {
683  bool Changed = false;
684  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
685    Instruction *I = cast<Instruction>(*UI++);
686    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
687      LI->setOperand(0, NewV);
688      Changed = true;
689    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
690      if (SI->getOperand(1) == V) {
691        SI->setOperand(1, NewV);
692        Changed = true;
693      }
694    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
695      if (I->getOperand(0) == V) {
696        // Calling through the pointer!  Turn into a direct call, but be careful
697        // that the pointer is not also being passed as an argument.
698        I->setOperand(0, NewV);
699        Changed = true;
700        bool PassedAsArg = false;
701        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
702          if (I->getOperand(i) == V) {
703            PassedAsArg = true;
704            I->setOperand(i, NewV);
705          }
706
707        if (PassedAsArg) {
708          // Being passed as an argument also.  Be careful to not invalidate UI!
709          UI = V->use_begin();
710        }
711      }
712    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
713      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
714                                ConstantExpr::getCast(CI->getOpcode(),
715                                                NewV, CI->getType()), Context);
716      if (CI->use_empty()) {
717        Changed = true;
718        CI->eraseFromParent();
719      }
720    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
721      // Should handle GEP here.
722      SmallVector<Constant*, 8> Idxs;
723      Idxs.reserve(GEPI->getNumOperands()-1);
724      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
725           i != e; ++i)
726        if (Constant *C = dyn_cast<Constant>(*i))
727          Idxs.push_back(C);
728        else
729          break;
730      if (Idxs.size() == GEPI->getNumOperands()-1)
731        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
732                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
733                                                        Idxs.size()), Context);
734      if (GEPI->use_empty()) {
735        Changed = true;
736        GEPI->eraseFromParent();
737      }
738    }
739  }
740
741  return Changed;
742}
743
744
745/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
746/// value stored into it.  If there are uses of the loaded value that would trap
747/// if the loaded value is dynamically null, then we know that they cannot be
748/// reachable with a null optimize away the load.
749static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
750                                            LLVMContext &Context) {
751  bool Changed = false;
752
753  // Keep track of whether we are able to remove all the uses of the global
754  // other than the store that defines it.
755  bool AllNonStoreUsesGone = true;
756
757  // Replace all uses of loads with uses of uses of the stored value.
758  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
759    User *GlobalUser = *GUI++;
760    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
762      // If we were able to delete all uses of the loads
763      if (LI->use_empty()) {
764        LI->eraseFromParent();
765        Changed = true;
766      } else {
767        AllNonStoreUsesGone = false;
768      }
769    } else if (isa<StoreInst>(GlobalUser)) {
770      // Ignore the store that stores "LV" to the global.
771      assert(GlobalUser->getOperand(1) == GV &&
772             "Must be storing *to* the global");
773    } else {
774      AllNonStoreUsesGone = false;
775
776      // If we get here we could have other crazy uses that are transitively
777      // loaded.
778      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
780    }
781  }
782
783  if (Changed) {
784    DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
785    ++NumGlobUses;
786  }
787
788  // If we nuked all of the loads, then none of the stores are needed either,
789  // nor is the global.
790  if (AllNonStoreUsesGone) {
791    DEBUG(errs() << "  *** GLOBAL NOW DEAD!\n");
792    CleanupConstantGlobalUsers(GV, 0, Context);
793    if (GV->use_empty()) {
794      GV->eraseFromParent();
795      ++NumDeleted;
796    }
797    Changed = true;
798  }
799  return Changed;
800}
801
802/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
803/// instructions that are foldable.
804static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
805  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
806    if (Instruction *I = dyn_cast<Instruction>(*UI++))
807      if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
808        I->replaceAllUsesWith(NewC);
809
810        // Advance UI to the next non-I use to avoid invalidating it!
811        // Instructions could multiply use V.
812        while (UI != E && *UI == I)
813          ++UI;
814        I->eraseFromParent();
815      }
816}
817
818/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
819/// variable, and transforms the program as if it always contained the result of
820/// the specified malloc.  Because it is always the result of the specified
821/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
822/// malloc into a global, and any loads of GV as uses of the new global.
823static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
824                                                     CallInst *CI,
825                                                     BitCastInst *BCI,
826                                                     LLVMContext &Context,
827                                                     TargetData* TD) {
828  DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV
829               << "  CALL = " << *CI << "  BCI = " << *BCI << '\n');
830
831  const Type *IntPtrTy = TD->getIntPtrType(Context);
832
833  Value* ArraySize = getMallocArraySize(CI, Context, TD);
834  assert(ArraySize && "not a malloc whose array size can be determined");
835  ConstantInt *NElements = cast<ConstantInt>(ArraySize);
836  if (NElements->getZExtValue() != 1) {
837    // If we have an array allocation, transform it to a single element
838    // allocation to make the code below simpler.
839    Type *NewTy = ArrayType::get(getMallocAllocatedType(CI),
840                                 NElements->getZExtValue());
841    Value* NewM = CallInst::CreateMalloc(CI, IntPtrTy, NewTy);
842    Instruction* NewMI = cast<Instruction>(NewM);
843    Value* Indices[2];
844    Indices[0] = Indices[1] = Constant::getNullValue(IntPtrTy);
845    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
846                                              NewMI->getName()+".el0", CI);
847    BCI->replaceAllUsesWith(NewGEP);
848    BCI->eraseFromParent();
849    CI->eraseFromParent();
850    BCI = cast<BitCastInst>(NewMI);
851    CI = extractMallocCallFromBitCast(NewMI);
852  }
853
854  // Create the new global variable.  The contents of the malloc'd memory is
855  // undefined, so initialize with an undef value.
856  const Type *MAT = getMallocAllocatedType(CI);
857  Constant *Init = UndefValue::get(MAT);
858  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
859                                             MAT, false,
860                                             GlobalValue::InternalLinkage, Init,
861                                             GV->getName()+".body",
862                                             GV,
863                                             GV->isThreadLocal());
864
865  // Anything that used the malloc now uses the global directly.
866  BCI->replaceAllUsesWith(NewGV);
867
868  Constant *RepValue = NewGV;
869  if (NewGV->getType() != GV->getType()->getElementType())
870    RepValue = ConstantExpr::getBitCast(RepValue,
871                                        GV->getType()->getElementType());
872
873  // If there is a comparison against null, we will insert a global bool to
874  // keep track of whether the global was initialized yet or not.
875  GlobalVariable *InitBool =
876    new GlobalVariable(Context, Type::getInt1Ty(Context), false,
877                       GlobalValue::InternalLinkage,
878                       ConstantInt::getFalse(Context), GV->getName()+".init",
879                       GV->isThreadLocal());
880  bool InitBoolUsed = false;
881
882  // Loop over all uses of GV, processing them in turn.
883  std::vector<StoreInst*> Stores;
884  while (!GV->use_empty())
885    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
886      while (!LI->use_empty()) {
887        Use &LoadUse = LI->use_begin().getUse();
888        if (!isa<ICmpInst>(LoadUse.getUser()))
889          LoadUse = RepValue;
890        else {
891          ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
892          // Replace the cmp X, 0 with a use of the bool value.
