GlobalOpt.cpp revision 3302c000f59d2b6f9e4e4841e3b0bc953fb12005
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46STATISTIC(NumDeleted   , "Number of globals deleted");
47STATISTIC(NumFnDeleted , "Number of functions deleted");
48STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49STATISTIC(NumLocalized , "Number of globals localized");
50STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56
57namespace {
58  struct GlobalOpt : public ModulePass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60    }
61    static char ID; // Pass identification, replacement for typeid
62    GlobalOpt() : ModulePass(ID) {}
63
64    bool runOnModule(Module &M);
65
66  private:
67    GlobalVariable *FindGlobalCtors(Module &M);
68    bool OptimizeFunctions(Module &M);
69    bool OptimizeGlobalVars(Module &M);
70    bool OptimizeGlobalAliases(Module &M);
71    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
72    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
73  };
74}
75
76char GlobalOpt::ID = 0;
77INITIALIZE_PASS(GlobalOpt, "globalopt",
78                "Global Variable Optimizer", false, false)
79
80ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
81
82namespace {
83
84/// GlobalStatus - As we analyze each global, keep track of some information
85/// about it.  If we find out that the address of the global is taken, none of
86/// this info will be accurate.
87struct GlobalStatus {
88  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
89  /// loaded it can be deleted.
90  bool isLoaded;
91
92  /// StoredType - Keep track of what stores to the global look like.
93  ///
94  enum StoredType {
95    /// NotStored - There is no store to this global.  It can thus be marked
96    /// constant.
97    NotStored,
98
99    /// isInitializerStored - This global is stored to, but the only thing
100    /// stored is the constant it was initialized with.  This is only tracked
101    /// for scalar globals.
102    isInitializerStored,
103
104    /// isStoredOnce - This global is stored to, but only its initializer and
105    /// one other value is ever stored to it.  If this global isStoredOnce, we
106    /// track the value stored to it in StoredOnceValue below.  This is only
107    /// tracked for scalar globals.
108    isStoredOnce,
109
110    /// isStored - This global is stored to by multiple values or something else
111    /// that we cannot track.
112    isStored
113  } StoredType;
114
115  /// StoredOnceValue - If only one value (besides the initializer constant) is
116  /// ever stored to this global, keep track of what value it is.
117  Value *StoredOnceValue;
118
119  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
120  /// null/false.  When the first accessing function is noticed, it is recorded.
121  /// When a second different accessing function is noticed,
122  /// HasMultipleAccessingFunctions is set to true.
123  const Function *AccessingFunction;
124  bool HasMultipleAccessingFunctions;
125
126  /// HasNonInstructionUser - Set to true if this global has a user that is not
127  /// an instruction (e.g. a constant expr or GV initializer).
128  bool HasNonInstructionUser;
129
130  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
131  bool HasPHIUser;
132
133  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
134                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
135                   HasNonInstructionUser(false), HasPHIUser(false) {}
136};
137
138}
139
140// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
141// by constants itself.  Note that constants cannot be cyclic, so this test is
142// pretty easy to implement recursively.
143//
144static bool SafeToDestroyConstant(const Constant *C) {
145  if (isa<GlobalValue>(C)) return false;
146
147  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
148       ++UI)
149    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
150      if (!SafeToDestroyConstant(CU)) return false;
151    } else
152      return false;
153  return true;
154}
155
156
157/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
158/// structure.  If the global has its address taken, return true to indicate we
159/// can't do anything with it.
160///
161static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
162                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
163  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
164       ++UI) {
165    const User *U = *UI;
166    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
167      GS.HasNonInstructionUser = true;
168      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
169    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
170      if (!GS.HasMultipleAccessingFunctions) {
171        const Function *F = I->getParent()->getParent();
172        if (GS.AccessingFunction == 0)
173          GS.AccessingFunction = F;
174        else if (GS.AccessingFunction != F)
175          GS.HasMultipleAccessingFunctions = true;
176      }
177      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
178        GS.isLoaded = true;
179        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
180      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
181        // Don't allow a store OF the address, only stores TO the address.
182        if (SI->getOperand(0) == V) return true;
183
184        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
185
186        // If this is a direct store to the global (i.e., the global is a scalar
187        // value, not an aggregate), keep more specific information about
188        // stores.
189        if (GS.StoredType != GlobalStatus::isStored) {
190          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
191                                                           SI->getOperand(1))) {
192            Value *StoredVal = SI->getOperand(0);
193            if (StoredVal == GV->getInitializer()) {
194              if (GS.StoredType < GlobalStatus::isInitializerStored)
195                GS.StoredType = GlobalStatus::isInitializerStored;
196            } else if (isa<LoadInst>(StoredVal) &&
197                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
198              if (GS.StoredType < GlobalStatus::isInitializerStored)
199                GS.StoredType = GlobalStatus::isInitializerStored;
200            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
201              GS.StoredType = GlobalStatus::isStoredOnce;
202              GS.StoredOnceValue = StoredVal;
203            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
204                       GS.StoredOnceValue == StoredVal) {
205              // noop.
206            } else {
207              GS.StoredType = GlobalStatus::isStored;
208            }
209          } else {
210            GS.StoredType = GlobalStatus::isStored;
211          }
212        }
213      } else if (isa<GetElementPtrInst>(I)) {
214        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
215      } else if (isa<SelectInst>(I)) {
216        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
217      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
218        // PHI nodes we can check just like select or GEP instructions, but we
219        // have to be careful about infinite recursion.
220        if (PHIUsers.insert(PN))  // Not already visited.
221          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
222        GS.HasPHIUser = true;
223      } else if (isa<CmpInst>(I)) {
224        // Nothing to analyse.
225      } else if (isa<MemTransferInst>(I)) {
226        const MemTransferInst *MTI = cast<MemTransferInst>(I);
227        if (MTI->getArgOperand(0) == V)
228          GS.StoredType = GlobalStatus::isStored;
229        if (MTI->getArgOperand(1) == V)
230          GS.isLoaded = true;
231      } else if (isa<MemSetInst>(I)) {
232        assert(cast<MemSetInst>(I)->getArgOperand(0) == V &&
233               "Memset only takes one pointer!");
234        GS.StoredType = GlobalStatus::isStored;
235      } else {
236        return true;  // Any other non-load instruction might take address!
237      }
238    } else if (const Constant *C = dyn_cast<Constant>(U)) {
239      GS.HasNonInstructionUser = true;
240      // We might have a dead and dangling constant hanging off of here.
241      if (!SafeToDestroyConstant(C))
242        return true;
243    } else {
244      GS.HasNonInstructionUser = true;
245      // Otherwise must be some other user.
