GlobalOpt.cpp revision 309f20fc45a599ca45ad1262525d9f4c332b1911
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/StringExtras.h"
33#include <algorithm>
34#include <set>
35using namespace llvm;
36
37STATISTIC(NumMarked    , "Number of globals marked constant");
38STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
39STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
40STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
41STATISTIC(NumDeleted   , "Number of globals deleted");
42STATISTIC(NumFnDeleted , "Number of functions deleted");
43STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
44STATISTIC(NumLocalized , "Number of globals localized");
45STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
46STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
47STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
48
49namespace {
50  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
51    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
52      AU.addRequired<TargetData>();
53    }
54    static char ID; // Pass identification, replacement for typeid
55    GlobalOpt() : ModulePass((intptr_t)&ID) {}
56
57    bool runOnModule(Module &M);
58
59  private:
60    GlobalVariable *FindGlobalCtors(Module &M);
61    bool OptimizeFunctions(Module &M);
62    bool OptimizeGlobalVars(Module &M);
63    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
64    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
65  };
66
67  char GlobalOpt::ID = 0;
68  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
69}
70
71ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
72
73/// GlobalStatus - As we analyze each global, keep track of some information
74/// about it.  If we find out that the address of the global is taken, none of
75/// this info will be accurate.
76struct VISIBILITY_HIDDEN GlobalStatus {
77  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
78  /// loaded it can be deleted.
79  bool isLoaded;
80
81  /// StoredType - Keep track of what stores to the global look like.
82  ///
83  enum StoredType {
84    /// NotStored - There is no store to this global.  It can thus be marked
85    /// constant.
86    NotStored,
87
88    /// isInitializerStored - This global is stored to, but the only thing
89    /// stored is the constant it was initialized with.  This is only tracked
90    /// for scalar globals.
91    isInitializerStored,
92
93    /// isStoredOnce - This global is stored to, but only its initializer and
94    /// one other value is ever stored to it.  If this global isStoredOnce, we
95    /// track the value stored to it in StoredOnceValue below.  This is only
96    /// tracked for scalar globals.
97    isStoredOnce,
98
99    /// isStored - This global is stored to by multiple values or something else
100    /// that we cannot track.
101    isStored
102  } StoredType;
103
104  /// StoredOnceValue - If only one value (besides the initializer constant) is
105  /// ever stored to this global, keep track of what value it is.
106  Value *StoredOnceValue;
107
108  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
109  /// null/false.  When the first accessing function is noticed, it is recorded.
110  /// When a second different accessing function is noticed,
111  /// HasMultipleAccessingFunctions is set to true.
112  Function *AccessingFunction;
113  bool HasMultipleAccessingFunctions;
114
115  /// HasNonInstructionUser - Set to true if this global has a user that is not
116  /// an instruction (e.g. a constant expr or GV initializer).
117  bool HasNonInstructionUser;
118
119  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
120  bool HasPHIUser;
121
122  /// isNotSuitableForSRA - Keep track of whether any SRA preventing users of
123  /// the global exist.  Such users include GEP instruction with variable
124  /// indexes, and non-gep/load/store users like constant expr casts.
125  bool isNotSuitableForSRA;
126
127  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
128                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
129                   HasNonInstructionUser(false), HasPHIUser(false),
130                   isNotSuitableForSRA(false) {}
131};
132
133
134
135/// ConstantIsDead - Return true if the specified constant is (transitively)
136/// dead.  The constant may be used by other constants (e.g. constant arrays and
137/// constant exprs) as long as they are dead, but it cannot be used by anything
138/// else.
139static bool ConstantIsDead(Constant *C) {
140  if (isa<GlobalValue>(C)) return false;
141
142  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
143    if (Constant *CU = dyn_cast<Constant>(*UI)) {
144      if (!ConstantIsDead(CU)) return false;
145    } else
146      return false;
147  return true;
148}
149
150
151/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
152/// structure.  If the global has its address taken, return true to indicate we
153/// can't do anything with it.
154///
155static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
156                          std::set<PHINode*> &PHIUsers) {
157  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
158    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
159      GS.HasNonInstructionUser = true;
160
161      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
162      if (CE->getOpcode() != Instruction::GetElementPtr)
163        GS.isNotSuitableForSRA = true;
164      else if (!GS.isNotSuitableForSRA) {
165        // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
166        // don't like < 3 operand CE's, and we don't like non-constant integer
167        // indices.
168        if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
169          GS.isNotSuitableForSRA = true;
170        else {
171          for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
172            if (!isa<ConstantInt>(CE->getOperand(i))) {
173              GS.isNotSuitableForSRA = true;
174              break;
175            }
176        }
177      }
178
179    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
180      if (!GS.HasMultipleAccessingFunctions) {
181        Function *F = I->getParent()->getParent();
182        if (GS.AccessingFunction == 0)
183          GS.AccessingFunction = F;
184        else if (GS.AccessingFunction != F)
185          GS.HasMultipleAccessingFunctions = true;
186      }
187      if (isa<LoadInst>(I)) {
188        GS.isLoaded = true;
189      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
190        // Don't allow a store OF the address, only stores TO the address.
191        if (SI->getOperand(0) == V) return true;
192
193        // If this is a direct store to the global (i.e., the global is a scalar
194        // value, not an aggregate), keep more specific information about
195        // stores.
196        if (GS.StoredType != GlobalStatus::isStored)
197          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
198            Value *StoredVal = SI->getOperand(0);
199            if (StoredVal == GV->getInitializer()) {
200              if (GS.StoredType < GlobalStatus::isInitializerStored)
201                GS.StoredType = GlobalStatus::isInitializerStored;
202            } else if (isa<LoadInst>(StoredVal) &&
203                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
204              // G = G
205              if (GS.StoredType < GlobalStatus::isInitializerStored)
206                GS.StoredType = GlobalStatus::isInitializerStored;
207            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
208              GS.StoredType = GlobalStatus::isStoredOnce;
209              GS.StoredOnceValue = StoredVal;
210            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
211                       GS.StoredOnceValue == StoredVal) {
212              // noop.
213            } else {
214              GS.StoredType = GlobalStatus::isStored;
215            }
216          } else {
217            GS.StoredType = GlobalStatus::isStored;
218          }
219      } else if (isa<GetElementPtrInst>(I)) {
220        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221
222        // If the first two indices are constants, this can be SRA'd.
223        if (isa<GlobalVariable>(I->getOperand(0))) {
224          if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
225              !cast<Constant>(I->getOperand(1))->isNullValue() ||
226              !isa<ConstantInt>(I->getOperand(2)))
227            GS.isNotSuitableForSRA = true;
228        } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
229          if (CE->getOpcode() != Instruction::GetElementPtr ||
230              CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
231              !isa<Constant>(I->getOperand(0)) ||
232              !cast<Constant>(I->getOperand(0))->isNullValue())
233            GS.isNotSuitableForSRA = true;
234        } else {
235          GS.isNotSuitableForSRA = true;
236        }
237      } else if (isa<SelectInst>(I)) {
238        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
239        GS.isNotSuitableForSRA = true;
240      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
241        // PHI nodes we can check just like select or GEP instructions, but we
242        // have to be careful about infinite recursion.
243        if (PHIUsers.insert(PN).second)  // Not already visited.
244          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
245        GS.isNotSuitableForSRA = true;
246        GS.HasPHIUser = true;
247      } else if (isa<CmpInst>(I)) {
248        GS.isNotSuitableForSRA = true;
249      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
250        if (I->getOperand(1) == V)
251          GS.StoredType = GlobalStatus::isStored;
252        if (I->getOperand(2) == V)
253          GS.isLoaded = true;
254        GS.isNotSuitableForSRA = true;
255      } else if (isa<MemSetInst>(I)) {
256        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
257        GS.StoredType = GlobalStatus::isStored;
258        GS.isNotSuitableForSRA = true;
259      } else {
260        return true;  // Any other non-load instruction might take address!
261      }
262    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
263      GS.HasNonInstructionUser = true;
264      // We might have a dead and dangling constant hanging off of here.
265      if (!ConstantIsDead(C))
266        return true;
267    } else {
268      GS.HasNonInstructionUser = true;
269      // Otherwise must be some other user.