893          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
894          InitBoolUsed = true;
895          switch (ICI->getPredicate()) {
896          default: llvm_unreachable("Unknown ICmp Predicate!");
897          case ICmpInst::ICMP_ULT:
898          case ICmpInst::ICMP_SLT:
899            LV = ConstantInt::getFalse(Context);   // X < null -> always false
900            break;
901          case ICmpInst::ICMP_ULE:
902          case ICmpInst::ICMP_SLE:
903          case ICmpInst::ICMP_EQ:
904            LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
905            break;
906          case ICmpInst::ICMP_NE:
907          case ICmpInst::ICMP_UGE:
908          case ICmpInst::ICMP_SGE:
909          case ICmpInst::ICMP_UGT:
910          case ICmpInst::ICMP_SGT:
911            break;  // no change.
912          }
913          ICI->replaceAllUsesWith(LV);
914          ICI->eraseFromParent();
915        }
916      }
917      LI->eraseFromParent();
918    } else {
919      StoreInst *SI = cast<StoreInst>(GV->use_back());
920      // The global is initialized when the store to it occurs.
921      new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
922      SI->eraseFromParent();
923    }
924
925  // If the initialization boolean was used, insert it, otherwise delete it.
926  if (!InitBoolUsed) {
927    while (!InitBool->use_empty())  // Delete initializations
928      cast<Instruction>(InitBool->use_back())->eraseFromParent();
929    delete InitBool;
930  } else
931    GV->getParent()->getGlobalList().insert(GV, InitBool);
932
933
934  // Now the GV is dead, nuke it and the malloc.
935  GV->eraseFromParent();
936  BCI->eraseFromParent();
937  CI->eraseFromParent();
938
939  // To further other optimizations, loop over all users of NewGV and try to
940  // constant prop them.  This will promote GEP instructions with constant
941  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
942  ConstantPropUsersOf(NewGV, Context);
943  if (RepValue != NewGV)
944    ConstantPropUsersOf(RepValue, Context);
945
946  return NewGV;
947}
948
949/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
950/// to make sure that there are no complex uses of V.  We permit simple things
951/// like dereferencing the pointer, but not storing through the address, unless
952/// it is to the specified global.
953static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
954                                                      GlobalVariable *GV,
955                                              SmallPtrSet<PHINode*, 8> &PHIs) {
956  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
957    Instruction *Inst = cast<Instruction>(*UI);
958
959    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
960      continue; // Fine, ignore.
961    }
962
963    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
964      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
965        return false;  // Storing the pointer itself... bad.
966      continue; // Otherwise, storing through it, or storing into GV... fine.
967    }
968
969    if (isa<GetElementPtrInst>(Inst)) {
970      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
971        return false;
972      continue;
973    }
974
975    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
976      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
977      // cycles.
978      if (PHIs.insert(PN))
979        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
980          return false;
981      continue;
982    }
983
984    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
985      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
986        return false;
987      continue;
988    }
989
990    return false;
991  }
992  return true;
993}
994
995/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
996/// somewhere.  Transform all uses of the allocation into loads from the
997/// global and uses of the resultant pointer.  Further, delete the store into
998/// GV.  This assumes that these value pass the
999/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1000static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1001                                          GlobalVariable *GV) {
1002  while (!Alloc->use_empty()) {
1003    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1004    Instruction *InsertPt = U;
1005    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1006      // If this is the store of the allocation into the global, remove it.
1007      if (SI->getOperand(1) == GV) {
1008        SI->eraseFromParent();
1009        continue;
1010      }
1011    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1012      // Insert the load in the corresponding predecessor, not right before the
1013      // PHI.
1014      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1015    } else if (isa<BitCastInst>(U)) {
1016      // Must be bitcast between the malloc and store to initialize the global.
1017      ReplaceUsesOfMallocWithGlobal(U, GV);
1018      U->eraseFromParent();
1019      continue;
1020    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1021      // If this is a "GEP bitcast" and the user is a store to the global, then
1022      // just process it as a bitcast.
1023      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1024        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1025          if (SI->getOperand(1) == GV) {
1026            // Must be bitcast GEP between the malloc and store to initialize
1027            // the global.
1028            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1029            GEPI->eraseFromParent();
1030            continue;
1031          }
1032    }
1033
1034    // Insert a load from the global, and use it instead of the malloc.
1035    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1036    U->replaceUsesOfWith(Alloc, NL);
1037  }
1038}
1039
1040/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1041/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1042/// that index through the array and struct field, icmps of null, and PHIs.
1043static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1044                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1045                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1046  // We permit two users of the load: setcc comparing against the null
1047  // pointer, and a getelementptr of a specific form.
1048  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1049    Instruction *User = cast<Instruction>(*UI);
1050
1051    // Comparison against null is ok.
1052    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1053      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1054        return false;
1055      continue;
1056    }
1057
1058    // getelementptr is also ok, but only a simple form.
1059    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1060      // Must index into the array and into the struct.
1061      if (GEPI->getNumOperands() < 3)
1062        return false;
1063
1064      // Otherwise the GEP is ok.
1065      continue;
1066    }
1067
1068    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1069      if (!LoadUsingPHIsPerLoad.insert(PN))
1070        // This means some phi nodes are dependent on each other.
1071        // Avoid infinite looping!
1072        return false;
1073      if (!LoadUsingPHIs.insert(PN))
1074        // If we have already analyzed this PHI, then it is safe.
1075        continue;
1076
1077      // Make sure all uses of the PHI are simple enough to transform.
1078      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1079                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1080        return false;
1081
1082      continue;
1083    }
1084
1085    // Otherwise we don't know what this is, not ok.
1086    return false;
1087  }
1088
1089  return true;
1090}
1091
1092
1093/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1094/// GV are simple enough to perform HeapSRA, return true.
1095static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1096                                                    Instruction *StoredVal) {
1097  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1098  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1099  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1100       ++UI)
1101    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1102      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1103                                          LoadUsingPHIsPerLoad))
1104        return false;
1105      LoadUsingPHIsPerLoad.clear();
1106    }
1107
1108  // If we reach here, we know that all uses of the loads and transitive uses
1109  // (through PHI nodes) are simple enough to transform.  However, we don't know
1110  // that all inputs the to the PHI nodes are in the same equivalence sets.
1111  // Check to verify that all operands of the PHIs are either PHIS that can be
1112  // transformed, loads from GV, or MI itself.
1113  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1114       E = LoadUsingPHIs.end(); I != E; ++I) {
1115    PHINode *PN = *I;
1116    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1117      Value *InVal = PN->getIncomingValue(op);
1118
1119      // PHI of the stored value itself is ok.
1120      if (InVal == StoredVal) continue;
1121
1122      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1123        // One of the PHIs in our set is (optimistically) ok.
1124        if (LoadUsingPHIs.count(InPN))
1125          continue;
1126        return false;
1127      }
1128
1129      // Load from GV is ok.
1130      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1131        if (LI->getOperand(0) == GV)
1132          continue;
1133
1134      // UNDEF? NULL?
1135
1136      // Anything else is rejected.
1137      return false;
1138    }
1139  }
1140
1141  return true;
1142}
1143
1144static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1145               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1146                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1147                   LLVMContext &Context) {
1148  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1149
1150  if (FieldNo >= FieldVals.size())
1151    FieldVals.resize(FieldNo+1);
1152
1153  // If we already have this value, just reuse the previously scalarized
1154  // version.
1155  if (Value *FieldVal = FieldVals[FieldNo])
1156    return FieldVal;
1157
1158  // Depending on what instruction this is, we have several cases.
1159  Value *Result;
1160  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1161    // This is a scalarized version of the load from the global.  Just create
1162    // a new Load of the scalarized global.
1163    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1164                                           InsertedScalarizedValues,
1165                                           PHIsToRewrite, Context),
1166                          LI->getName()+".f"+Twine(FieldNo), LI);
1167  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1168    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1169    // field.