246      return true;
247    }
248  }
249
250  return false;
251}
252
253static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
254  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
255  if (!CI) return 0;
256  unsigned IdxV = CI->getZExtValue();
257
258  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
259    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
260  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
261    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
262  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
263    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
264  } else if (isa<ConstantAggregateZero>(Agg)) {
265    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
266      if (IdxV < STy->getNumElements())
267        return Constant::getNullValue(STy->getElementType(IdxV));
268    } else if (const SequentialType *STy =
269               dyn_cast<SequentialType>(Agg->getType())) {
270      return Constant::getNullValue(STy->getElementType());
271    }
272  } else if (isa<UndefValue>(Agg)) {
273    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
274      if (IdxV < STy->getNumElements())
275        return UndefValue::get(STy->getElementType(IdxV));
276    } else if (const SequentialType *STy =
277               dyn_cast<SequentialType>(Agg->getType())) {
278      return UndefValue::get(STy->getElementType());
279    }
280  }
281  return 0;
282}
283
284
285/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
286/// users of the global, cleaning up the obvious ones.  This is largely just a
287/// quick scan over the use list to clean up the easy and obvious cruft.  This
288/// returns true if it made a change.
289static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
290  bool Changed = false;
291  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
292    User *U = *UI++;
293
294    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
295      if (Init) {
296        // Replace the load with the initializer.
297        LI->replaceAllUsesWith(Init);
298        LI->eraseFromParent();
299        Changed = true;
300      }
301    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
302      // Store must be unreachable or storing Init into the global.
303      SI->eraseFromParent();
304      Changed = true;
305    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
306      if (CE->getOpcode() == Instruction::GetElementPtr) {
307        Constant *SubInit = 0;
308        if (Init)
309          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
310        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
311      } else if (CE->getOpcode() == Instruction::BitCast &&
312                 CE->getType()->isPointerTy()) {
313        // Pointer cast, delete any stores and memsets to the global.
314        Changed |= CleanupConstantGlobalUsers(CE, 0);
315      }
316
317      if (CE->use_empty()) {
318        CE->destroyConstant();
319        Changed = true;
320      }
321    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
322      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
323      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
324      // and will invalidate our notion of what Init is.
325      Constant *SubInit = 0;
326      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
327        ConstantExpr *CE =
328          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
329        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
330          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
331      }
332      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
333
334      if (GEP->use_empty()) {
335        GEP->eraseFromParent();
336        Changed = true;
337      }
338    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
339      if (MI->getRawDest() == V) {
340        MI->eraseFromParent();
341        Changed = true;
342      }
343
344    } else if (Constant *C = dyn_cast<Constant>(U)) {
345      // If we have a chain of dead constantexprs or other things dangling from
346      // us, and if they are all dead, nuke them without remorse.
347      if (SafeToDestroyConstant(C)) {
348        C->destroyConstant();
349        // This could have invalidated UI, start over from scratch.
350        CleanupConstantGlobalUsers(V, Init);
351        return true;
352      }
353    }
354  }
355  return Changed;
356}
357
358/// isSafeSROAElementUse - Return true if the specified instruction is a safe
359/// user of a derived expression from a global that we want to SROA.
360static bool isSafeSROAElementUse(Value *V) {
361  // We might have a dead and dangling constant hanging off of here.
362  if (Constant *C = dyn_cast<Constant>(V))
363    return SafeToDestroyConstant(C);
364
365  Instruction *I = dyn_cast<Instruction>(V);
366  if (!I) return false;
367
368  // Loads are ok.
369  if (isa<LoadInst>(I)) return true;
370
371  // Stores *to* the pointer are ok.
372  if (StoreInst *SI = dyn_cast<StoreInst>(I))
373    return SI->getOperand(0) != V;
374
375  // Otherwise, it must be a GEP.
376  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
377  if (GEPI == 0) return false;
378
379  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
380      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
381    return false;
382
383  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
384       I != E; ++I)
385    if (!isSafeSROAElementUse(*I))
386      return false;
387  return true;
388}
389
390
391/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
392/// Look at it and its uses and decide whether it is safe to SROA this global.
393///
394static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
395  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
396  if (!isa<GetElementPtrInst>(U) &&
397      (!isa<ConstantExpr>(U) ||
398       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
399    return false;
400
401  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
402  // don't like < 3 operand CE's, and we don't like non-constant integer
403  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
404  // value of C.
405  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
406      !cast<Constant>(U->getOperand(1))->isNullValue() ||
407      !isa<ConstantInt>(U->getOperand(2)))
408    return false;
409
410  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
411  ++GEPI;  // Skip over the pointer index.
412
413  // If this is a use of an array allocation, do a bit more checking for sanity.
414  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
415    uint64_t NumElements = AT->getNumElements();
416    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
417
418    // Check to make sure that index falls within the array.  If not,
419    // something funny is going on, so we won't do the optimization.
420    //
421    if (Idx->getZExtValue() >= NumElements)
422      return false;
423
424    // We cannot scalar repl this level of the array unless any array
425    // sub-indices are in-range constants.  In particular, consider:
426    // A[0][i].  We cannot know that the user isn't doing invalid things like
427    // allowing i to index an out-of-range subscript that accesses A[1].
428    //
429    // Scalar replacing *just* the outer index of the array is probably not
430    // going to be a win anyway, so just give up.
431    for (++GEPI; // Skip array index.
432         GEPI != E;
433         ++GEPI) {
434      uint64_t NumElements;
435      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
436        NumElements = SubArrayTy->getNumElements();
437      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
438        NumElements = SubVectorTy->getNumElements();
439      else {
440        assert((*GEPI)->isStructTy() &&
441               "Indexed GEP type is not array, vector, or struct!");
442        continue;
443      }
444
445      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
446      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
447        return false;
448    }
449  }
450
451  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
452    if (!isSafeSROAElementUse(*I))
453      return false;
454  return true;
455}
456
457/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
458/// is safe for us to perform this transformation.
459///
460static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
461  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
462       UI != E; ++UI) {
463    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
464      return false;
465  }
466  return true;
467}
468
469
470/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
471/// variable.  This opens the door for other optimizations by exposing the
472/// behavior of the program in a more fine-grained way.  We have determined that
473/// this transformation is safe already.  We return the first global variable we
474/// insert so that the caller can reprocess it.
475static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
476  // Make sure this global only has simple uses that we can SRA.