270      return true;
271    }
272
273  return false;
274}
275
276static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
277  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
278  if (!CI) return 0;
279  unsigned IdxV = CI->getZExtValue();
280
281  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
282    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
283  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
284    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
285  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
286    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
287  } else if (isa<ConstantAggregateZero>(Agg)) {
288    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
289      if (IdxV < STy->getNumElements())
290        return Constant::getNullValue(STy->getElementType(IdxV));
291    } else if (const SequentialType *STy =
292               dyn_cast<SequentialType>(Agg->getType())) {
293      return Constant::getNullValue(STy->getElementType());
294    }
295  } else if (isa<UndefValue>(Agg)) {
296    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
297      if (IdxV < STy->getNumElements())
298        return UndefValue::get(STy->getElementType(IdxV));
299    } else if (const SequentialType *STy =
300               dyn_cast<SequentialType>(Agg->getType())) {
301      return UndefValue::get(STy->getElementType());
302    }
303  }
304  return 0;
305}
306
307
308/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
309/// users of the global, cleaning up the obvious ones.  This is largely just a
310/// quick scan over the use list to clean up the easy and obvious cruft.  This
311/// returns true if it made a change.
312static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
313  bool Changed = false;
314  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
315    User *U = *UI++;
316
317    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
318      if (Init) {
319        // Replace the load with the initializer.
320        LI->replaceAllUsesWith(Init);
321        LI->eraseFromParent();
322        Changed = true;
323      }
324    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
325      // Store must be unreachable or storing Init into the global.
326      SI->eraseFromParent();
327      Changed = true;
328    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
329      if (CE->getOpcode() == Instruction::GetElementPtr) {
330        Constant *SubInit = 0;
331        if (Init)
332          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
333        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
334      } else if (CE->getOpcode() == Instruction::BitCast &&
335                 isa<PointerType>(CE->getType())) {
336        // Pointer cast, delete any stores and memsets to the global.
337        Changed |= CleanupConstantGlobalUsers(CE, 0);
338      }
339
340      if (CE->use_empty()) {
341        CE->destroyConstant();
342        Changed = true;
343      }
344    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
345      Constant *SubInit = 0;
346      ConstantExpr *CE =
347        dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
348      if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
349        SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
350      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
351
352      if (GEP->use_empty()) {
353        GEP->eraseFromParent();
354        Changed = true;
355      }
356    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
357      if (MI->getRawDest() == V) {
358        MI->eraseFromParent();
359        Changed = true;
360      }
361
362    } else if (Constant *C = dyn_cast<Constant>(U)) {
363      // If we have a chain of dead constantexprs or other things dangling from
364      // us, and if they are all dead, nuke them without remorse.
365      if (ConstantIsDead(C)) {
366        C->destroyConstant();
367        // This could have invalidated UI, start over from scratch.
368        CleanupConstantGlobalUsers(V, Init);
369        return true;
370      }
371    }
372  }
373  return Changed;
374}
375
376/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
377/// variable.  This opens the door for other optimizations by exposing the
378/// behavior of the program in a more fine-grained way.  We have determined that
379/// this transformation is safe already.  We return the first global variable we
380/// insert so that the caller can reprocess it.
381static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
382  assert(GV->hasInternalLinkage() && !GV->isConstant());
383  Constant *Init = GV->getInitializer();
384  const Type *Ty = Init->getType();
385
386  std::vector<GlobalVariable*> NewGlobals;
387  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
388
389  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
390    NewGlobals.reserve(STy->getNumElements());
391    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
392      Constant *In = getAggregateConstantElement(Init,
393                                            ConstantInt::get(Type::Int32Ty, i));
394      assert(In && "Couldn't get element of initializer?");
395      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
396                                               GlobalVariable::InternalLinkage,
397                                               In, GV->getName()+"."+utostr(i),
398                                               (Module *)NULL,
399                                               GV->isThreadLocal());
400      Globals.insert(GV, NGV);
401      NewGlobals.push_back(NGV);
402    }
403  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
404    unsigned NumElements = 0;
405    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
406      NumElements = ATy->getNumElements();
407    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
408      NumElements = PTy->getNumElements();
409    else
410      assert(0 && "Unknown aggregate sequential type!");
411
412    if (NumElements > 16 && GV->hasNUsesOrMore(16))
413      return 0; // It's not worth it.
414    NewGlobals.reserve(NumElements);
415    for (unsigned i = 0, e = NumElements; i != e; ++i) {
416      Constant *In = getAggregateConstantElement(Init,
417                                            ConstantInt::get(Type::Int32Ty, i));
418      assert(In && "Couldn't get element of initializer?");
419
420      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
421                                               GlobalVariable::InternalLinkage,
422                                               In, GV->getName()+"."+utostr(i),
423                                               (Module *)NULL,
424                                               GV->isThreadLocal());
425      Globals.insert(GV, NGV);
426      NewGlobals.push_back(NGV);
427    }
428  }
429
430  if (NewGlobals.empty())
431    return 0;
432
433  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
434
435  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
436
437  // Loop over all of the uses of the global, replacing the constantexpr geps,
438  // with smaller constantexpr geps or direct references.
439  while (!GV->use_empty()) {
440    User *GEP = GV->use_back();
441    assert(((isa<ConstantExpr>(GEP) &&
442             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
443            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
444
445    // Ignore the 1th operand, which has to be zero or else the program is quite
446    // broken (undefined).  Get the 2nd operand, which is the structure or array
447    // index.
448    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
449    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
450
451    Value *NewPtr = NewGlobals[Val];
452
453    // Form a shorter GEP if needed.
454    if (GEP->getNumOperands() > 3)
455      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
456        SmallVector<Constant*, 8> Idxs;
457        Idxs.push_back(NullInt);
458        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
459          Idxs.push_back(CE->getOperand(i));
460        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
461                                                &Idxs[0], Idxs.size());
462      } else {
463        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
464        SmallVector<Value*, 8> Idxs;
465        Idxs.push_back(NullInt);
466        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
467          Idxs.push_back(GEPI->getOperand(i));
468        NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
469                                       GEPI->getName()+"."+utostr(Val), GEPI);
470      }
471    GEP->replaceAllUsesWith(NewPtr);
472
473    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
474      GEPI->eraseFromParent();
475    else
476      cast<ConstantExpr>(GEP)->destroyConstant();
477  }
478
479  // Delete the old global, now that it is dead.
480  Globals.erase(GV);
481  ++NumSRA;
482
483  // Loop over the new globals array deleting any globals that are obviously
484  // dead.  This can arise due to scalarization of a structure or an array that
485  // has elements that are dead.
486  unsigned FirstGlobal = 0;
487  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
488    if (NewGlobals[i]->use_empty()) {
489      Globals.erase(NewGlobals[i]);
490      if (FirstGlobal == i) ++FirstGlobal;
491    }
492
493  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
494}
495
496/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
497/// value will trap if the value is dynamically null.  PHIs keeps track of any
498/// phi nodes we've seen to avoid reprocessing them.
499static bool AllUsesOfValueWillTrapIfNull(Value *V,
500                                         SmallPtrSet<PHINode*, 8> &PHIs) {
501  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
502    if (isa<LoadInst>(*UI)) {
503      // Will trap.
504    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
505      if (SI->getOperand(0) == V) {
506        //cerr << "NONTRAPPING USE: " << **UI;
507        return false;  // Storing the value.
508      }
509    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
510      if (CI->getOperand(0) != V) {
511        //cerr << "NONTRAPPING USE: " << **UI;
512        return false;  // Not calling the ptr
513      }
514    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
515      if (II->getOperand(0) != V) {
516        //cerr << "NONTRAPPING USE: " << **UI;
517        return false;  // Not calling the ptr
518      }
519    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
520      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
521    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
522      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
523    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
524      // If we've already seen this phi node, ignore it, it has already been
525      // checked.
526      if (PHIs.insert(PN))
527        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
528    } else if (isa<ICmpInst>(*UI) &&
529               isa<ConstantPointerNull>(UI->getOperand(1))) {
530      // Ignore setcc X, null
531    } else {
532      //cerr << "NONTRAPPING USE: " << **UI;
533      return false;
534    }
535  return true;
536}
537
538/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
539/// from GV will trap if the loaded value is null.  Note that this also permits
540/// comparisons of the loaded value against null, as a special case.