1170    const StructType *ST =
1171      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1172
1173    Result =
1174     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1175                     PN->getName()+".f"+Twine(FieldNo), PN);
1176    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1177  } else {
1178    llvm_unreachable("Unknown usable value");
1179    Result = 0;
1180  }
1181
1182  return FieldVals[FieldNo] = Result;
1183}
1184
1185/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1186/// the load, rewrite the derived value to use the HeapSRoA'd load.
1187static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1188             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1189                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1190                   LLVMContext &Context) {
1191  // If this is a comparison against null, handle it.
1192  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1193    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1194    // If we have a setcc of the loaded pointer, we can use a setcc of any
1195    // field.
1196    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1197                                   InsertedScalarizedValues, PHIsToRewrite,
1198                                   Context);
1199
1200    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1201                              Constant::getNullValue(NPtr->getType()),
1202                              SCI->getName());
1203    SCI->replaceAllUsesWith(New);
1204    SCI->eraseFromParent();
1205    return;
1206  }
1207
1208  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1209  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1210    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1211           && "Unexpected GEPI!");
1212
1213    // Load the pointer for this field.
1214    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1215    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1216                                     InsertedScalarizedValues, PHIsToRewrite,
1217                                     Context);
1218
1219    // Create the new GEP idx vector.
1220    SmallVector<Value*, 8> GEPIdx;
1221    GEPIdx.push_back(GEPI->getOperand(1));
1222    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1223
1224    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1225                                             GEPIdx.begin(), GEPIdx.end(),
1226                                             GEPI->getName(), GEPI);
1227    GEPI->replaceAllUsesWith(NGEPI);
1228    GEPI->eraseFromParent();
1229    return;
1230  }
1231
1232  // Recursively transform the users of PHI nodes.  This will lazily create the
1233  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1234  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1235  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1236  // already been seen first by another load, so its uses have already been
1237  // processed.
1238  PHINode *PN = cast<PHINode>(LoadUser);
1239  bool Inserted;
1240  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1241  tie(InsertPos, Inserted) =
1242    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1243  if (!Inserted) return;
1244
1245  // If this is the first time we've seen this PHI, recursively process all
1246  // users.
1247  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1248    Instruction *User = cast<Instruction>(*UI++);
1249    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1250                            Context);
1251  }
1252}
1253
1254/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1255/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1256/// use FieldGlobals instead.  All uses of loaded values satisfy
1257/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1258static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1259               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1260                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1261                   LLVMContext &Context) {
1262  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1263       UI != E; ) {
1264    Instruction *User = cast<Instruction>(*UI++);
1265    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1266                            Context);
1267  }
1268
1269  if (Load->use_empty()) {
1270    Load->eraseFromParent();
1271    InsertedScalarizedValues.erase(Load);
1272  }
1273}
1274
1275/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1276/// it up into multiple allocations of arrays of the fields.
1277static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV,
1278                                            CallInst *CI, BitCastInst* BCI,
1279                                            LLVMContext &Context,
1280                                            TargetData *TD){
1281  DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC CALL = " << *CI
1282               << " BITCAST = " << *BCI << '\n');
1283  const Type* MAT = getMallocAllocatedType(CI);
1284  const StructType *STy = cast<StructType>(MAT);
1285  Value* ArraySize = getMallocArraySize(CI, Context, TD);
1286  assert(ArraySize && "not a malloc whose array size can be determined");
1287
1288  // There is guaranteed to be at least one use of the malloc (storing
1289  // it into GV).  If there are other uses, change them to be uses of
1290  // the global to simplify later code.  This also deletes the store
1291  // into GV.
1292  ReplaceUsesOfMallocWithGlobal(BCI, GV);
1293
1294  // Okay, at this point, there are no users of the malloc.  Insert N
1295  // new mallocs at the same place as CI, and N globals.
1296  std::vector<Value*> FieldGlobals;
1297  std::vector<Value*> FieldMallocs;
1298
1299  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1300    const Type *FieldTy = STy->getElementType(FieldNo);
1301    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1302
1303    GlobalVariable *NGV =
1304      new GlobalVariable(*GV->getParent(),
1305                         PFieldTy, false, GlobalValue::InternalLinkage,
1306                         Constant::getNullValue(PFieldTy),
1307                         GV->getName() + ".f" + Twine(FieldNo), GV,
1308                         GV->isThreadLocal());
1309    FieldGlobals.push_back(NGV);
1310
1311    Value *NMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context),
1312                                        FieldTy, ArraySize,
1313                                        BCI->getName() + ".f" + Twine(FieldNo));
1314    FieldMallocs.push_back(NMI);
1315    new StoreInst(NMI, NGV, BCI);
1316  }
1317
1318  // The tricky aspect of this transformation is handling the case when malloc
1319  // fails.  In the original code, malloc failing would set the result pointer
1320  // of malloc to null.  In this case, some mallocs could succeed and others
1321  // could fail.  As such, we emit code that looks like this:
1322  //    F0 = malloc(field0)
1323  //    F1 = malloc(field1)
1324  //    F2 = malloc(field2)
1325  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1326  //      if (F0) { free(F0); F0 = 0; }
1327  //      if (F1) { free(F1); F1 = 0; }
1328  //      if (F2) { free(F2); F2 = 0; }
1329  //    }
1330  Value *RunningOr = 0;
1331  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1332    Value *Cond = new ICmpInst(BCI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1333                              Constant::getNullValue(FieldMallocs[i]->getType()),
1334                                  "isnull");
1335    if (!RunningOr)
1336      RunningOr = Cond;   // First seteq
1337    else
1338      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", BCI);
1339  }
1340
1341  // Split the basic block at the old malloc.
1342  BasicBlock *OrigBB = BCI->getParent();
1343  BasicBlock *ContBB = OrigBB->splitBasicBlock(BCI, "malloc_cont");
1344
1345  // Create the block to check the first condition.  Put all these blocks at the
1346  // end of the function as they are unlikely to be executed.
1347  BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
1348                                                OrigBB->getParent());
1349
1350  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1351  // branch on RunningOr.
1352  OrigBB->getTerminator()->eraseFromParent();
1353  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1354
1355  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1356  // pointer, because some may be null while others are not.
1357  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1358    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1359    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1360                              Constant::getNullValue(GVVal->getType()),
1361                              "tmp");
1362    BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
1363                                               OrigBB->getParent());
1364    BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
1365                                               OrigBB->getParent());
1366    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1367                                         Cmp, NullPtrBlock);
1368
1369    // Fill in FreeBlock.
1370    CallInst::CreateFree(GVVal, BI);
1371    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1372                  FreeBlock);
1373    BranchInst::Create(NextBlock, FreeBlock);
1374
1375    NullPtrBlock = NextBlock;
1376  }
1377
1378  BranchInst::Create(ContBB, NullPtrBlock);
1379
1380  // CI and BCI are no longer needed, remove them.
1381  BCI->eraseFromParent();
1382  CI->eraseFromParent();
1383
1384  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1385  /// update all uses of the load, keep track of what scalarized loads are
1386  /// inserted for a given load.
1387  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1388  InsertedScalarizedValues[GV] = FieldGlobals;
1389
1390  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1391
1392  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1393  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1394  // of the per-field globals instead.
1395  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1396    Instruction *User = cast<Instruction>(*UI++);
1397
1398    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1399      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
1400                                   Context);
1401      continue;
1402    }
1403
1404    // Must be a store of null.