477  if (!GlobalUsersSafeToSRA(GV))
478    return 0;
479
480  assert(GV->hasLocalLinkage() && !GV->isConstant());
481  Constant *Init = GV->getInitializer();
482  const Type *Ty = Init->getType();
483
484  std::vector<GlobalVariable*> NewGlobals;
485  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
486
487  // Get the alignment of the global, either explicit or target-specific.
488  unsigned StartAlignment = GV->getAlignment();
489  if (StartAlignment == 0)
490    StartAlignment = TD.getABITypeAlignment(GV->getType());
491
492  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
493    NewGlobals.reserve(STy->getNumElements());
494    const StructLayout &Layout = *TD.getStructLayout(STy);
495    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
496      Constant *In = getAggregateConstantElement(Init,
497                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
498      assert(In && "Couldn't get element of initializer?");
499      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
500                                               GlobalVariable::InternalLinkage,
501                                               In, GV->getName()+"."+Twine(i),
502                                               GV->isThreadLocal(),
503                                              GV->getType()->getAddressSpace());
504      Globals.insert(GV, NGV);
505      NewGlobals.push_back(NGV);
506
507      // Calculate the known alignment of the field.  If the original aggregate
508      // had 256 byte alignment for example, something might depend on that:
509      // propagate info to each field.
510      uint64_t FieldOffset = Layout.getElementOffset(i);
511      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
512      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
513        NGV->setAlignment(NewAlign);
514    }
515  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
516    unsigned NumElements = 0;
517    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
518      NumElements = ATy->getNumElements();
519    else
520      NumElements = cast<VectorType>(STy)->getNumElements();
521
522    if (NumElements > 16 && GV->hasNUsesOrMore(16))
523      return 0; // It's not worth it.
524    NewGlobals.reserve(NumElements);
525
526    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
527    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
528    for (unsigned i = 0, e = NumElements; i != e; ++i) {
529      Constant *In = getAggregateConstantElement(Init,
530                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
531      assert(In && "Couldn't get element of initializer?");
532
533      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
534                                               GlobalVariable::InternalLinkage,
535                                               In, GV->getName()+"."+Twine(i),
536                                               GV->isThreadLocal(),
537                                              GV->getType()->getAddressSpace());
538      Globals.insert(GV, NGV);
539      NewGlobals.push_back(NGV);
540
541      // Calculate the known alignment of the field.  If the original aggregate
542      // had 256 byte alignment for example, something might depend on that:
543      // propagate info to each field.
544      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
545      if (NewAlign > EltAlign)
546        NGV->setAlignment(NewAlign);
547    }
548  }
549
550  if (NewGlobals.empty())
551    return 0;
552
553  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
554
555  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
556
557  // Loop over all of the uses of the global, replacing the constantexpr geps,
558  // with smaller constantexpr geps or direct references.
559  while (!GV->use_empty()) {
560    User *GEP = GV->use_back();
561    assert(((isa<ConstantExpr>(GEP) &&
562             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
563            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
564
565    // Ignore the 1th operand, which has to be zero or else the program is quite
566    // broken (undefined).  Get the 2nd operand, which is the structure or array
567    // index.
568    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
569    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
570
571    Value *NewPtr = NewGlobals[Val];
572
573    // Form a shorter GEP if needed.
574    if (GEP->getNumOperands() > 3) {
575      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
576        SmallVector<Constant*, 8> Idxs;
577        Idxs.push_back(NullInt);
578        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
579          Idxs.push_back(CE->getOperand(i));
580        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
581                                                &Idxs[0], Idxs.size());
582      } else {
583        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
584        SmallVector<Value*, 8> Idxs;
585        Idxs.push_back(NullInt);
586        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
587          Idxs.push_back(GEPI->getOperand(i));
588        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
589                                           GEPI->getName()+"."+Twine(Val),GEPI);
590      }
591    }
592    GEP->replaceAllUsesWith(NewPtr);
593
594    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
595      GEPI->eraseFromParent();
596    else
597      cast<ConstantExpr>(GEP)->destroyConstant();
598  }
599
600  // Delete the old global, now that it is dead.
601  Globals.erase(GV);
602  ++NumSRA;
603
604  // Loop over the new globals array deleting any globals that are obviously
605  // dead.  This can arise due to scalarization of a structure or an array that
606  // has elements that are dead.
607  unsigned FirstGlobal = 0;
608  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
609    if (NewGlobals[i]->use_empty()) {
610      Globals.erase(NewGlobals[i]);
611      if (FirstGlobal == i) ++FirstGlobal;
612    }
613
614  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
615}
616
617/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
618/// value will trap if the value is dynamically null.  PHIs keeps track of any
619/// phi nodes we've seen to avoid reprocessing them.
620static bool AllUsesOfValueWillTrapIfNull(const Value *V,
621                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
622  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
623       ++UI) {
624    const User *U = *UI;
625
626    if (isa<LoadInst>(U)) {
627      // Will trap.
628    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
629      if (SI->getOperand(0) == V) {
630        //cerr << "NONTRAPPING USE: " << *U;
631        return false;  // Storing the value.
632      }
633    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
634      if (CI->getCalledValue() != V) {
635        //cerr << "NONTRAPPING USE: " << *U;
636        return false;  // Not calling the ptr
637      }
638    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
639      if (II->getCalledValue() != V) {
640        //cerr << "NONTRAPPING USE: " << *U;
641        return false;  // Not calling the ptr
642      }
643    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
644      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
645    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
646      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
647    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
648      // If we've already seen this phi node, ignore it, it has already been
649      // checked.
650      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
651        return false;
652    } else if (isa<ICmpInst>(U) &&
653               isa<ConstantPointerNull>(UI->getOperand(1))) {
654      // Ignore icmp X, null
655    } else {
656      //cerr << "NONTRAPPING USE: " << *U;
657      return false;
658    }
659  }
660  return true;
661}
662
663/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
664/// from GV will trap if the loaded value is null.  Note that this also permits
665/// comparisons of the loaded value against null, as a special case.
666static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
667  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
668       UI != E; ++UI) {
669    const User *U = *UI;
670
671    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
672      SmallPtrSet<const PHINode*, 8> PHIs;
673      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
674        return false;
675    } else if (isa<StoreInst>(U)) {
676      // Ignore stores to the global.
677    } else {
678      // We don't know or understand this user, bail out.
679      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
680      return false;
681    }
682  }
683  return true;
684}
685
686static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
687  bool Changed = false;
688  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
689    Instruction *I = cast<Instruction>(*UI++);
690    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
691      LI->setOperand(0, NewV);
692      Changed = true;
693    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
694      if (SI->getOperand(1) == V) {
695        SI->setOperand(1, NewV);
696        Changed = true;
697      }
698    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
699      CallSite CS(I);
700      if (CS.getCalledValue() == V) {
701        // Calling through the pointer!  Turn into a direct call, but be careful
702        // that the pointer is not also being passed as an argument.