541static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
542  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
543    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
544      SmallPtrSet<PHINode*, 8> PHIs;
545      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
546        return false;
547    } else if (isa<StoreInst>(*UI)) {
548      // Ignore stores to the global.
549    } else {
550      // We don't know or understand this user, bail out.
551      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
552      return false;
553    }
554
555  return true;
556}
557
558static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
559  bool Changed = false;
560  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
561    Instruction *I = cast<Instruction>(*UI++);
562    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
563      LI->setOperand(0, NewV);
564      Changed = true;
565    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
566      if (SI->getOperand(1) == V) {
567        SI->setOperand(1, NewV);
568        Changed = true;
569      }
570    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
571      if (I->getOperand(0) == V) {
572        // Calling through the pointer!  Turn into a direct call, but be careful
573        // that the pointer is not also being passed as an argument.
574        I->setOperand(0, NewV);
575        Changed = true;
576        bool PassedAsArg = false;
577        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
578          if (I->getOperand(i) == V) {
579            PassedAsArg = true;
580            I->setOperand(i, NewV);
581          }
582
583        if (PassedAsArg) {
584          // Being passed as an argument also.  Be careful to not invalidate UI!
585          UI = V->use_begin();
586        }
587      }
588    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
589      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
590                                ConstantExpr::getCast(CI->getOpcode(),
591                                                      NewV, CI->getType()));
592      if (CI->use_empty()) {
593        Changed = true;
594        CI->eraseFromParent();
595      }
596    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
597      // Should handle GEP here.
598      SmallVector<Constant*, 8> Idxs;
599      Idxs.reserve(GEPI->getNumOperands()-1);
600      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
601        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
602          Idxs.push_back(C);
603        else
604          break;
605      if (Idxs.size() == GEPI->getNumOperands()-1)
606        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
607                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
608                                                               Idxs.size()));
609      if (GEPI->use_empty()) {
610        Changed = true;
611        GEPI->eraseFromParent();
612      }
613    }
614  }
615
616  return Changed;
617}
618
619
620/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
621/// value stored into it.  If there are uses of the loaded value that would trap
622/// if the loaded value is dynamically null, then we know that they cannot be
623/// reachable with a null optimize away the load.
624static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
625  std::vector<LoadInst*> Loads;
626  bool Changed = false;
627
628  // Replace all uses of loads with uses of uses of the stored value.
629  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
630       GUI != E; ++GUI)
631    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
632      Loads.push_back(LI);
633      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
634    } else {
635      // If we get here we could have stores, selects, or phi nodes whose values
636      // are loaded.
637      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
638              isa<SelectInst>(*GUI)) &&
639             "Only expect load and stores!");
640    }
641
642  if (Changed) {
643    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
644    ++NumGlobUses;
645  }
646
647  // Delete all of the loads we can, keeping track of whether we nuked them all!
648  bool AllLoadsGone = true;
649  while (!Loads.empty()) {
650    LoadInst *L = Loads.back();
651    if (L->use_empty()) {
652      L->eraseFromParent();
653      Changed = true;
654    } else {
655      AllLoadsGone = false;
656    }
657    Loads.pop_back();
658  }
659
660  // If we nuked all of the loads, then none of the stores are needed either,
661  // nor is the global.
662  if (AllLoadsGone) {
663    DOUT << "  *** GLOBAL NOW DEAD!\n";
664    CleanupConstantGlobalUsers(GV, 0);
665    if (GV->use_empty()) {
666      GV->eraseFromParent();
667      ++NumDeleted;
668    }
669    Changed = true;
670  }
671  return Changed;
672}
673
674/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
675/// instructions that are foldable.
676static void ConstantPropUsersOf(Value *V) {
677  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
678    if (Instruction *I = dyn_cast<Instruction>(*UI++))
679      if (Constant *NewC = ConstantFoldInstruction(I)) {
680        I->replaceAllUsesWith(NewC);
681
682        // Advance UI to the next non-I use to avoid invalidating it!
683        // Instructions could multiply use V.
684        while (UI != E && *UI == I)
685          ++UI;
686        I->eraseFromParent();
687      }
688}
689
690/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
691/// variable, and transforms the program as if it always contained the result of
692/// the specified malloc.  Because it is always the result of the specified
693/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
694/// malloc into a global, and any loads of GV as uses of the new global.
695static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
696                                                     MallocInst *MI) {
697  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
698  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
699
700  if (NElements->getZExtValue() != 1) {
701    // If we have an array allocation, transform it to a single element
702    // allocation to make the code below simpler.
703    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
704                                 NElements->getZExtValue());
705    MallocInst *NewMI =
706      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
707                     MI->getAlignment(), MI->getName(), MI);
708    Value* Indices[2];
709    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
710    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
711                                          NewMI->getName()+".el0", MI);
712    MI->replaceAllUsesWith(NewGEP);
713    MI->eraseFromParent();
714    MI = NewMI;
715  }
716
717  // Create the new global variable.  The contents of the malloc'd memory is
718  // undefined, so initialize with an undef value.
719  Constant *Init = UndefValue::get(MI->getAllocatedType());
720  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
721                                             GlobalValue::InternalLinkage, Init,
722                                             GV->getName()+".body",
723                                             (Module *)NULL,
724                                             GV->isThreadLocal());
725  GV->getParent()->getGlobalList().insert(GV, NewGV);
726
727  // Anything that used the malloc now uses the global directly.
728  MI->replaceAllUsesWith(NewGV);
729
730  Constant *RepValue = NewGV;
731  if (NewGV->getType() != GV->getType()->getElementType())
732    RepValue = ConstantExpr::getBitCast(RepValue,
733                                        GV->getType()->getElementType());
734
735  // If there is a comparison against null, we will insert a global bool to
736  // keep track of whether the global was initialized yet or not.
737  GlobalVariable *InitBool =
738    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
739                       ConstantInt::getFalse(), GV->getName()+".init",
740                       (Module *)NULL, GV->isThreadLocal());
741  bool InitBoolUsed = false;
742
743  // Loop over all uses of GV, processing them in turn.
744  std::vector<StoreInst*> Stores;
745  while (!GV->use_empty())
746    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
747      while (!LI->use_empty()) {
748        Use &LoadUse = LI->use_begin().getUse();
749        if (!isa<ICmpInst>(LoadUse.getUser()))
750          LoadUse = RepValue;
751        else {
752          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
753          // Replace the cmp X, 0 with a use of the bool value.
754          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
755          InitBoolUsed = true;
756          switch (CI->getPredicate()) {
757          default: assert(0 && "Unknown ICmp Predicate!");
758          case ICmpInst::ICMP_ULT:
759          case ICmpInst::ICMP_SLT:
760            LV = ConstantInt::getFalse();   // X < null -> always false
761            break;
762          case ICmpInst::ICMP_ULE:
763          case ICmpInst::ICMP_SLE:
764          case ICmpInst::ICMP_EQ:
765            LV = BinaryOperator::createNot(LV, "notinit", CI);
766            break;
767          case ICmpInst::ICMP_NE:
768          case ICmpInst::ICMP_UGE:
769          case ICmpInst::ICMP_SGE:
770          case ICmpInst::ICMP_UGT:
771          case ICmpInst::ICMP_SGT:
772            break;  // no change.
773          }
774          CI->replaceAllUsesWith(LV);
775          CI->eraseFromParent();
776        }
777      }
778      LI->eraseFromParent();
779    } else {
780      StoreInst *SI = cast<StoreInst>(GV->use_back());
781      // The global is initialized when the store to it occurs.
782      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
783      SI->eraseFromParent();
784    }
785
786  // If the initialization boolean was used, insert it, otherwise delete it.
787  if (!InitBoolUsed) {
788    while (!InitBool->use_empty())  // Delete initializations
789      cast<Instruction>(InitBool->use_back())->eraseFromParent();
790    delete InitBool;
791  } else
792    GV->getParent()->getGlobalList().insert(GV, InitBool);
793
794
795  // Now the GV is dead, nuke it and the malloc.