1405    StoreInst *SI = cast<StoreInst>(User);
1406    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1407           "Unexpected heap-sra user!");
1408
1409    // Insert a store of null into each global.
1410    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1411      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1412      Constant *Null = Constant::getNullValue(PT->getElementType());
1413      new StoreInst(Null, FieldGlobals[i], SI);
1414    }
1415    // Erase the original store.
1416    SI->eraseFromParent();
1417  }
1418
1419  // While we have PHIs that are interesting to rewrite, do it.
1420  while (!PHIsToRewrite.empty()) {
1421    PHINode *PN = PHIsToRewrite.back().first;
1422    unsigned FieldNo = PHIsToRewrite.back().second;
1423    PHIsToRewrite.pop_back();
1424    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1425    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1426
1427    // Add all the incoming values.  This can materialize more phis.
1428    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1429      Value *InVal = PN->getIncomingValue(i);
1430      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1431                               PHIsToRewrite, Context);
1432      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1433    }
1434  }
1435
1436  // Drop all inter-phi links and any loads that made it this far.
1437  for (DenseMap<Value*, std::vector<Value*> >::iterator
1438       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1439       I != E; ++I) {
1440    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1441      PN->dropAllReferences();
1442    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1443      LI->dropAllReferences();
1444  }
1445
1446  // Delete all the phis and loads now that inter-references are dead.
1447  for (DenseMap<Value*, std::vector<Value*> >::iterator
1448       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1449       I != E; ++I) {
1450    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1451      PN->eraseFromParent();
1452    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1453      LI->eraseFromParent();
1454  }
1455
1456  // The old global is now dead, remove it.
1457  GV->eraseFromParent();
1458
1459  ++NumHeapSRA;
1460  return cast<GlobalVariable>(FieldGlobals[0]);
1461}
1462
1463/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1464/// pointer global variable with a single value stored it that is a malloc or
1465/// cast of malloc.
1466static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1467                                               CallInst *CI,
1468                                               BitCastInst *BCI,
1469                                               Module::global_iterator &GVI,
1470                                               TargetData *TD,
1471                                               LLVMContext &Context) {
1472  // If we can't figure out the type being malloced, then we can't optimize.
1473  const Type *AllocTy = getMallocAllocatedType(CI);
1474  assert(AllocTy);
1475
1476  // If this is a malloc of an abstract type, don't touch it.
1477  if (!AllocTy->isSized())
1478    return false;
1479
1480  // We can't optimize this global unless all uses of it are *known* to be
1481  // of the malloc value, not of the null initializer value (consider a use
1482  // that compares the global's value against zero to see if the malloc has
1483  // been reached).  To do this, we check to see if all uses of the global
1484  // would trap if the global were null: this proves that they must all
1485  // happen after the malloc.
1486  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1487    return false;
1488
1489  // We can't optimize this if the malloc itself is used in a complex way,
1490  // for example, being stored into multiple globals.  This allows the
1491  // malloc to be stored into the specified global, loaded setcc'd, and
1492  // GEP'd.  These are all things we could transform to using the global
1493  // for.
1494  {
1495    SmallPtrSet<PHINode*, 8> PHIs;
1496    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1497      return false;
1498  }
1499
1500  // If we have a global that is only initialized with a fixed size malloc,
1501  // transform the program to use global memory instead of malloc'd memory.
1502  // This eliminates dynamic allocation, avoids an indirection accessing the
1503  // data, and exposes the resultant global to further GlobalOpt.
1504  Value *NElems = getMallocArraySize(CI, Context, TD);
1505  // We cannot optimize the malloc if we cannot determine malloc array size.
1506  if (NElems) {
1507    if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1508      // Restrict this transformation to only working on small allocations
1509      // (2048 bytes currently), as we don't want to introduce a 16M global or
1510      // something.
1511      if (TD &&
1512          NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1513        GVI = OptimizeGlobalAddressOfMalloc(GV, CI, BCI, Context, TD);
1514        return true;
1515      }
1516
1517    // If the allocation is an array of structures, consider transforming this
1518    // into multiple malloc'd arrays, one for each field.  This is basically
1519    // SRoA for malloc'd memory.
1520
1521    // If this is an allocation of a fixed size array of structs, analyze as a
1522    // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1523    if (!isArrayMalloc(CI, Context, TD))
1524      if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1525        AllocTy = AT->getElementType();
1526
1527    if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1528      // This the structure has an unreasonable number of fields, leave it
1529      // alone.
1530      if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1531          AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, BCI)) {
1532
1533        // If this is a fixed size array, transform the Malloc to be an alloc of
1534        // structs.  malloc [100 x struct],1 -> malloc struct, 100
1535        if (const ArrayType *AT =
1536                              dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1537          Value* NumElements = ConstantInt::get(Type::getInt32Ty(Context),
1538                                                AT->getNumElements());
1539          Value* NewMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context),
1540                                                AllocSTy, NumElements,
1541                                                BCI->getName());
1542          Value *Cast = new BitCastInst(NewMI, getMallocType(CI), "tmp", CI);
1543          BCI->replaceAllUsesWith(Cast);
1544          BCI->eraseFromParent();
1545          CI->eraseFromParent();
1546          BCI = cast<BitCastInst>(NewMI);
1547          CI = extractMallocCallFromBitCast(NewMI);
1548        }
1549
1550        GVI = PerformHeapAllocSRoA(GV, CI, BCI, Context, TD);
1551        return true;
1552      }
1553    }
1554  }
1555
1556  return false;
1557}
1558
1559// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1560// that only one value (besides its initializer) is ever stored to the global.
1561static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1562                                     Module::global_iterator &GVI,
1563                                     TargetData *TD, LLVMContext &Context) {
1564  // Ignore no-op GEPs and bitcasts.
1565  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1566
1567  // If we are dealing with a pointer global that is initialized to null and
1568  // only has one (non-null) value stored into it, then we can optimize any
1569  // users of the loaded value (often calls and loads) that would trap if the
1570  // value was null.
1571  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1572      GV->getInitializer()->isNullValue()) {
1573    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1574      if (GV->getInitializer()->getType() != SOVC->getType())
1575        SOVC =
1576         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1577
1578      // Optimize away any trapping uses of the loaded value.
1579      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
1580        return true;
1581    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1582      if (getMallocAllocatedType(CI)) {
1583        BitCastInst* BCI = NULL;
1584        for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
1585             UI != E; )
1586          BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++));
1587        if (BCI &&
1588            TryToOptimizeStoreOfMallocToGlobal(GV, CI, BCI, GVI, TD, Context))
1589          return true;
1590      }
1591    }
1592  }
1593
1594  return false;
1595}
1596
1597/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1598/// two values ever stored into GV are its initializer and OtherVal.  See if we
1599/// can shrink the global into a boolean and select between the two values
1600/// whenever it is used.  This exposes the values to other scalar optimizations.
1601static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
1602                                       LLVMContext &Context) {
1603  const Type *GVElType = GV->getType()->getElementType();
1604
1605  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1606  // an FP value, pointer or vector, don't do this optimization because a select
1607  // between them is very expensive and unlikely to lead to later
1608  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1609  // where v1 and v2 both require constant pool loads, a big loss.
1610  if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() ||
1611      isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1612    return false;
1613
1614  // Walk the use list of the global seeing if all the uses are load or store.
1615  // If there is anything else, bail out.
1616  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1617    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1618      return false;
1619
1620  DEBUG(errs() << "   *** SHRINKING TO BOOL: " << *GV);
1621
1622  // Create the new global, initializing it to false.