703        CS.setCalledFunction(NewV);
704        Changed = true;
705        bool PassedAsArg = false;
706        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
707          if (CS.getArgument(i) == V) {
708            PassedAsArg = true;
709            CS.setArgument(i, NewV);
710          }
711
712        if (PassedAsArg) {
713          // Being passed as an argument also.  Be careful to not invalidate UI!
714          UI = V->use_begin();
715        }
716      }
717    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
718      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
719                                ConstantExpr::getCast(CI->getOpcode(),
720                                                      NewV, CI->getType()));
721      if (CI->use_empty()) {
722        Changed = true;
723        CI->eraseFromParent();
724      }
725    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
726      // Should handle GEP here.
727      SmallVector<Constant*, 8> Idxs;
728      Idxs.reserve(GEPI->getNumOperands()-1);
729      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
730           i != e; ++i)
731        if (Constant *C = dyn_cast<Constant>(*i))
732          Idxs.push_back(C);
733        else
734          break;
735      if (Idxs.size() == GEPI->getNumOperands()-1)
736        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
737                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
738                                                        Idxs.size()));
739      if (GEPI->use_empty()) {
740        Changed = true;
741        GEPI->eraseFromParent();
742      }
743    }
744  }
745
746  return Changed;
747}
748
749
750/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
751/// value stored into it.  If there are uses of the loaded value that would trap
752/// if the loaded value is dynamically null, then we know that they cannot be
753/// reachable with a null optimize away the load.
754static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
755  bool Changed = false;
756
757  // Keep track of whether we are able to remove all the uses of the global
758  // other than the store that defines it.
759  bool AllNonStoreUsesGone = true;
760
761  // Replace all uses of loads with uses of uses of the stored value.
762  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
763    User *GlobalUser = *GUI++;
764    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
765      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
766      // If we were able to delete all uses of the loads
767      if (LI->use_empty()) {
768        LI->eraseFromParent();
769        Changed = true;
770      } else {
771        AllNonStoreUsesGone = false;
772      }
773    } else if (isa<StoreInst>(GlobalUser)) {
774      // Ignore the store that stores "LV" to the global.
775      assert(GlobalUser->getOperand(1) == GV &&
776             "Must be storing *to* the global");
777    } else {
778      AllNonStoreUsesGone = false;
779
780      // If we get here we could have other crazy uses that are transitively
781      // loaded.
782      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
783              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
784    }
785  }
786
787  if (Changed) {
788    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
789    ++NumGlobUses;
790  }
791
792  // If we nuked all of the loads, then none of the stores are needed either,
793  // nor is the global.
794  if (AllNonStoreUsesGone) {
795    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
796    CleanupConstantGlobalUsers(GV, 0);
797    if (GV->use_empty()) {
798      GV->eraseFromParent();
799      ++NumDeleted;
800    }
801    Changed = true;
802  }
803  return Changed;
804}
805
806/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
807/// instructions that are foldable.
808static void ConstantPropUsersOf(Value *V) {
809  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
810    if (Instruction *I = dyn_cast<Instruction>(*UI++))
811      if (Constant *NewC = ConstantFoldInstruction(I)) {
812        I->replaceAllUsesWith(NewC);
813
814        // Advance UI to the next non-I use to avoid invalidating it!
815        // Instructions could multiply use V.
816        while (UI != E && *UI == I)
817          ++UI;
818        I->eraseFromParent();
819      }
820}
821
822/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
823/// variable, and transforms the program as if it always contained the result of
824/// the specified malloc.  Because it is always the result of the specified
825/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
826/// malloc into a global, and any loads of GV as uses of the new global.
827static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
828                                                     CallInst *CI,
829                                                     const Type *AllocTy,
830                                                     ConstantInt *NElements,
831                                                     TargetData* TD) {
832  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
833
834  const Type *GlobalType;
835  if (NElements->getZExtValue() == 1)
836    GlobalType = AllocTy;
837  else
838    // If we have an array allocation, the global variable is of an array.
839    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
840
841  // Create the new global variable.  The contents of the malloc'd memory is
842  // undefined, so initialize with an undef value.
843  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
844                                             GlobalType, false,
845                                             GlobalValue::InternalLinkage,
846                                             UndefValue::get(GlobalType),
847                                             GV->getName()+".body",
848                                             GV,
849                                             GV->isThreadLocal());
850
851  // If there are bitcast users of the malloc (which is typical, usually we have
852  // a malloc + bitcast) then replace them with uses of the new global.  Update
853  // other users to use the global as well.
854  BitCastInst *TheBC = 0;
855  while (!CI->use_empty()) {
856    Instruction *User = cast<Instruction>(CI->use_back());
857    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
858      if (BCI->getType() == NewGV->getType()) {
859        BCI->replaceAllUsesWith(NewGV);
860        BCI->eraseFromParent();
861      } else {
862        BCI->setOperand(0, NewGV);
863      }
864    } else {
865      if (TheBC == 0)
866        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
867      User->replaceUsesOfWith(CI, TheBC);
868    }
869  }
870
871  Constant *RepValue = NewGV;
872  if (NewGV->getType() != GV->getType()->getElementType())
873    RepValue = ConstantExpr::getBitCast(RepValue,
874                                        GV->getType()->getElementType());
875
876  // If there is a comparison against null, we will insert a global bool to
877  // keep track of whether the global was initialized yet or not.
878  GlobalVariable *InitBool =
879    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
880                       GlobalValue::InternalLinkage,
881                       ConstantInt::getFalse(GV->getContext()),
882                       GV->getName()+".init", GV->isThreadLocal());
883  bool InitBoolUsed = false;
884
885  // Loop over all uses of GV, processing them in turn.
886  while (!GV->use_empty()) {
887    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
888      // The global is initialized when the store to it occurs.
889      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
890      SI->eraseFromParent();
891      continue;
892    }
893
894    LoadInst *LI = cast<LoadInst>(GV->use_back());
895    while (!LI->use_empty()) {
896      Use &LoadUse = LI->use_begin().getUse();
897      if (!isa<ICmpInst>(LoadUse.getUser())) {
898        LoadUse = RepValue;
899        continue;
900      }
901
902      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
903      // Replace the cmp X, 0 with a use of the bool value.