796  GV->eraseFromParent();
797  MI->eraseFromParent();
798
799  // To further other optimizations, loop over all users of NewGV and try to
800  // constant prop them.  This will promote GEP instructions with constant
801  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
802  ConstantPropUsersOf(NewGV);
803  if (RepValue != NewGV)
804    ConstantPropUsersOf(RepValue);
805
806  return NewGV;
807}
808
809/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
810/// to make sure that there are no complex uses of V.  We permit simple things
811/// like dereferencing the pointer, but not storing through the address, unless
812/// it is to the specified global.
813static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
814                                                      GlobalVariable *GV,
815                                              SmallPtrSet<PHINode*, 8> &PHIs) {
816  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI)
817    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
818      // Fine, ignore.
819    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
820      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
821        return false;  // Storing the pointer itself... bad.
822      // Otherwise, storing through it, or storing into GV... fine.
823    } else if (isa<GetElementPtrInst>(*UI) || isa<SelectInst>(*UI) ||
824               isa<BitCastInst>(*UI)) {
825      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
826                                                     GV, PHIs))
827        return false;
828    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
829      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
830      // cycles.
831      if (PHIs.insert(PN))
832        return ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs);
833    } else {
834      return false;
835    }
836  return true;
837}
838
839/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
840/// somewhere.  Transform all uses of the allocation into loads from the
841/// global and uses of the resultant pointer.  Further, delete the store into
842/// GV.  This assumes that these value pass the
843/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
844static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
845                                          GlobalVariable *GV) {
846  while (!Alloc->use_empty()) {
847    Instruction *U = cast<Instruction>(*Alloc->use_begin());
848    Instruction *InsertPt = U;
849    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
850      // If this is the store of the allocation into the global, remove it.
851      if (SI->getOperand(1) == GV) {
852        SI->eraseFromParent();
853        continue;
854      }
855    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
856      // Insert the load in the corresponding predecessor, not right before the
857      // PHI.
858      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
859      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
860    }
861
862    // Insert a load from the global, and use it instead of the malloc.
863    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
864    U->replaceUsesOfWith(Alloc, NL);
865  }
866}
867
868/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
869/// GV are simple enough to perform HeapSRA, return true.
870static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
871                                                 MallocInst *MI) {
872  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
873       ++UI)
874    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
875      // We permit two users of the load: setcc comparing against the null
876      // pointer, and a getelementptr of a specific form.
877      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
878           ++UI) {
879        // Comparison against null is ok.
880        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
881          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
882            return false;
883          continue;
884        }
885
886        // getelementptr is also ok, but only a simple form.
887        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
888          // Must index into the array and into the struct.
889          if (GEPI->getNumOperands() < 3)
890            return false;
891
892          // Otherwise the GEP is ok.
893          continue;
894        }
895
896        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
897          // We have a phi of a load from the global.  We can only handle this
898          // if the other PHI'd values are actually the same.  In this case,
899          // the rewriter will just drop the phi entirely.
900          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
901            Value *IV = PN->getIncomingValue(i);
902            if (IV == LI) continue;  // Trivial the same.
903
904            // If the phi'd value is from the malloc that initializes the value,
905            // we can xform it.
906            if (IV == MI) continue;
907
908            // Otherwise, we don't know what it is.
909            return false;
910          }
911          return true;
912        }
913
914        // Otherwise we don't know what this is, not ok.
915        return false;
916      }
917    }
918  return true;
919}
920
921/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
922/// value, lazily creating it on demand.
923static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
924                              const std::vector<GlobalVariable*> &FieldGlobals,
925                              std::vector<Value *> &InsertedLoadsForPtr) {
926  if (InsertedLoadsForPtr.size() <= FieldNo)
927    InsertedLoadsForPtr.resize(FieldNo+1);
928  if (InsertedLoadsForPtr[FieldNo] == 0)
929    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
930                                                Load->getName()+".f" +
931                                                utostr(FieldNo), Load);
932  return InsertedLoadsForPtr[FieldNo];
933}
934
935/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
936/// the load, rewrite the derived value to use the HeapSRoA'd load.
937static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
938                               const std::vector<GlobalVariable*> &FieldGlobals,
939                                    std::vector<Value *> &InsertedLoadsForPtr) {
940  // If this is a comparison against null, handle it.
941  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
942    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
943    // If we have a setcc of the loaded pointer, we can use a setcc of any
944    // field.
945    Value *NPtr;
946    if (InsertedLoadsForPtr.empty()) {
947      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
948    } else {
949      NPtr = InsertedLoadsForPtr.back();
950    }
951
952    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
953                              Constant::getNullValue(NPtr->getType()),
954                              SCI->getName(), SCI);
955    SCI->replaceAllUsesWith(New);
956    SCI->eraseFromParent();
957    return;
958  }
959
960  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
961  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
962    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
963           && "Unexpected GEPI!");
964
965    // Load the pointer for this field.
966    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
967    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
968                                    FieldGlobals, InsertedLoadsForPtr);
969
970    // Create the new GEP idx vector.
971    SmallVector<Value*, 8> GEPIdx;
972    GEPIdx.push_back(GEPI->getOperand(1));
973    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
974
975    Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
976                                         GEPI->getName(), GEPI);
977    GEPI->replaceAllUsesWith(NGEPI);
978    GEPI->eraseFromParent();
979    return;
980  }
981
982  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
983  // potentially the original malloc.  Insert phi nodes for each field, then
984  // process uses of the PHI.
985  PHINode *PN = cast<PHINode>(LoadUser);
986  std::vector<Value *> PHIsForField;
987  PHIsForField.resize(FieldGlobals.size());
988  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
989    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
990
991    PHINode *FieldPN = new PHINode(LoadV->getType(),
992                                   PN->getName()+"."+utostr(i), PN);
993    // Fill in the predecessor values.
994    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
995      // Each predecessor either uses the load or the original malloc.
996      Value *InVal = PN->getIncomingValue(pred);
997      BasicBlock *BB = PN->getIncomingBlock(pred);
998      Value *NewVal;
999      if (isa<MallocInst>(InVal)) {
1000        // Insert a reload from the global in the predecessor.
1001        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1002                                 PHIsForField);
1003      } else {
1004        NewVal = InsertedLoadsForPtr[i];
1005      }
1006      FieldPN->addIncoming(NewVal, BB);
1007    }
1008    PHIsForField[i] = FieldPN;
1009  }
1010
1011  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1012  // will never insert a load.
1013  while (!PN->use_empty())
1014    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1015  PN->eraseFromParent();
1016}
1017
1018/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1019/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1020/// use FieldGlobals instead.  All uses of loaded values satisfy
1021/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1022static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1023                             const std::vector<GlobalVariable*> &FieldGlobals) {
1024  std::vector<Value *> InsertedLoadsForPtr;
1025  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1026  while (!Load->use_empty())
1027    RewriteHeapSROALoadUser(Load, Load->use_back(),
1028                            FieldGlobals, InsertedLoadsForPtr);
1029}
1030
1031/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1032/// it up into multiple allocations of arrays of the fields.
1033static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1034  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1035  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1036
1037  // There is guaranteed to be at least one use of the malloc (storing
1038  // it into GV).  If there are other uses, change them to be uses of
1039  // the global to simplify later code.  This also deletes the store
1040  // into GV.
1041  ReplaceUsesOfMallocWithGlobal(MI, GV);
1042
1043  // Okay, at this point, there are no users of the malloc.  Insert N
1044  // new mallocs at the same place as MI, and N globals.