1623  GlobalVariable *NewGV = new GlobalVariable(Context,
1624                                             Type::getInt1Ty(Context), false,
1625         GlobalValue::InternalLinkage, ConstantInt::getFalse(Context),
1626                                             GV->getName()+".b",
1627                                             GV->isThreadLocal());
1628  GV->getParent()->getGlobalList().insert(GV, NewGV);
1629
1630  Constant *InitVal = GV->getInitializer();
1631  assert(InitVal->getType() != Type::getInt1Ty(Context) &&
1632         "No reason to shrink to bool!");
1633
1634  // If initialized to zero and storing one into the global, we can use a cast
1635  // instead of a select to synthesize the desired value.
1636  bool IsOneZero = false;
1637  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1638    IsOneZero = InitVal->isNullValue() && CI->isOne();
1639
1640  while (!GV->use_empty()) {
1641    Instruction *UI = cast<Instruction>(GV->use_back());
1642    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1643      // Change the store into a boolean store.
1644      bool StoringOther = SI->getOperand(0) == OtherVal;
1645      // Only do this if we weren't storing a loaded value.
1646      Value *StoreVal;
1647      if (StoringOther || SI->getOperand(0) == InitVal)
1648        StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther);
1649      else {
1650        // Otherwise, we are storing a previously loaded copy.  To do this,
1651        // change the copy from copying the original value to just copying the
1652        // bool.
1653        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1654
1655        // If we're already replaced the input, StoredVal will be a cast or
1656        // select instruction.  If not, it will be a load of the original
1657        // global.
1658        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1659          assert(LI->getOperand(0) == GV && "Not a copy!");
1660          // Insert a new load, to preserve the saved value.
1661          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1662        } else {
1663          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1664                 "This is not a form that we understand!");
1665          StoreVal = StoredVal->getOperand(0);
1666          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1667        }
1668      }
1669      new StoreInst(StoreVal, NewGV, SI);
1670    } else {
1671      // Change the load into a load of bool then a select.
1672      LoadInst *LI = cast<LoadInst>(UI);
1673      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1674      Value *NSI;
1675      if (IsOneZero)
1676        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1677      else
1678        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1679      NSI->takeName(LI);
1680      LI->replaceAllUsesWith(NSI);
1681    }
1682    UI->eraseFromParent();
1683  }
1684
1685  GV->eraseFromParent();
1686  return true;
1687}
1688
1689
1690/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1691/// it if possible.  If we make a change, return true.
1692bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1693                                      Module::global_iterator &GVI) {
1694  SmallPtrSet<PHINode*, 16> PHIUsers;
1695  GlobalStatus GS;
1696  GV->removeDeadConstantUsers();
1697
1698  if (GV->use_empty()) {
1699    DEBUG(errs() << "GLOBAL DEAD: " << *GV);
1700    GV->eraseFromParent();
1701    ++NumDeleted;
1702    return true;
1703  }
1704
1705  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1706#if 0
1707    cerr << "Global: " << *GV;
1708    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1709    cerr << "  StoredType = ";
1710    switch (GS.StoredType) {
1711    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1712    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1713    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1714    case GlobalStatus::isStored: cerr << "stored\n"; break;
1715    }
1716    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1717      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1718    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1719      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1720                << "\n";
1721    cerr << "  HasMultipleAccessingFunctions =  "
1722              << GS.HasMultipleAccessingFunctions << "\n";
1723    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1724    cerr << "\n";
1725#endif
1726
1727    // If this is a first class global and has only one accessing function
1728    // and this function is main (which we know is not recursive we can make
1729    // this global a local variable) we replace the global with a local alloca
1730    // in this function.
1731    //
1732    // NOTE: It doesn't make sense to promote non single-value types since we
1733    // are just replacing static memory to stack memory.
1734    //
1735    // If the global is in different address space, don't bring it to stack.
1736    if (!GS.HasMultipleAccessingFunctions &&
1737        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1738        GV->getType()->getElementType()->isSingleValueType() &&
1739        GS.AccessingFunction->getName() == "main" &&
1740        GS.AccessingFunction->hasExternalLinkage() &&
1741        GV->getType()->getAddressSpace() == 0) {
1742      DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV);
1743      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1744      const Type* ElemTy = GV->getType()->getElementType();
1745      // FIXME: Pass Global's alignment when globals have alignment
1746      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1747      if (!isa<UndefValue>(GV->getInitializer()))
1748        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1749
1750      GV->replaceAllUsesWith(Alloca);
1751      GV->eraseFromParent();
1752      ++NumLocalized;
1753      return true;
1754    }
1755
1756    // If the global is never loaded (but may be stored to), it is dead.
1757    // Delete it now.
1758    if (!GS.isLoaded) {
1759      DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV);
1760
1761      // Delete any stores we can find to the global.  We may not be able to
1762      // make it completely dead though.
1763      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1764                                                GV->getContext());
1765
1766      // If the global is dead now, delete it.
1767      if (GV->use_empty()) {
1768        GV->eraseFromParent();
1769        ++NumDeleted;
1770        Changed = true;
1771      }
1772      return Changed;
1773
1774    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1775      DEBUG(errs() << "MARKING CONSTANT: " << *GV);
1776      GV->setConstant(true);
1777
1778      // Clean up any obviously simplifiable users now.
1779      CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
1780
1781      // If the global is dead now, just nuke it.
1782      if (GV->use_empty()) {
1783        DEBUG(errs() << "   *** Marking constant allowed us to simplify "
1784                     << "all users and delete global!\n");
1785        GV->eraseFromParent();
1786        ++NumDeleted;
1787      }
1788
1789      ++NumMarked;
1790      return true;
1791    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1792      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1793        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD,
1794                                                   GV->getContext())) {
1795          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1796          return true;
1797        }
1798    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1799      // If the initial value for the global was an undef value, and if only
1800      // one other value was stored into it, we can just change the
1801      // initializer to be the stored value, then delete all stores to the
1802      // global.  This allows us to mark it constant.
1803      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1804        if (isa<UndefValue>(GV->getInitializer())) {
1805          // Change the initial value here.
1806          GV->setInitializer(SOVConstant);
1807
1808          // Clean up any obviously simplifiable users now.
1809          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1810                                     GV->getContext());
1811
1812          if (GV->use_empty()) {
1813            DEBUG(errs() << "   *** Substituting initializer allowed us to "
1814                         << "simplify all users and delete global!\n");
1815            GV->eraseFromParent();
1816            ++NumDeleted;
1817          } else {
1818            GVI = GV;
1819          }
1820          ++NumSubstitute;
1821          return true;
1822        }
1823
1824      // Try to optimize globals based on the knowledge that only one value
1825      // (besides its initializer) is ever stored to the global.
1826      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1827                                   getAnalysisIfAvailable<TargetData>(),
1828                                   GV->getContext()))
1829        return true;
1830
1831      // Otherwise, if the global was not a boolean, we can shrink it to be a
1832      // boolean.
1833      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1834        if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
1835          ++NumShrunkToBool;
1836          return true;
1837        }
1838    }
1839  }
1840  return false;
1841}
1842
1843/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1844/// function, changing them to FastCC.
1845static void ChangeCalleesToFastCall(Function *F) {
1846  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1847    CallSite User(cast<Instruction>(*UI));
1848    User.setCallingConv(CallingConv::Fast);
1849  }
1850}
1851
1852static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1853  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1854    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1855      continue;
1856
1857    // There can be only one.