904      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
905      InitBoolUsed = true;
906      switch (ICI->getPredicate()) {
907      default: llvm_unreachable("Unknown ICmp Predicate!");
908      case ICmpInst::ICMP_ULT:
909      case ICmpInst::ICMP_SLT:   // X < null -> always false
910        LV = ConstantInt::getFalse(GV->getContext());
911        break;
912      case ICmpInst::ICMP_ULE:
913      case ICmpInst::ICMP_SLE:
914      case ICmpInst::ICMP_EQ:
915        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
916        break;
917      case ICmpInst::ICMP_NE:
918      case ICmpInst::ICMP_UGE:
919      case ICmpInst::ICMP_SGE:
920      case ICmpInst::ICMP_UGT:
921      case ICmpInst::ICMP_SGT:
922        break;  // no change.
923      }
924      ICI->replaceAllUsesWith(LV);
925      ICI->eraseFromParent();
926    }
927    LI->eraseFromParent();
928  }
929
930  // If the initialization boolean was used, insert it, otherwise delete it.
931  if (!InitBoolUsed) {
932    while (!InitBool->use_empty())  // Delete initializations
933      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
934    delete InitBool;
935  } else
936    GV->getParent()->getGlobalList().insert(GV, InitBool);
937
938  // Now the GV is dead, nuke it and the malloc..
939  GV->eraseFromParent();
940  CI->eraseFromParent();
941
942  // To further other optimizations, loop over all users of NewGV and try to
943  // constant prop them.  This will promote GEP instructions with constant
944  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
945  ConstantPropUsersOf(NewGV);
946  if (RepValue != NewGV)
947    ConstantPropUsersOf(RepValue);
948
949  return NewGV;
950}
951
952/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
953/// to make sure that there are no complex uses of V.  We permit simple things
954/// like dereferencing the pointer, but not storing through the address, unless
955/// it is to the specified global.
956static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
957                                                      const GlobalVariable *GV,
958                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
959  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
960       UI != E; ++UI) {
961    const Instruction *Inst = cast<Instruction>(*UI);
962
963    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
964      continue; // Fine, ignore.
965    }
966
967    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
968      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
969        return false;  // Storing the pointer itself... bad.
970      continue; // Otherwise, storing through it, or storing into GV... fine.
971    }
972
973    // Must index into the array and into the struct.
974    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
975      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
976        return false;
977      continue;
978    }
979
980    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
981      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
982      // cycles.
983      if (PHIs.insert(PN))
984        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
985          return false;
986      continue;
987    }
988
989    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
990      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
991        return false;
992      continue;
993    }
994
995    return false;
996  }
997  return true;
998}
999
1000/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1001/// somewhere.  Transform all uses of the allocation into loads from the
1002/// global and uses of the resultant pointer.  Further, delete the store into
1003/// GV.  This assumes that these value pass the
1004/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1005static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1006                                          GlobalVariable *GV) {
1007  while (!Alloc->use_empty()) {
1008    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1009    Instruction *InsertPt = U;
1010    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1011      // If this is the store of the allocation into the global, remove it.
1012      if (SI->getOperand(1) == GV) {
1013        SI->eraseFromParent();
1014        continue;
1015      }
1016    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1017      // Insert the load in the corresponding predecessor, not right before the
1018      // PHI.
1019      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1020    } else if (isa<BitCastInst>(U)) {
1021      // Must be bitcast between the malloc and store to initialize the global.
1022      ReplaceUsesOfMallocWithGlobal(U, GV);
1023      U->eraseFromParent();
1024      continue;
1025    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1026      // If this is a "GEP bitcast" and the user is a store to the global, then
1027      // just process it as a bitcast.
1028      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1029        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1030          if (SI->getOperand(1) == GV) {
1031            // Must be bitcast GEP between the malloc and store to initialize
1032            // the global.
1033            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1034            GEPI->eraseFromParent();
1035            continue;
1036          }
1037    }
1038
1039    // Insert a load from the global, and use it instead of the malloc.
1040    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1041    U->replaceUsesOfWith(Alloc, NL);
1042  }
1043}
1044
1045/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1046/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1047/// that index through the array and struct field, icmps of null, and PHIs.
1048static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1049                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1050                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1051  // We permit two users of the load: setcc comparing against the null
1052  // pointer, and a getelementptr of a specific form.
1053  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1054       ++UI) {
1055    const Instruction *User = cast<Instruction>(*UI);
1056
1057    // Comparison against null is ok.
1058    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1059      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1060        return false;
1061      continue;
1062    }
1063
1064    // getelementptr is also ok, but only a simple form.
1065    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1066      // Must index into the array and into the struct.
1067      if (GEPI->getNumOperands() < 3)
1068        return false;
1069
1070      // Otherwise the GEP is ok.
1071      continue;
1072    }
1073
1074    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1075      if (!LoadUsingPHIsPerLoad.insert(PN))
1076        // This means some phi nodes are dependent on each other.
1077        // Avoid infinite looping!
1078        return false;
1079      if (!LoadUsingPHIs.insert(PN))
1080        // If we have already analyzed this PHI, then it is safe.
1081        continue;
1082
1083      // Make sure all uses of the PHI are simple enough to transform.
1084      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1085                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1086        return false;
1087
1088      continue;
1089    }
1090
1091    // Otherwise we don't know what this is, not ok.
1092    return false;
1093  }
1094
1095  return true;
1096}
1097
1098
1099/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1100/// GV are simple enough to perform HeapSRA, return true.
1101static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1102                                                    Instruction *StoredVal) {
1103  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1104  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1105  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1106       UI != E; ++UI)
1107    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1108      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1109                                          LoadUsingPHIsPerLoad))
1110        return false;
1111      LoadUsingPHIsPerLoad.clear();
1112    }
1113
1114  // If we reach here, we know that all uses of the loads and transitive uses
1115  // (through PHI nodes) are simple enough to transform.  However, we don't know
1116  // that all inputs the to the PHI nodes are in the same equivalence sets.
1117  // Check to verify that all operands of the PHIs are either PHIS that can be
1118  // transformed, loads from GV, or MI itself.
1119  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1120       , E = LoadUsingPHIs.end(); I != E; ++I) {
1121    const PHINode *PN = *I;
1122    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1123      Value *InVal = PN->getIncomingValue(op);
1124
1125      // PHI of the stored value itself is ok.
1126      if (InVal == StoredVal) continue;
1127
1128      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1129        // One of the PHIs in our set is (optimistically) ok.
1130        if (LoadUsingPHIs.count(InPN))
1131          continue;
1132        return false;
1133      }
1134
1135      // Load from GV is ok.