1045  std::vector<GlobalVariable*> FieldGlobals;
1046  std::vector<MallocInst*> FieldMallocs;
1047
1048  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1049    const Type *FieldTy = STy->getElementType(FieldNo);
1050    const Type *PFieldTy = PointerType::get(FieldTy);
1051
1052    GlobalVariable *NGV =
1053      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1054                         Constant::getNullValue(PFieldTy),
1055                         GV->getName() + ".f" + utostr(FieldNo), GV,
1056                         GV->isThreadLocal());
1057    FieldGlobals.push_back(NGV);
1058
1059    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1060                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1061    FieldMallocs.push_back(NMI);
1062    new StoreInst(NMI, NGV, MI);
1063  }
1064
1065  // The tricky aspect of this transformation is handling the case when malloc
1066  // fails.  In the original code, malloc failing would set the result pointer
1067  // of malloc to null.  In this case, some mallocs could succeed and others
1068  // could fail.  As such, we emit code that looks like this:
1069  //    F0 = malloc(field0)
1070  //    F1 = malloc(field1)
1071  //    F2 = malloc(field2)
1072  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1073  //      if (F0) { free(F0); F0 = 0; }
1074  //      if (F1) { free(F1); F1 = 0; }
1075  //      if (F2) { free(F2); F2 = 0; }
1076  //    }
1077  Value *RunningOr = 0;
1078  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1079    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1080                             Constant::getNullValue(FieldMallocs[i]->getType()),
1081                                  "isnull", MI);
1082    if (!RunningOr)
1083      RunningOr = Cond;   // First seteq
1084    else
1085      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1086  }
1087
1088  // Split the basic block at the old malloc.
1089  BasicBlock *OrigBB = MI->getParent();
1090  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1091
1092  // Create the block to check the first condition.  Put all these blocks at the
1093  // end of the function as they are unlikely to be executed.
1094  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
1095                                            OrigBB->getParent());
1096
1097  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1098  // branch on RunningOr.
1099  OrigBB->getTerminator()->eraseFromParent();
1100  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
1101
1102  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1103  // pointer, because some may be null while others are not.
1104  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1105    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1106    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1107                              Constant::getNullValue(GVVal->getType()),
1108                              "tmp", NullPtrBlock);
1109    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
1110    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
1111    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1112
1113    // Fill in FreeBlock.
1114    new FreeInst(GVVal, FreeBlock);
1115    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1116                  FreeBlock);
1117    new BranchInst(NextBlock, FreeBlock);
1118
1119    NullPtrBlock = NextBlock;
1120  }
1121
1122  new BranchInst(ContBB, NullPtrBlock);
1123
1124
1125  // MI is no longer needed, remove it.
1126  MI->eraseFromParent();
1127
1128
1129  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1130  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1131  // of the per-field globals instead.
1132  while (!GV->use_empty()) {
1133    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1134      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1135      LI->eraseFromParent();
1136    } else {
1137      // Must be a store of null.
1138      StoreInst *SI = cast<StoreInst>(GV->use_back());
1139      assert(isa<Constant>(SI->getOperand(0)) &&
1140             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1141             "Unexpected heap-sra user!");
1142
1143      // Insert a store of null into each global.
1144      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1145        Constant *Null =
1146          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1147        new StoreInst(Null, FieldGlobals[i], SI);
1148      }
1149      // Erase the original store.
1150      SI->eraseFromParent();
1151    }
1152  }
1153
1154  // The old global is now dead, remove it.
1155  GV->eraseFromParent();
1156
1157  ++NumHeapSRA;
1158  return FieldGlobals[0];
1159}
1160
1161
1162// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1163// that only one value (besides its initializer) is ever stored to the global.
1164static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1165                                     Module::global_iterator &GVI,
1166                                     TargetData &TD) {
1167  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1168    StoredOnceVal = CI->getOperand(0);
1169  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1170    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1171    bool IsJustACast = true;
1172    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1173      if (!isa<Constant>(GEPI->getOperand(i)) ||
1174          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1175        IsJustACast = false;
1176        break;
1177      }
1178    if (IsJustACast)
1179      StoredOnceVal = GEPI->getOperand(0);
1180  }
1181
1182  // If we are dealing with a pointer global that is initialized to null and
1183  // only has one (non-null) value stored into it, then we can optimize any
1184  // users of the loaded value (often calls and loads) that would trap if the
1185  // value was null.
1186  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1187      GV->getInitializer()->isNullValue()) {
1188    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1189      if (GV->getInitializer()->getType() != SOVC->getType())
1190        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1191
1192      // Optimize away any trapping uses of the loaded value.
1193      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1194        return true;
1195    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1196      // If this is a malloc of an abstract type, don't touch it.
1197      if (!MI->getAllocatedType()->isSized())
1198        return false;
1199
1200      // We can't optimize this global unless all uses of it are *known* to be
1201      // of the malloc value, not of the null initializer value (consider a use
1202      // that compares the global's value against zero to see if the malloc has
1203      // been reached).  To do this, we check to see if all uses of the global
1204      // would trap if the global were null: this proves that they must all
1205      // happen after the malloc.
1206      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1207        return false;
1208
1209      // We can't optimize this if the malloc itself is used in a complex way,
1210      // for example, being stored into multiple globals.  This allows the
1211      // malloc to be stored into the specified global, loaded setcc'd, and
1212      // GEP'd.  These are all things we could transform to using the global
1213      // for.
1214      {
1215        SmallPtrSet<PHINode*, 8> PHIs;
1216        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1217          return false;
1218      }
1219
1220
1221      // If we have a global that is only initialized with a fixed size malloc,
1222      // transform the program to use global memory instead of malloc'd memory.
1223      // This eliminates dynamic allocation, avoids an indirection accessing the
1224      // data, and exposes the resultant global to further GlobalOpt.
1225      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1226        // Restrict this transformation to only working on small allocations
1227        // (2048 bytes currently), as we don't want to introduce a 16M global or
1228        // something.
1229        if (NElements->getZExtValue()*
1230                     TD.getTypeSize(MI->getAllocatedType()) < 2048) {
1231          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1232          return true;
1233        }
1234      }
1235
1236      // If the allocation is an array of structures, consider transforming this
1237      // into multiple malloc'd arrays, one for each field.  This is basically
1238      // SRoA for malloc'd memory.
1239      if (const StructType *AllocTy =
1240                  dyn_cast<StructType>(MI->getAllocatedType())) {
1241        // This the structure has an unreasonable number of fields, leave it
1242        // alone.
1243        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1244            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1245          GVI = PerformHeapAllocSRoA(GV, MI);
1246          return true;
1247        }
1248      }
1249    }
1250  }
1251
1252  return false;
1253}
1254
1255/// ShrinkGlobalToBoolean - At this point, we have learned that the only two
1256/// values ever stored into GV are its initializer and OtherVal.
1257static void ShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1258  // Create the new global, initializing it to false.
1259  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1260         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1261                                             GV->getName()+".b",
1262                                             (Module *)NULL,
1263                                             GV->isThreadLocal());
1264  GV->getParent()->getGlobalList().insert(GV, NewGV);
1265
1266  Constant *InitVal = GV->getInitializer();
1267  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1268
1269  // If initialized to zero and storing one into the global, we can use a cast
1270  // instead of a select to synthesize the desired value.
1271  bool IsOneZero = false;
1272  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1273    IsOneZero = InitVal->isNullValue() && CI->isOne();
1274
1275  while (!GV->use_empty()) {
1276    Instruction *UI = cast<Instruction>(GV->use_back());
1277    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1278      // Change the store into a boolean store.
1279      bool StoringOther = SI->getOperand(0) == OtherVal;
1280      // Only do this if we weren't storing a loaded value.
1281      Value *StoreVal;
1282      if (StoringOther || SI->getOperand(0) == InitVal)
1283        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1284      else {
1285        // Otherwise, we are storing a previously loaded copy.  To do this,
1286        // change the copy from copying the original value to just copying the
1287        // bool.
1288        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1289
1290        // If we're already replaced the input, StoredVal will be a cast or
1291        // select instruction.  If not, it will be a load of the original
1292        // global.
1293        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1294          assert(LI->getOperand(0) == GV && "Not a copy!");
1295          // Insert a new load, to preserve the saved value.
1296          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1297        } else {
1298          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1299                 "This is not a form that we understand!");
1300          StoreVal = StoredVal->getOperand(0);
1301          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1302        }
1303      }
1304      new StoreInst(StoreVal, NewGV, SI);
1305    } else if (!UI->use_empty()) {
1306      // Change the load into a load of bool then a select.
1307      LoadInst *LI = cast<LoadInst>(UI);
1308      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1309      Value *NSI;
1310      if (IsOneZero)
1311        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1312      else
1313        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
1314      NSI->takeName(LI);
1315      LI->replaceAllUsesWith(NSI);
1316    }
1317    UI->eraseFromParent();
1318  }
1319
1320  GV->eraseFromParent();
1321}
1322
1323
1324/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1325/// it if possible.  If we make a change, return true.