1858    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1859  }
1860
1861  return Attrs;
1862}
1863
1864static void RemoveNestAttribute(Function *F) {
1865  F->setAttributes(StripNest(F->getAttributes()));
1866  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1867    CallSite User(cast<Instruction>(*UI));
1868    User.setAttributes(StripNest(User.getAttributes()));
1869  }
1870}
1871
1872bool GlobalOpt::OptimizeFunctions(Module &M) {
1873  bool Changed = false;
1874  // Optimize functions.
1875  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1876    Function *F = FI++;
1877    // Functions without names cannot be referenced outside this module.
1878    if (!F->hasName() && !F->isDeclaration())
1879      F->setLinkage(GlobalValue::InternalLinkage);
1880    F->removeDeadConstantUsers();
1881    if (F->use_empty() && (F->hasLocalLinkage() ||
1882                           F->hasLinkOnceLinkage())) {
1883      M.getFunctionList().erase(F);
1884      Changed = true;
1885      ++NumFnDeleted;
1886    } else if (F->hasLocalLinkage()) {
1887      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1888          !F->hasAddressTaken()) {
1889        // If this function has C calling conventions, is not a varargs
1890        // function, and is only called directly, promote it to use the Fast
1891        // calling convention.
1892        F->setCallingConv(CallingConv::Fast);
1893        ChangeCalleesToFastCall(F);
1894        ++NumFastCallFns;
1895        Changed = true;
1896      }
1897
1898      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1899          !F->hasAddressTaken()) {
1900        // The function is not used by a trampoline intrinsic, so it is safe
1901        // to remove the 'nest' attribute.
1902        RemoveNestAttribute(F);
1903        ++NumNestRemoved;
1904        Changed = true;
1905      }
1906    }
1907  }
1908  return Changed;
1909}
1910
1911bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1912  bool Changed = false;
1913  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1914       GVI != E; ) {
1915    GlobalVariable *GV = GVI++;
1916    // Global variables without names cannot be referenced outside this module.
1917    if (!GV->hasName() && !GV->isDeclaration())
1918      GV->setLinkage(GlobalValue::InternalLinkage);
1919    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1920        GV->hasInitializer())
1921      Changed |= ProcessInternalGlobal(GV, GVI);
1922  }
1923  return Changed;
1924}
1925
1926/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1927/// initializers have an init priority of 65535.
1928GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1929  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1930       I != E; ++I)
1931    if (I->getName() == "llvm.global_ctors") {
1932      // Found it, verify it's an array of { int, void()* }.
1933      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1934      if (!ATy) return 0;
1935      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1936      if (!STy || STy->getNumElements() != 2 ||
1937          STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
1938      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1939      if (!PFTy) return 0;
1940      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1941      if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
1942          FTy->isVarArg() || FTy->getNumParams() != 0)
1943        return 0;
1944
1945      // Verify that the initializer is simple enough for us to handle.
1946      if (!I->hasDefinitiveInitializer()) return 0;
1947      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1948      if (!CA) return 0;
1949      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1950        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1951          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1952            continue;
1953
1954          // Must have a function or null ptr.
1955          if (!isa<Function>(CS->getOperand(1)))
1956            return 0;
1957
1958          // Init priority must be standard.
1959          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1960          if (!CI || CI->getZExtValue() != 65535)
1961            return 0;
1962        } else {
1963          return 0;
1964        }
1965
1966      return I;
1967    }
1968  return 0;
1969}
1970
1971/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1972/// return a list of the functions and null terminator as a vector.
1973static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1974  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1975  std::vector<Function*> Result;
1976  Result.reserve(CA->getNumOperands());
1977  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1978    ConstantStruct *CS = cast<ConstantStruct>(*i);
1979    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1980  }
1981  return Result;
1982}
1983
1984/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1985/// specified array, returning the new global to use.
1986static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1987                                          const std::vector<Function*> &Ctors,
1988                                          LLVMContext &Context) {
1989  // If we made a change, reassemble the initializer list.
1990  std::vector<Constant*> CSVals;
1991  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535));
1992  CSVals.push_back(0);
1993
1994  // Create the new init list.
1995  std::vector<Constant*> CAList;
1996  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1997    if (Ctors[i]) {
1998      CSVals[1] = Ctors[i];
1999    } else {
2000      const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false);
2001      const PointerType *PFTy = PointerType::getUnqual(FTy);
2002      CSVals[1] = Constant::getNullValue(PFTy);
2003      CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647);
2004    }
2005    CAList.push_back(ConstantStruct::get(Context, CSVals, false));
2006  }
2007
2008  // Create the array initializer.
2009  const Type *StructTy =
2010      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2011  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2012                                                   CAList.size()), CAList);
2013
2014  // If we didn't change the number of elements, don't create a new GV.
2015  if (CA->getType() == GCL->getInitializer()->getType()) {
2016    GCL->setInitializer(CA);
2017    return GCL;
2018  }
2019
2020  // Create the new global and insert it next to the existing list.
2021  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
2022                                           GCL->isConstant(),
2023                                           GCL->getLinkage(), CA, "",
2024                                           GCL->isThreadLocal());
2025  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2026  NGV->takeName(GCL);
2027
2028  // Nuke the old list, replacing any uses with the new one.
2029  if (!GCL->use_empty()) {
2030    Constant *V = NGV;
2031    if (V->getType() != GCL->getType())
2032      V = ConstantExpr::getBitCast(V, GCL->getType());
2033    GCL->replaceAllUsesWith(V);
2034  }
2035  GCL->eraseFromParent();
2036
2037  if (Ctors.size())
2038    return NGV;
2039  else
2040    return 0;
2041}
2042
2043
2044static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2045                        Value *V) {
2046  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2047  Constant *R = ComputedValues[V];
2048  assert(R && "Reference to an uncomputed value!");
2049  return R;
2050}
2051
2052/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2053/// enough for us to understand.  In particular, if it is a cast of something,
2054/// we punt.  We basically just support direct accesses to globals and GEP's of
2055/// globals.  This should be kept up to date with CommitValueTo.
2056static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
2057  // Conservatively, avoid aggregate types. This is because we don't
2058  // want to worry about them partially overlapping other stores.
2059  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2060    return false;
2061
2062  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2063    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2064    // external globals.
2065    return GV->hasDefinitiveInitializer();
2066
2067  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2068    // Handle a constantexpr gep.
2069    if (CE->getOpcode() == Instruction::GetElementPtr &&
2070        isa<GlobalVariable>(CE->getOperand(0)) &&
2071        cast<GEPOperator>(CE)->isInBounds()) {
2072      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2073      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2074      // external globals.
2075      if (!GV->hasDefinitiveInitializer())
2076        return false;
2077
2078      // The first index must be zero.
2079      ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2080      if (!CI || !CI->isZero()) return false;
2081
2082      // The remaining indices must be compile-time known integers within the
2083      // notional bounds of the corresponding static array types.
2084      if (!CE->isGEPWithNoNotionalOverIndexing())
2085        return false;
2086
2087      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2088    }
2089  return false;
2090}
2091
2092/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2093/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2094/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2095static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2096                                   ConstantExpr *Addr, unsigned OpNo,
2097                                   LLVMContext &Context) {
2098  // Base case of the recursion.
2099  if (OpNo == Addr->getNumOperands()) {
2100    assert(Val->getType() == Init->getType() && "Type mismatch!");
2101    return Val;
2102  }
2103
2104  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2105    std::vector<Constant*> Elts;
2106
2107    // Break up the constant into its elements.