1136      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1137        if (LI->getOperand(0) == GV)
1138          continue;
1139
1140      // UNDEF? NULL?
1141
1142      // Anything else is rejected.
1143      return false;
1144    }
1145  }
1146
1147  return true;
1148}
1149
1150static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1151               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1152                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1153  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1154
1155  if (FieldNo >= FieldVals.size())
1156    FieldVals.resize(FieldNo+1);
1157
1158  // If we already have this value, just reuse the previously scalarized
1159  // version.
1160  if (Value *FieldVal = FieldVals[FieldNo])
1161    return FieldVal;
1162
1163  // Depending on what instruction this is, we have several cases.
1164  Value *Result;
1165  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1166    // This is a scalarized version of the load from the global.  Just create
1167    // a new Load of the scalarized global.
1168    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1169                                           InsertedScalarizedValues,
1170                                           PHIsToRewrite),
1171                          LI->getName()+".f"+Twine(FieldNo), LI);
1172  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1173    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1174    // field.
1175    const StructType *ST =
1176      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1177
1178    Result =
1179     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1180                     PN->getName()+".f"+Twine(FieldNo), PN);
1181    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1182  } else {
1183    llvm_unreachable("Unknown usable value");
1184    Result = 0;
1185  }
1186
1187  return FieldVals[FieldNo] = Result;
1188}
1189
1190/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1191/// the load, rewrite the derived value to use the HeapSRoA'd load.
1192static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1193             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1194                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1195  // If this is a comparison against null, handle it.
1196  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1197    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1198    // If we have a setcc of the loaded pointer, we can use a setcc of any
1199    // field.
1200    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1201                                   InsertedScalarizedValues, PHIsToRewrite);
1202
1203    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1204                              Constant::getNullValue(NPtr->getType()),
1205                              SCI->getName());
1206    SCI->replaceAllUsesWith(New);
1207    SCI->eraseFromParent();
1208    return;
1209  }
1210
1211  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1212  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1213    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1214           && "Unexpected GEPI!");
1215
1216    // Load the pointer for this field.
1217    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1218    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1219                                     InsertedScalarizedValues, PHIsToRewrite);
1220
1221    // Create the new GEP idx vector.
1222    SmallVector<Value*, 8> GEPIdx;
1223    GEPIdx.push_back(GEPI->getOperand(1));
1224    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1225
1226    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1227                                             GEPIdx.begin(), GEPIdx.end(),
1228                                             GEPI->getName(), GEPI);
1229    GEPI->replaceAllUsesWith(NGEPI);
1230    GEPI->eraseFromParent();
1231    return;
1232  }
1233
1234  // Recursively transform the users of PHI nodes.  This will lazily create the
1235  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1236  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1237  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1238  // already been seen first by another load, so its uses have already been
1239  // processed.
1240  PHINode *PN = cast<PHINode>(LoadUser);
1241  bool Inserted;
1242  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1243  tie(InsertPos, Inserted) =
1244    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1245  if (!Inserted) return;
1246
1247  // If this is the first time we've seen this PHI, recursively process all
1248  // users.
1249  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1250    Instruction *User = cast<Instruction>(*UI++);
1251    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1252  }
1253}
1254
1255/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1256/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1257/// use FieldGlobals instead.  All uses of loaded values satisfy
1258/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1259static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1260               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1261                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1262  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1263       UI != E; ) {
1264    Instruction *User = cast<Instruction>(*UI++);
1265    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1266  }
1267
1268  if (Load->use_empty()) {
1269    Load->eraseFromParent();
1270    InsertedScalarizedValues.erase(Load);
1271  }
1272}
1273
1274/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1275/// it up into multiple allocations of arrays of the fields.
1276static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1277                                            Value* NElems, TargetData *TD) {
1278  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1279  const Type* MAT = getMallocAllocatedType(CI);
1280  const StructType *STy = cast<StructType>(MAT);
1281
1282  // There is guaranteed to be at least one use of the malloc (storing
1283  // it into GV).  If there are other uses, change them to be uses of
1284  // the global to simplify later code.  This also deletes the store
1285  // into GV.
1286  ReplaceUsesOfMallocWithGlobal(CI, GV);
1287
1288  // Okay, at this point, there are no users of the malloc.  Insert N
1289  // new mallocs at the same place as CI, and N globals.
1290  std::vector<Value*> FieldGlobals;
1291  std::vector<Value*> FieldMallocs;
1292
1293  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1294    const Type *FieldTy = STy->getElementType(FieldNo);
1295    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1296
1297    GlobalVariable *NGV =
1298      new GlobalVariable(*GV->getParent(),
1299                         PFieldTy, false, GlobalValue::InternalLinkage,
1300                         Constant::getNullValue(PFieldTy),
1301                         GV->getName() + ".f" + Twine(FieldNo), GV,
1302                         GV->isThreadLocal());
1303    FieldGlobals.push_back(NGV);
1304
1305    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1306    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1307      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1308    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1309    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1310                                        ConstantInt::get(IntPtrTy, TypeSize),
1311                                        NElems, 0,
1312                                        CI->getName() + ".f" + Twine(FieldNo));
1313    FieldMallocs.push_back(NMI);
1314    new StoreInst(NMI, NGV, CI);
1315  }
1316
1317  // The tricky aspect of this transformation is handling the case when malloc
1318  // fails.  In the original code, malloc failing would set the result pointer
1319  // of malloc to null.  In this case, some mallocs could succeed and others
1320  // could fail.  As such, we emit code that looks like this:
1321  //    F0 = malloc(field0)
1322  //    F1 = malloc(field1)
1323  //    F2 = malloc(field2)
1324  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1325  //      if (F0) { free(F0); F0 = 0; }
1326  //      if (F1) { free(F1); F1 = 0; }
1327  //      if (F2) { free(F2); F2 = 0; }
1328  //    }
1329  // The malloc can also fail if its argument is too large.
1330  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1331  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1332                                  ConstantZero, "isneg");
1333  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1334    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1335                             Constant::getNullValue(FieldMallocs[i]->getType()),
1336                               "isnull");
1337    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1338  }
1339
1340  // Split the basic block at the old malloc.
1341  BasicBlock *OrigBB = CI->getParent();
1342  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1343
1344  // Create the block to check the first condition.  Put all these blocks at the
1345  // end of the function as they are unlikely to be executed.
1346  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1347                                                "malloc_ret_null",
1348                                                OrigBB->getParent());
1349
1350  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1351  // branch on RunningOr.
1352  OrigBB->getTerminator()->eraseFromParent();
1353  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1354
1355  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1356  // pointer, because some may be null while others are not.