1326bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1327                                      Module::global_iterator &GVI) {
1328  std::set<PHINode*> PHIUsers;
1329  GlobalStatus GS;
1330  GV->removeDeadConstantUsers();
1331
1332  if (GV->use_empty()) {
1333    DOUT << "GLOBAL DEAD: " << *GV;
1334    GV->eraseFromParent();
1335    ++NumDeleted;
1336    return true;
1337  }
1338
1339  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1340#if 0
1341    cerr << "Global: " << *GV;
1342    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1343    cerr << "  StoredType = ";
1344    switch (GS.StoredType) {
1345    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1346    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1347    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1348    case GlobalStatus::isStored: cerr << "stored\n"; break;
1349    }
1350    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1351      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1352    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1353      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1354                << "\n";
1355    cerr << "  HasMultipleAccessingFunctions =  "
1356              << GS.HasMultipleAccessingFunctions << "\n";
1357    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1358    cerr << "  isNotSuitableForSRA = " << GS.isNotSuitableForSRA << "\n";
1359    cerr << "\n";
1360#endif
1361
1362    // If this is a first class global and has only one accessing function
1363    // and this function is main (which we know is not recursive we can make
1364    // this global a local variable) we replace the global with a local alloca
1365    // in this function.
1366    //
1367    // NOTE: It doesn't make sense to promote non first class types since we
1368    // are just replacing static memory to stack memory.
1369    if (!GS.HasMultipleAccessingFunctions &&
1370        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1371        GV->getType()->getElementType()->isFirstClassType() &&
1372        GS.AccessingFunction->getName() == "main" &&
1373        GS.AccessingFunction->hasExternalLinkage()) {
1374      DOUT << "LOCALIZING GLOBAL: " << *GV;
1375      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1376      const Type* ElemTy = GV->getType()->getElementType();
1377      // FIXME: Pass Global's alignment when globals have alignment
1378      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1379      if (!isa<UndefValue>(GV->getInitializer()))
1380        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1381
1382      GV->replaceAllUsesWith(Alloca);
1383      GV->eraseFromParent();
1384      ++NumLocalized;
1385      return true;
1386    }
1387
1388    // If the global is never loaded (but may be stored to), it is dead.
1389    // Delete it now.
1390    if (!GS.isLoaded) {
1391      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1392
1393      // Delete any stores we can find to the global.  We may not be able to
1394      // make it completely dead though.
1395      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1396
1397      // If the global is dead now, delete it.
1398      if (GV->use_empty()) {
1399        GV->eraseFromParent();
1400        ++NumDeleted;
1401        Changed = true;
1402      }
1403      return Changed;
1404
1405    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1406      DOUT << "MARKING CONSTANT: " << *GV;
1407      GV->setConstant(true);
1408
1409      // Clean up any obviously simplifiable users now.
1410      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1411
1412      // If the global is dead now, just nuke it.
1413      if (GV->use_empty()) {
1414        DOUT << "   *** Marking constant allowed us to simplify "
1415             << "all users and delete global!\n";
1416        GV->eraseFromParent();
1417        ++NumDeleted;
1418      }
1419
1420      ++NumMarked;
1421      return true;
1422    } else if (!GS.isNotSuitableForSRA &&
1423               !GV->getInitializer()->getType()->isFirstClassType()) {
1424      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
1425        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1426        return true;
1427      }
1428    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1429      // If the initial value for the global was an undef value, and if only
1430      // one other value was stored into it, we can just change the
1431      // initializer to be an undef value, then delete all stores to the
1432      // global.  This allows us to mark it constant.
1433      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1434        if (isa<UndefValue>(GV->getInitializer())) {
1435          // Change the initial value here.
1436          GV->setInitializer(SOVConstant);
1437
1438          // Clean up any obviously simplifiable users now.
1439          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1440
1441          if (GV->use_empty()) {
1442            DOUT << "   *** Substituting initializer allowed us to "
1443                 << "simplify all users and delete global!\n";
1444            GV->eraseFromParent();
1445            ++NumDeleted;
1446          } else {
1447            GVI = GV;
1448          }
1449          ++NumSubstitute;
1450          return true;
1451        }
1452
1453      // Try to optimize globals based on the knowledge that only one value
1454      // (besides its initializer) is ever stored to the global.
1455      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1456                                   getAnalysis<TargetData>()))
1457        return true;
1458
1459      // Otherwise, if the global was not a boolean, we can shrink it to be a
1460      // boolean.
1461      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1462        if (GV->getType()->getElementType() != Type::Int1Ty &&
1463            !GV->getType()->getElementType()->isFloatingPoint() &&
1464            !isa<VectorType>(GV->getType()->getElementType()) &&
1465            !GS.HasPHIUser && !GS.isNotSuitableForSRA) {
1466          DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1467          ShrinkGlobalToBoolean(GV, SOVConstant);
1468          ++NumShrunkToBool;
1469          return true;
1470        }
1471    }
1472  }
1473  return false;
1474}
1475
1476/// OnlyCalledDirectly - Return true if the specified function is only called
1477/// directly.  In other words, its address is never taken.
1478static bool OnlyCalledDirectly(Function *F) {
1479  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1480    Instruction *User = dyn_cast<Instruction>(*UI);
1481    if (!User) return false;
1482    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1483
1484    // See if the function address is passed as an argument.
1485    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1486      if (User->getOperand(i) == F) return false;
1487  }
1488  return true;
1489}
1490
1491/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1492/// function, changing them to FastCC.
1493static void ChangeCalleesToFastCall(Function *F) {
1494  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1495    Instruction *User = cast<Instruction>(*UI);
1496    if (CallInst *CI = dyn_cast<CallInst>(User))
1497      CI->setCallingConv(CallingConv::Fast);
1498    else
1499      cast<InvokeInst>(User)->setCallingConv(CallingConv::Fast);
1500  }
1501}
1502
1503bool GlobalOpt::OptimizeFunctions(Module &M) {
1504  bool Changed = false;
1505  // Optimize functions.
1506  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1507    Function *F = FI++;
1508    F->removeDeadConstantUsers();
1509    if (F->use_empty() && (F->hasInternalLinkage() ||
1510                           F->hasLinkOnceLinkage())) {
1511      M.getFunctionList().erase(F);
1512      Changed = true;
1513      ++NumFnDeleted;
1514    } else if (F->hasInternalLinkage() &&
1515               F->getCallingConv() == CallingConv::C &&  !F->isVarArg() &&
1516               OnlyCalledDirectly(F)) {
1517      // If this function has C calling conventions, is not a varargs
1518      // function, and is only called directly, promote it to use the Fast
1519      // calling convention.
1520      F->setCallingConv(CallingConv::Fast);
1521      ChangeCalleesToFastCall(F);
1522      ++NumFastCallFns;
1523      Changed = true;
1524    }
1525  }
1526  return Changed;
1527}
1528
1529bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1530  bool Changed = false;
1531  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1532       GVI != E; ) {
1533    GlobalVariable *GV = GVI++;
1534    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1535        GV->hasInitializer())
1536      Changed |= ProcessInternalGlobal(GV, GVI);
1537  }
1538  return Changed;
1539}
1540
1541/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1542/// initializers have an init priority of 65535.
1543GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1544  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1545       I != E; ++I)
1546    if (I->getName() == "llvm.global_ctors") {
1547      // Found it, verify it's an array of { int, void()* }.
1548      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1549      if (!ATy) return 0;
1550      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1551      if (!STy || STy->getNumElements() != 2 ||
1552          STy->getElementType(0) != Type::Int32Ty) return 0;
1553      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1554      if (!PFTy) return 0;
1555      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1556      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1557          FTy->getNumParams() != 0)
1558        return 0;
1559
1560      // Verify that the initializer is simple enough for us to handle.
1561      if (!I->hasInitializer()) return 0;
1562      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1563      if (!CA) return 0;
1564      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1565        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1566          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1567            continue;
1568
1569          // Must have a function or null ptr.
1570          if (!isa<Function>(CS->getOperand(1)))
1571            return 0;
1572
1573          // Init priority must be standard.