2108    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2109      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2110        Elts.push_back(cast<Constant>(*i));
2111    } else if (isa<ConstantAggregateZero>(Init)) {
2112      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2113        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2114    } else if (isa<UndefValue>(Init)) {
2115      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2116        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2117    } else {
2118      llvm_unreachable("This code is out of sync with "
2119             " ConstantFoldLoadThroughGEPConstantExpr");
2120    }
2121
2122    // Replace the element that we are supposed to.
2123    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2124    unsigned Idx = CU->getZExtValue();
2125    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2126    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
2127
2128    // Return the modified struct.
2129    return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked());
2130  } else {
2131    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2132    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2133
2134    // Break up the array into elements.
2135    std::vector<Constant*> Elts;
2136    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2137      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2138        Elts.push_back(cast<Constant>(*i));
2139    } else if (isa<ConstantAggregateZero>(Init)) {
2140      Constant *Elt = Constant::getNullValue(ATy->getElementType());
2141      Elts.assign(ATy->getNumElements(), Elt);
2142    } else if (isa<UndefValue>(Init)) {
2143      Constant *Elt = UndefValue::get(ATy->getElementType());
2144      Elts.assign(ATy->getNumElements(), Elt);
2145    } else {
2146      llvm_unreachable("This code is out of sync with "
2147             " ConstantFoldLoadThroughGEPConstantExpr");
2148    }
2149
2150    assert(CI->getZExtValue() < ATy->getNumElements());
2151    Elts[CI->getZExtValue()] =
2152      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
2153    return ConstantArray::get(ATy, Elts);
2154  }
2155}
2156
2157/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2158/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2159static void CommitValueTo(Constant *Val, Constant *Addr,
2160                          LLVMContext &Context) {
2161  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2162    assert(GV->hasInitializer());
2163    GV->setInitializer(Val);
2164    return;
2165  }
2166
2167  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2168  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2169
2170  Constant *Init = GV->getInitializer();
2171  Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
2172  GV->setInitializer(Init);
2173}
2174
2175/// ComputeLoadResult - Return the value that would be computed by a load from
2176/// P after the stores reflected by 'memory' have been performed.  If we can't
2177/// decide, return null.
2178static Constant *ComputeLoadResult(Constant *P,
2179                                const DenseMap<Constant*, Constant*> &Memory,
2180                                LLVMContext &Context) {
2181  // If this memory location has been recently stored, use the stored value: it
2182  // is the most up-to-date.
2183  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2184  if (I != Memory.end()) return I->second;
2185
2186  // Access it.
2187  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2188    if (GV->hasDefinitiveInitializer())
2189      return GV->getInitializer();
2190    return 0;
2191  }
2192
2193  // Handle a constantexpr getelementptr.
2194  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2195    if (CE->getOpcode() == Instruction::GetElementPtr &&
2196        isa<GlobalVariable>(CE->getOperand(0))) {
2197      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2198      if (GV->hasDefinitiveInitializer())
2199        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2200    }
2201
2202  return 0;  // don't know how to evaluate.
2203}
2204
2205/// EvaluateFunction - Evaluate a call to function F, returning true if
2206/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2207/// arguments for the function.
2208static bool EvaluateFunction(Function *F, Constant *&RetVal,
2209                             const SmallVectorImpl<Constant*> &ActualArgs,
2210                             std::vector<Function*> &CallStack,
2211                             DenseMap<Constant*, Constant*> &MutatedMemory,
2212                             std::vector<GlobalVariable*> &AllocaTmps) {
2213  // Check to see if this function is already executing (recursion).  If so,
2214  // bail out.  TODO: we might want to accept limited recursion.
2215  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2216    return false;
2217
2218  LLVMContext &Context = F->getContext();
2219
2220  CallStack.push_back(F);
2221
2222  /// Values - As we compute SSA register values, we store their contents here.
2223  DenseMap<Value*, Constant*> Values;
2224
2225  // Initialize arguments to the incoming values specified.
2226  unsigned ArgNo = 0;
2227  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2228       ++AI, ++ArgNo)
2229    Values[AI] = ActualArgs[ArgNo];
2230
2231  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2232  /// we can only evaluate any one basic block at most once.  This set keeps
2233  /// track of what we have executed so we can detect recursive cases etc.
2234  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2235
2236  // CurInst - The current instruction we're evaluating.
2237  BasicBlock::iterator CurInst = F->begin()->begin();
2238
2239  // This is the main evaluation loop.
2240  while (1) {
2241    Constant *InstResult = 0;
2242
2243    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2244      if (SI->isVolatile()) return false;  // no volatile accesses.
2245      Constant *Ptr = getVal(Values, SI->getOperand(1));
2246      if (!isSimpleEnoughPointerToCommit(Ptr, Context))
2247        // If this is too complex for us to commit, reject it.
2248        return false;
2249      Constant *Val = getVal(Values, SI->getOperand(0));
2250      MutatedMemory[Ptr] = Val;
2251    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2252      InstResult = ConstantExpr::get(BO->getOpcode(),
2253                                     getVal(Values, BO->getOperand(0)),
2254                                     getVal(Values, BO->getOperand(1)));
2255    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2256      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2257                                            getVal(Values, CI->getOperand(0)),
2258                                            getVal(Values, CI->getOperand(1)));
2259    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2260      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2261                                         getVal(Values, CI->getOperand(0)),
2262                                         CI->getType());
2263    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2264      InstResult =
2265            ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2266                                           getVal(Values, SI->getOperand(1)),
2267                                           getVal(Values, SI->getOperand(2)));
2268    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2269      Constant *P = getVal(Values, GEP->getOperand(0));
2270      SmallVector<Constant*, 8> GEPOps;
2271      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2272           i != e; ++i)
2273        GEPOps.push_back(getVal(Values, *i));
2274      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2275          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2276          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2277    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2278      if (LI->isVolatile()) return false;  // no volatile accesses.
2279      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2280                                     MutatedMemory, Context);
2281      if (InstResult == 0) return false; // Could not evaluate load.
2282    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2283      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2284      const Type *Ty = AI->getType()->getElementType();
2285      AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
2286                                              GlobalValue::InternalLinkage,
2287                                              UndefValue::get(Ty),
2288                                              AI->getName()));
2289      InstResult = AllocaTmps.back();
2290    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2291
2292      // Debug info can safely be ignored here.
2293      if (isa<DbgInfoIntrinsic>(CI)) {
2294        ++CurInst;
2295        continue;
2296      }
2297
2298      // Cannot handle inline asm.
2299      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2300
2301      // Resolve function pointers.
2302      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2303      if (!Callee) return false;  // Cannot resolve.
2304
2305      SmallVector<Constant*, 8> Formals;
2306      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2307           i != e; ++i)
2308        Formals.push_back(getVal(Values, *i));
2309
2310      if (Callee->isDeclaration()) {
2311        // If this is a function we can constant fold, do it.
2312        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2313                                           Formals.size())) {
2314          InstResult = C;
2315        } else {
2316          return false;
2317        }
2318      } else {
2319        if (Callee->getFunctionType()->isVarArg())
2320          return false;
2321
2322        Constant *RetVal;
2323        // Execute the call, if successful, use the return value.
2324        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2325                              MutatedMemory, AllocaTmps))
2326          return false;
2327        InstResult = RetVal;
2328      }
2329    } else if (isa<TerminatorInst>(CurInst)) {
2330      BasicBlock *NewBB = 0;
2331      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2332        if (BI->isUnconditional()) {
2333          NewBB = BI->getSuccessor(0);
2334        } else {
2335          ConstantInt *Cond =
2336            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2337          if (!Cond) return false;  // Cannot determine.