1357  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1358    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1359    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1360                              Constant::getNullValue(GVVal->getType()),
1361                              "tmp");
1362    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1363                                               OrigBB->getParent());
1364    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1365                                               OrigBB->getParent());
1366    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1367                                         Cmp, NullPtrBlock);
1368
1369    // Fill in FreeBlock.
1370    CallInst::CreateFree(GVVal, BI);
1371    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1372                  FreeBlock);
1373    BranchInst::Create(NextBlock, FreeBlock);
1374
1375    NullPtrBlock = NextBlock;
1376  }
1377
1378  BranchInst::Create(ContBB, NullPtrBlock);
1379
1380  // CI is no longer needed, remove it.
1381  CI->eraseFromParent();
1382
1383  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1384  /// update all uses of the load, keep track of what scalarized loads are
1385  /// inserted for a given load.
1386  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1387  InsertedScalarizedValues[GV] = FieldGlobals;
1388
1389  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1390
1391  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1392  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1393  // of the per-field globals instead.
1394  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1395    Instruction *User = cast<Instruction>(*UI++);
1396
1397    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1398      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1399      continue;
1400    }
1401
1402    // Must be a store of null.
1403    StoreInst *SI = cast<StoreInst>(User);
1404    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1405           "Unexpected heap-sra user!");
1406
1407    // Insert a store of null into each global.
1408    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1409      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1410      Constant *Null = Constant::getNullValue(PT->getElementType());
1411      new StoreInst(Null, FieldGlobals[i], SI);
1412    }
1413    // Erase the original store.
1414    SI->eraseFromParent();
1415  }
1416
1417  // While we have PHIs that are interesting to rewrite, do it.
1418  while (!PHIsToRewrite.empty()) {
1419    PHINode *PN = PHIsToRewrite.back().first;
1420    unsigned FieldNo = PHIsToRewrite.back().second;
1421    PHIsToRewrite.pop_back();
1422    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1423    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1424
1425    // Add all the incoming values.  This can materialize more phis.
1426    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1427      Value *InVal = PN->getIncomingValue(i);
1428      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1429                               PHIsToRewrite);
1430      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1431    }
1432  }
1433
1434  // Drop all inter-phi links and any loads that made it this far.
1435  for (DenseMap<Value*, std::vector<Value*> >::iterator
1436       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1437       I != E; ++I) {
1438    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1439      PN->dropAllReferences();
1440    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1441      LI->dropAllReferences();
1442  }
1443
1444  // Delete all the phis and loads now that inter-references are dead.
1445  for (DenseMap<Value*, std::vector<Value*> >::iterator
1446       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1447       I != E; ++I) {
1448    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1449      PN->eraseFromParent();
1450    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1451      LI->eraseFromParent();
1452  }
1453
1454  // The old global is now dead, remove it.
1455  GV->eraseFromParent();
1456
1457  ++NumHeapSRA;
1458  return cast<GlobalVariable>(FieldGlobals[0]);
1459}
1460
1461/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1462/// pointer global variable with a single value stored it that is a malloc or
1463/// cast of malloc.
1464static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1465                                               CallInst *CI,
1466                                               const Type *AllocTy,
1467                                               Module::global_iterator &GVI,
1468                                               TargetData *TD) {
1469  if (!TD)
1470    return false;
1471
1472  // If this is a malloc of an abstract type, don't touch it.
1473  if (!AllocTy->isSized())
1474    return false;
1475
1476  // We can't optimize this global unless all uses of it are *known* to be
1477  // of the malloc value, not of the null initializer value (consider a use
1478  // that compares the global's value against zero to see if the malloc has
1479  // been reached).  To do this, we check to see if all uses of the global
1480  // would trap if the global were null: this proves that they must all
1481  // happen after the malloc.
1482  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1483    return false;
1484
1485  // We can't optimize this if the malloc itself is used in a complex way,
1486  // for example, being stored into multiple globals.  This allows the
1487  // malloc to be stored into the specified global, loaded setcc'd, and
1488  // GEP'd.  These are all things we could transform to using the global
1489  // for.
1490  SmallPtrSet<const PHINode*, 8> PHIs;
1491  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1492    return false;
1493
1494  // If we have a global that is only initialized with a fixed size malloc,
1495  // transform the program to use global memory instead of malloc'd memory.
1496  // This eliminates dynamic allocation, avoids an indirection accessing the
1497  // data, and exposes the resultant global to further GlobalOpt.
1498  // We cannot optimize the malloc if we cannot determine malloc array size.
1499  Value *NElems = getMallocArraySize(CI, TD, true);
1500  if (!NElems)
1501    return false;
1502
1503  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1504    // Restrict this transformation to only working on small allocations
1505    // (2048 bytes currently), as we don't want to introduce a 16M global or
1506    // something.
1507    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1508      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1509      return true;
1510    }
1511
1512  // If the allocation is an array of structures, consider transforming this
1513  // into multiple malloc'd arrays, one for each field.  This is basically
1514  // SRoA for malloc'd memory.
1515
1516  // If this is an allocation of a fixed size array of structs, analyze as a
1517  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1518  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1519    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1520      AllocTy = AT->getElementType();
1521
1522  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1523  if (!AllocSTy)
1524    return false;
1525
1526  // This the structure has an unreasonable number of fields, leave it
1527  // alone.
1528  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1529      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1530
1531    // If this is a fixed size array, transform the Malloc to be an alloc of
1532    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1533    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1534      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1535      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1536      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1537      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1538      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1539                                                   AllocSize, NumElements,
1540                                                   0, CI->getName());
1541      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1542      CI->replaceAllUsesWith(Cast);
1543      CI->eraseFromParent();
1544      CI = dyn_cast<BitCastInst>(Malloc) ?
1545        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1546    }
1547
1548    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1549    return true;
1550  }
1551
1552  return false;
1553}
1554
1555// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1556// that only one value (besides its initializer) is ever stored to the global.
1557static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1558                                     Module::global_iterator &GVI,
1559                                     TargetData *TD) {
1560  // Ignore no-op GEPs and bitcasts.
1561  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1562
1563  // If we are dealing with a pointer global that is initialized to null and
1564  // only has one (non-null) value stored into it, then we can optimize any
1565  // users of the loaded value (often calls and loads) that would trap if the
1566  // value was null.
1567  if (GV->getInitializer()->getType()->isPointerTy() &&
1568      GV->getInitializer()->isNullValue()) {
1569    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1570      if (GV->getInitializer()->getType() != SOVC->getType())
1571        SOVC =
1572         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1573
1574      // Optimize away any trapping uses of the loaded value.