1574          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1575          if (!CI || CI->getZExtValue() != 65535)
1576            return 0;
1577        } else {
1578          return 0;
1579        }
1580
1581      return I;
1582    }
1583  return 0;
1584}
1585
1586/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1587/// return a list of the functions and null terminator as a vector.
1588static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1589  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1590  std::vector<Function*> Result;
1591  Result.reserve(CA->getNumOperands());
1592  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1593    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1594    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1595  }
1596  return Result;
1597}
1598
1599/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1600/// specified array, returning the new global to use.
1601static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1602                                          const std::vector<Function*> &Ctors) {
1603  // If we made a change, reassemble the initializer list.
1604  std::vector<Constant*> CSVals;
1605  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1606  CSVals.push_back(0);
1607
1608  // Create the new init list.
1609  std::vector<Constant*> CAList;
1610  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1611    if (Ctors[i]) {
1612      CSVals[1] = Ctors[i];
1613    } else {
1614      const Type *FTy = FunctionType::get(Type::VoidTy,
1615                                          std::vector<const Type*>(), false);
1616      const PointerType *PFTy = PointerType::get(FTy);
1617      CSVals[1] = Constant::getNullValue(PFTy);
1618      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1619    }
1620    CAList.push_back(ConstantStruct::get(CSVals));
1621  }
1622
1623  // Create the array initializer.
1624  const Type *StructTy =
1625    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1626  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1627                                    CAList);
1628
1629  // If we didn't change the number of elements, don't create a new GV.
1630  if (CA->getType() == GCL->getInitializer()->getType()) {
1631    GCL->setInitializer(CA);
1632    return GCL;
1633  }
1634
1635  // Create the new global and insert it next to the existing list.
1636  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1637                                           GCL->getLinkage(), CA, "",
1638                                           (Module *)NULL,
1639                                           GCL->isThreadLocal());
1640  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1641  NGV->takeName(GCL);
1642
1643  // Nuke the old list, replacing any uses with the new one.
1644  if (!GCL->use_empty()) {
1645    Constant *V = NGV;
1646    if (V->getType() != GCL->getType())
1647      V = ConstantExpr::getBitCast(V, GCL->getType());
1648    GCL->replaceAllUsesWith(V);
1649  }
1650  GCL->eraseFromParent();
1651
1652  if (Ctors.size())
1653    return NGV;
1654  else
1655    return 0;
1656}
1657
1658
1659static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1660                        Value *V) {
1661  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1662  Constant *R = ComputedValues[V];
1663  assert(R && "Reference to an uncomputed value!");
1664  return R;
1665}
1666
1667/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1668/// enough for us to understand.  In particular, if it is a cast of something,
1669/// we punt.  We basically just support direct accesses to globals and GEP's of
1670/// globals.  This should be kept up to date with CommitValueTo.
1671static bool isSimpleEnoughPointerToCommit(Constant *C) {
1672  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1673    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1674      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1675    return !GV->isDeclaration();  // reject external globals.
1676  }
1677  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1678    // Handle a constantexpr gep.
1679    if (CE->getOpcode() == Instruction::GetElementPtr &&
1680        isa<GlobalVariable>(CE->getOperand(0))) {
1681      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1682      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1683        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1684      return GV->hasInitializer() &&
1685             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1686    }
1687  return false;
1688}
1689
1690/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1691/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1692/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1693static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1694                                   ConstantExpr *Addr, unsigned OpNo) {
1695  // Base case of the recursion.
1696  if (OpNo == Addr->getNumOperands()) {
1697    assert(Val->getType() == Init->getType() && "Type mismatch!");
1698    return Val;
1699  }
1700
1701  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1702    std::vector<Constant*> Elts;
1703
1704    // Break up the constant into its elements.
1705    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1706      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1707        Elts.push_back(CS->getOperand(i));
1708    } else if (isa<ConstantAggregateZero>(Init)) {
1709      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1710        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1711    } else if (isa<UndefValue>(Init)) {
1712      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1713        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1714    } else {
1715      assert(0 && "This code is out of sync with "
1716             " ConstantFoldLoadThroughGEPConstantExpr");
1717    }
1718
1719    // Replace the element that we are supposed to.
1720    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1721    unsigned Idx = CU->getZExtValue();
1722    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1723    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1724
1725    // Return the modified struct.
1726    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1727  } else {
1728    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1729    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1730
1731    // Break up the array into elements.
1732    std::vector<Constant*> Elts;
1733    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1734      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1735        Elts.push_back(CA->getOperand(i));
1736    } else if (isa<ConstantAggregateZero>(Init)) {
1737      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1738      Elts.assign(ATy->getNumElements(), Elt);
1739    } else if (isa<UndefValue>(Init)) {
1740      Constant *Elt = UndefValue::get(ATy->getElementType());
1741      Elts.assign(ATy->getNumElements(), Elt);
1742    } else {
1743      assert(0 && "This code is out of sync with "
1744             " ConstantFoldLoadThroughGEPConstantExpr");
1745    }
1746
1747    assert(CI->getZExtValue() < ATy->getNumElements());
1748    Elts[CI->getZExtValue()] =
1749      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1750    return ConstantArray::get(ATy, Elts);
1751  }
1752}
1753
1754/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1755/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1756static void CommitValueTo(Constant *Val, Constant *Addr) {
1757  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1758    assert(GV->hasInitializer());
1759    GV->setInitializer(Val);
1760    return;
1761  }
1762
1763  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1764  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1765
1766  Constant *Init = GV->getInitializer();
1767  Init = EvaluateStoreInto(Init, Val, CE, 2);
1768  GV->setInitializer(Init);
1769}
1770
1771/// ComputeLoadResult - Return the value that would be computed by a load from
1772/// P after the stores reflected by 'memory' have been performed.  If we can't
1773/// decide, return null.
1774static Constant *ComputeLoadResult(Constant *P,
1775                                const std::map<Constant*, Constant*> &Memory) {
1776  // If this memory location has been recently stored, use the stored value: it
1777  // is the most up-to-date.
1778  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1779  if (I != Memory.end()) return I->second;
1780
1781  // Access it.
1782  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1783    if (GV->hasInitializer())
1784      return GV->getInitializer();
1785    return 0;
1786  }
1787
1788  // Handle a constantexpr getelementptr.
1789  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1790    if (CE->getOpcode() == Instruction::GetElementPtr &&
1791        isa<GlobalVariable>(CE->getOperand(0))) {
1792      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1793      if (GV->hasInitializer())
1794        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1795    }
1796
1797  return 0;  // don't know how to evaluate.
1798}
1799
1800/// EvaluateFunction - Evaluate a call to function F, returning true if
1801/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1802/// arguments for the function.
1803static bool EvaluateFunction(Function *F, Constant *&RetVal,
1804                             const std::vector<Constant*> &ActualArgs,
1805                             std::vector<Function*> &CallStack,
1806                             std::map<Constant*, Constant*> &MutatedMemory,
1807                             std::vector<GlobalVariable*> &AllocaTmps) {
1808  // Check to see if this function is already executing (recursion).  If so,
1809  // bail out.  TODO: we might want to accept limited recursion.
1810  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1811    return false;
1812
1813  CallStack.push_back(F);
1814
1815  /// Values - As we compute SSA register values, we store their contents here.
1816  std::map<Value*, Constant*> Values;
1817
1818  // Initialize arguments to the incoming values specified.
1819  unsigned ArgNo = 0;
1820  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1821       ++AI, ++ArgNo)
1822    Values[AI] = ActualArgs[ArgNo];
1823
1824  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1825  /// we can only evaluate any one basic block at most once.  This set keeps
1826  /// track of what we have executed so we can detect recursive cases etc.
1827  std::set<BasicBlock*> ExecutedBlocks;
1828
1829  // CurInst - The current instruction we're evaluating.
1830  BasicBlock::iterator CurInst = F->begin()->begin();
1831
1832  // This is the main evaluation loop.
1833  while (1) {
1834    Constant *InstResult = 0;
1835
1836    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1837      if (SI->isVolatile()) return false;  // no volatile accesses.
1838      Constant *Ptr = getVal(Values, SI->getOperand(1));
1839      if (!isSimpleEnoughPointerToCommit(Ptr))
1840        // If this is too complex for us to commit, reject it.