2338
2339          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2340        }
2341      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2342        ConstantInt *Val =
2343          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2344        if (!Val) return false;  // Cannot determine.
2345        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2346      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2347        if (RI->getNumOperands())
2348          RetVal = getVal(Values, RI->getOperand(0));
2349
2350        CallStack.pop_back();  // return from fn.
2351        return true;  // We succeeded at evaluating this ctor!
2352      } else {
2353        // invoke, unwind, unreachable.
2354        return false;  // Cannot handle this terminator.
2355      }
2356
2357      // Okay, we succeeded in evaluating this control flow.  See if we have
2358      // executed the new block before.  If so, we have a looping function,
2359      // which we cannot evaluate in reasonable time.
2360      if (!ExecutedBlocks.insert(NewBB))
2361        return false;  // looped!
2362
2363      // Okay, we have never been in this block before.  Check to see if there
2364      // are any PHI nodes.  If so, evaluate them with information about where
2365      // we came from.
2366      BasicBlock *OldBB = CurInst->getParent();
2367      CurInst = NewBB->begin();
2368      PHINode *PN;
2369      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2370        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2371
2372      // Do NOT increment CurInst.  We know that the terminator had no value.
2373      continue;
2374    } else {
2375      // Did not know how to evaluate this!
2376      return false;
2377    }
2378
2379    if (!CurInst->use_empty())
2380      Values[CurInst] = InstResult;
2381
2382    // Advance program counter.
2383    ++CurInst;
2384  }
2385}
2386
2387/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2388/// we can.  Return true if we can, false otherwise.
2389static bool EvaluateStaticConstructor(Function *F) {
2390  /// MutatedMemory - For each store we execute, we update this map.  Loads
2391  /// check this to get the most up-to-date value.  If evaluation is successful,
2392  /// this state is committed to the process.
2393  DenseMap<Constant*, Constant*> MutatedMemory;
2394
2395  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2396  /// to represent its body.  This vector is needed so we can delete the
2397  /// temporary globals when we are done.
2398  std::vector<GlobalVariable*> AllocaTmps;
2399
2400  /// CallStack - This is used to detect recursion.  In pathological situations
2401  /// we could hit exponential behavior, but at least there is nothing
2402  /// unbounded.
2403  std::vector<Function*> CallStack;
2404
2405  // Call the function.
2406  Constant *RetValDummy;
2407  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2408                                      SmallVector<Constant*, 0>(), CallStack,
2409                                      MutatedMemory, AllocaTmps);
2410  if (EvalSuccess) {
2411    // We succeeded at evaluation: commit the result.
2412    DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2413          << F->getName() << "' to " << MutatedMemory.size()
2414          << " stores.\n");
2415    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2416         E = MutatedMemory.end(); I != E; ++I)
2417      CommitValueTo(I->second, I->first, F->getContext());
2418  }
2419
2420  // At this point, we are done interpreting.  If we created any 'alloca'
2421  // temporaries, release them now.
2422  while (!AllocaTmps.empty()) {
2423    GlobalVariable *Tmp = AllocaTmps.back();
2424    AllocaTmps.pop_back();
2425
2426    // If there are still users of the alloca, the program is doing something
2427    // silly, e.g. storing the address of the alloca somewhere and using it
2428    // later.  Since this is undefined, we'll just make it be null.
2429    if (!Tmp->use_empty())
2430      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2431    delete Tmp;
2432  }
2433
2434  return EvalSuccess;
2435}
2436
2437
2438
2439/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2440/// Return true if anything changed.
2441bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2442  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2443  bool MadeChange = false;
2444  if (Ctors.empty()) return false;
2445
2446  // Loop over global ctors, optimizing them when we can.
2447  for (unsigned i = 0; i != Ctors.size(); ++i) {
2448    Function *F = Ctors[i];
2449    // Found a null terminator in the middle of the list, prune off the rest of
2450    // the list.
2451    if (F == 0) {
2452      if (i != Ctors.size()-1) {
2453        Ctors.resize(i+1);
2454        MadeChange = true;
2455      }
2456      break;
2457    }
2458
2459    // We cannot simplify external ctor functions.
2460    if (F->empty()) continue;
2461
2462    // If we can evaluate the ctor at compile time, do.
2463    if (EvaluateStaticConstructor(F)) {
2464      Ctors.erase(Ctors.begin()+i);
2465      MadeChange = true;
2466      --i;
2467      ++NumCtorsEvaluated;
2468      continue;
2469    }
2470  }
2471
2472  if (!MadeChange) return false;
2473
2474  GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
2475  return true;
2476}
2477
2478bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2479  bool Changed = false;
2480
2481  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2482       I != E;) {
2483    Module::alias_iterator J = I++;
2484    // Aliases without names cannot be referenced outside this module.
2485    if (!J->hasName() && !J->isDeclaration())
2486      J->setLinkage(GlobalValue::InternalLinkage);
2487    // If the aliasee may change at link time, nothing can be done - bail out.
2488    if (J->mayBeOverridden())
2489      continue;
2490
2491    Constant *Aliasee = J->getAliasee();
2492    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2493    Target->removeDeadConstantUsers();
2494    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2495
2496    // Make all users of the alias use the aliasee instead.
2497    if (!J->use_empty()) {
2498      J->replaceAllUsesWith(Aliasee);
2499      ++NumAliasesResolved;
2500      Changed = true;
2501    }
2502
2503    // If the aliasee has internal linkage, give it the name and linkage
2504    // of the alias, and delete the alias.  This turns:
2505    //   define internal ... @f(...)
2506    //   @a = alias ... @f
2507    // into:
2508    //   define ... @a(...)
2509    if (!Target->hasLocalLinkage())
2510      continue;
2511
2512    // The transform is only useful if the alias does not have internal linkage.
2513    if (J->hasLocalLinkage())
2514      continue;
2515
2516    // Do not perform the transform if multiple aliases potentially target the
2517    // aliasee.  This check also ensures that it is safe to replace the section
2518    // and other attributes of the aliasee with those of the alias.
2519    if (!hasOneUse)
2520      continue;
2521
2522    // Give the aliasee the name, linkage and other attributes of the alias.
2523    Target->takeName(J);
2524    Target->setLinkage(J->getLinkage());
2525    Target->GlobalValue::copyAttributesFrom(J);
2526
2527    // Delete the alias.
2528    M.getAliasList().erase(J);
2529    ++NumAliasesRemoved;
2530    Changed = true;
2531  }
2532
2533  return Changed;
2534}
2535
2536bool GlobalOpt::runOnModule(Module &M) {
2537  bool Changed = false;
2538
2539  // Try to find the llvm.globalctors list.
2540  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2541
2542  bool LocalChange = true;
2543  while (LocalChange) {
2544    LocalChange = false;
2545
2546    // Delete functions that are trivially dead, ccc -> fastcc
2547    LocalChange |= OptimizeFunctions(M);
2548
2549    // Optimize global_ctors list.
2550    if (GlobalCtors)
2551      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2552
2553    // Optimize non-address-taken globals.
2554    LocalChange |= OptimizeGlobalVars(M);
2555
2556    // Resolve aliases, when possible.
2557    LocalChange |= OptimizeGlobalAliases(M);
2558    Changed |= LocalChange;
2559  }
2560
2561  // TODO: Move all global ctors functions to the end of the module for code
2562  // layout.
2563
2564  return Changed;
2565}
2566