1841        return false;
1842      Constant *Val = getVal(Values, SI->getOperand(0));
1843      MutatedMemory[Ptr] = Val;
1844    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1845      InstResult = ConstantExpr::get(BO->getOpcode(),
1846                                     getVal(Values, BO->getOperand(0)),
1847                                     getVal(Values, BO->getOperand(1)));
1848    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1849      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1850                                            getVal(Values, CI->getOperand(0)),
1851                                            getVal(Values, CI->getOperand(1)));
1852    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
1853      InstResult = ConstantExpr::getCast(CI->getOpcode(),
1854                                         getVal(Values, CI->getOperand(0)),
1855                                         CI->getType());
1856    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
1857      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
1858                                           getVal(Values, SI->getOperand(1)),
1859                                           getVal(Values, SI->getOperand(2)));
1860    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
1861      Constant *P = getVal(Values, GEP->getOperand(0));
1862      SmallVector<Constant*, 8> GEPOps;
1863      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1864        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
1865      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
1866    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
1867      if (LI->isVolatile()) return false;  // no volatile accesses.
1868      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
1869                                     MutatedMemory);
1870      if (InstResult == 0) return false; // Could not evaluate load.
1871    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
1872      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
1873      const Type *Ty = AI->getType()->getElementType();
1874      AllocaTmps.push_back(new GlobalVariable(Ty, false,
1875                                              GlobalValue::InternalLinkage,
1876                                              UndefValue::get(Ty),
1877                                              AI->getName()));
1878      InstResult = AllocaTmps.back();
1879    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
1880      // Cannot handle inline asm.
1881      if (isa<InlineAsm>(CI->getOperand(0))) return false;
1882
1883      // Resolve function pointers.
1884      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
1885      if (!Callee) return false;  // Cannot resolve.
1886
1887      std::vector<Constant*> Formals;
1888      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1889        Formals.push_back(getVal(Values, CI->getOperand(i)));
1890
1891      if (Callee->isDeclaration()) {
1892        // If this is a function we can constant fold, do it.
1893        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
1894                                           Formals.size())) {
1895          InstResult = C;
1896        } else {
1897          return false;
1898        }
1899      } else {
1900        if (Callee->getFunctionType()->isVarArg())
1901          return false;
1902
1903        Constant *RetVal;
1904
1905        // Execute the call, if successful, use the return value.
1906        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
1907                              MutatedMemory, AllocaTmps))
1908          return false;
1909        InstResult = RetVal;
1910      }
1911    } else if (isa<TerminatorInst>(CurInst)) {
1912      BasicBlock *NewBB = 0;
1913      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
1914        if (BI->isUnconditional()) {
1915          NewBB = BI->getSuccessor(0);
1916        } else {
1917          ConstantInt *Cond =
1918            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
1919          if (!Cond) return false;  // Cannot determine.
1920
1921          NewBB = BI->getSuccessor(!Cond->getZExtValue());
1922        }
1923      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
1924        ConstantInt *Val =
1925          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
1926        if (!Val) return false;  // Cannot determine.
1927        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
1928      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
1929        if (RI->getNumOperands())
1930          RetVal = getVal(Values, RI->getOperand(0));
1931
1932        CallStack.pop_back();  // return from fn.
1933        return true;  // We succeeded at evaluating this ctor!
1934      } else {
1935        // invoke, unwind, unreachable.
1936        return false;  // Cannot handle this terminator.
1937      }
1938
1939      // Okay, we succeeded in evaluating this control flow.  See if we have
1940      // executed the new block before.  If so, we have a looping function,
1941      // which we cannot evaluate in reasonable time.
1942      if (!ExecutedBlocks.insert(NewBB).second)
1943        return false;  // looped!
1944
1945      // Okay, we have never been in this block before.  Check to see if there
1946      // are any PHI nodes.  If so, evaluate them with information about where
1947      // we came from.
1948      BasicBlock *OldBB = CurInst->getParent();
1949      CurInst = NewBB->begin();
1950      PHINode *PN;
1951      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
1952        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
1953
1954      // Do NOT increment CurInst.  We know that the terminator had no value.
1955      continue;
1956    } else {
1957      // Did not know how to evaluate this!
1958      return false;
1959    }
1960
1961    if (!CurInst->use_empty())
1962      Values[CurInst] = InstResult;
1963
1964    // Advance program counter.
1965    ++CurInst;
1966  }
1967}
1968
1969/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
1970/// we can.  Return true if we can, false otherwise.
1971static bool EvaluateStaticConstructor(Function *F) {
1972  /// MutatedMemory - For each store we execute, we update this map.  Loads
1973  /// check this to get the most up-to-date value.  If evaluation is successful,
1974  /// this state is committed to the process.
1975  std::map<Constant*, Constant*> MutatedMemory;
1976
1977  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
1978  /// to represent its body.  This vector is needed so we can delete the
1979  /// temporary globals when we are done.
1980  std::vector<GlobalVariable*> AllocaTmps;
1981
1982  /// CallStack - This is used to detect recursion.  In pathological situations
1983  /// we could hit exponential behavior, but at least there is nothing
1984  /// unbounded.
1985  std::vector<Function*> CallStack;
1986
1987  // Call the function.
1988  Constant *RetValDummy;
1989  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
1990                                       CallStack, MutatedMemory, AllocaTmps);
1991  if (EvalSuccess) {
1992    // We succeeded at evaluation: commit the result.
1993    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
1994         << F->getName() << "' to " << MutatedMemory.size()
1995         << " stores.\n";
1996    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
1997         E = MutatedMemory.end(); I != E; ++I)
1998      CommitValueTo(I->second, I->first);
1999  }
2000
2001  // At this point, we are done interpreting.  If we created any 'alloca'
2002  // temporaries, release them now.
2003  while (!AllocaTmps.empty()) {
2004    GlobalVariable *Tmp = AllocaTmps.back();
2005    AllocaTmps.pop_back();
2006
2007    // If there are still users of the alloca, the program is doing something
2008    // silly, e.g. storing the address of the alloca somewhere and using it
2009    // later.  Since this is undefined, we'll just make it be null.
2010    if (!Tmp->use_empty())
2011      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2012    delete Tmp;
2013  }
2014
2015  return EvalSuccess;
2016}
2017
2018
2019
2020/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2021/// Return true if anything changed.
2022bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2023  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2024  bool MadeChange = false;
2025  if (Ctors.empty()) return false;
2026
2027  // Loop over global ctors, optimizing them when we can.
2028  for (unsigned i = 0; i != Ctors.size(); ++i) {
2029    Function *F = Ctors[i];
2030    // Found a null terminator in the middle of the list, prune off the rest of
2031    // the list.
2032    if (F == 0) {
2033      if (i != Ctors.size()-1) {
2034        Ctors.resize(i+1);
2035        MadeChange = true;
2036      }
2037      break;
2038    }
2039
2040    // We cannot simplify external ctor functions.
2041    if (F->empty()) continue;
2042
2043    // If we can evaluate the ctor at compile time, do.
2044    if (EvaluateStaticConstructor(F)) {
2045      Ctors.erase(Ctors.begin()+i);
2046      MadeChange = true;
2047      --i;
2048      ++NumCtorsEvaluated;
2049      continue;
2050    }
2051  }
2052
2053  if (!MadeChange) return false;
2054
2055  GCL = InstallGlobalCtors(GCL, Ctors);
2056  return true;
2057}
2058
2059
2060bool GlobalOpt::runOnModule(Module &M) {
2061  bool Changed = false;
2062
2063  // Try to find the llvm.globalctors list.
2064  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2065
2066  bool LocalChange = true;
2067  while (LocalChange) {
2068    LocalChange = false;
2069
2070    // Delete functions that are trivially dead, ccc -> fastcc
2071    LocalChange |= OptimizeFunctions(M);
2072
2073    // Optimize global_ctors list.
2074    if (GlobalCtors)
2075      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2076
2077    // Optimize non-address-taken globals.
2078    LocalChange |= OptimizeGlobalVars(M);
2079    Changed |= LocalChange;
2080  }
2081
2082  // TODO: Move all global ctors functions to the end of the module for code
2083  // layout.
2084
2085  return Changed;
2086}
2087