1575      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1576        return true;
1577    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1578      const Type* MallocType = getMallocAllocatedType(CI);
1579      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1580                                                           GVI, TD))
1581        return true;
1582    }
1583  }
1584
1585  return false;
1586}
1587
1588/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1589/// two values ever stored into GV are its initializer and OtherVal.  See if we
1590/// can shrink the global into a boolean and select between the two values
1591/// whenever it is used.  This exposes the values to other scalar optimizations.
1592static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1593  const Type *GVElType = GV->getType()->getElementType();
1594
1595  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1596  // an FP value, pointer or vector, don't do this optimization because a select
1597  // between them is very expensive and unlikely to lead to later
1598  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1599  // where v1 and v2 both require constant pool loads, a big loss.
1600  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1601      GVElType->isFloatingPointTy() ||
1602      GVElType->isPointerTy() || GVElType->isVectorTy())
1603    return false;
1604
1605  // Walk the use list of the global seeing if all the uses are load or store.
1606  // If there is anything else, bail out.
1607  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1608    User *U = *I;
1609    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1610      return false;
1611  }
1612
1613  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1614
1615  // Create the new global, initializing it to false.
1616  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1617                                             false,
1618                                             GlobalValue::InternalLinkage,
1619                                        ConstantInt::getFalse(GV->getContext()),
1620                                             GV->getName()+".b",
1621                                             GV->isThreadLocal());
1622  GV->getParent()->getGlobalList().insert(GV, NewGV);
1623
1624  Constant *InitVal = GV->getInitializer();
1625  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1626         "No reason to shrink to bool!");
1627
1628  // If initialized to zero and storing one into the global, we can use a cast
1629  // instead of a select to synthesize the desired value.
1630  bool IsOneZero = false;
1631  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1632    IsOneZero = InitVal->isNullValue() && CI->isOne();
1633
1634  while (!GV->use_empty()) {
1635    Instruction *UI = cast<Instruction>(GV->use_back());
1636    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1637      // Change the store into a boolean store.
1638      bool StoringOther = SI->getOperand(0) == OtherVal;
1639      // Only do this if we weren't storing a loaded value.
1640      Value *StoreVal;
1641      if (StoringOther || SI->getOperand(0) == InitVal)
1642        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1643                                    StoringOther);
1644      else {
1645        // Otherwise, we are storing a previously loaded copy.  To do this,
1646        // change the copy from copying the original value to just copying the
1647        // bool.
1648        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1649
1650        // If we've already replaced the input, StoredVal will be a cast or
1651        // select instruction.  If not, it will be a load of the original
1652        // global.
1653        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1654          assert(LI->getOperand(0) == GV && "Not a copy!");
1655          // Insert a new load, to preserve the saved value.
1656          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1657        } else {
1658          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1659                 "This is not a form that we understand!");
1660          StoreVal = StoredVal->getOperand(0);
1661          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1662        }
1663      }
1664      new StoreInst(StoreVal, NewGV, SI);
1665    } else {
1666      // Change the load into a load of bool then a select.
1667      LoadInst *LI = cast<LoadInst>(UI);
1668      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1669      Value *NSI;
1670      if (IsOneZero)
1671        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1672      else
1673        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1674      NSI->takeName(LI);
1675      LI->replaceAllUsesWith(NSI);
1676    }
1677    UI->eraseFromParent();
1678  }
1679
1680  GV->eraseFromParent();
1681  return true;
1682}
1683
1684
1685/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1686/// it if possible.  If we make a change, return true.
1687bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1688                                      Module::global_iterator &GVI) {
1689  SmallPtrSet<const PHINode*, 16> PHIUsers;
1690  GlobalStatus GS;
1691  GV->removeDeadConstantUsers();
1692
1693  if (GV->use_empty()) {
1694    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1695    GV->eraseFromParent();
1696    ++NumDeleted;
1697    return true;
1698  }
1699
1700  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1701#if 0
1702    DEBUG(dbgs() << "Global: " << *GV);
1703    DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
1704    DEBUG(dbgs() << "  StoredType = ");
1705    switch (GS.StoredType) {
1706    case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
1707    case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
1708                                            break;
1709    case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
1710    case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
1711    }
1712    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1713      DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
1714    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1715      DEBUG(dbgs() << "  AccessingFunction = "
1716                   << GS.AccessingFunction->getName() << "\n");
1717    DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
1718                 << GS.HasMultipleAccessingFunctions << "\n");
1719    DEBUG(dbgs() << "  HasNonInstructionUser = "
1720                 << GS.HasNonInstructionUser<<"\n");
1721    DEBUG(dbgs() << "\n");
1722#endif
1723
1724    // If this is a first class global and has only one accessing function
1725    // and this function is main (which we know is not recursive we can make
1726    // this global a local variable) we replace the global with a local alloca
1727    // in this function.
1728    //
1729    // NOTE: It doesn't make sense to promote non single-value types since we
1730    // are just replacing static memory to stack memory.
1731    //
1732    // If the global is in different address space, don't bring it to stack.
1733    if (!GS.HasMultipleAccessingFunctions &&
1734        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1735        GV->getType()->getElementType()->isSingleValueType() &&
1736        GS.AccessingFunction->getName() == "main" &&
1737        GS.AccessingFunction->hasExternalLinkage() &&
1738        GV->getType()->getAddressSpace() == 0) {
1739      DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1740      Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1741                                                     ->getEntryBlock().begin());
1742      const Type* ElemTy = GV->getType()->getElementType();
1743      // FIXME: Pass Global's alignment when globals have alignment
1744      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1745      if (!isa<UndefValue>(GV->getInitializer()))
1746        new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1747
1748      GV->replaceAllUsesWith(Alloca);
1749      GV->eraseFromParent();
1750      ++NumLocalized;
1751      return true;
1752    }
1753
1754    // If the global is never loaded (but may be stored to), it is dead.
1755    // Delete it now.
1756    if (!GS.isLoaded) {
1757      DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1758
1759      // Delete any stores we can find to the global.  We may not be able to
1760      // make it completely dead though.
1761      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1762
1763      // If the global is dead now, delete it.
1764      if (GV->use_empty()) {
1765        GV->eraseFromParent();
1766        ++NumDeleted;
1767        Changed = true;
1768      }
1769      return Changed;
1770
1771    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1772      DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1773      GV->setConstant(true);
1774
1775      // Clean up any obviously simplifiable users now.
1776      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1777
1778      // If the global is dead now, just nuke it.
1779      if (GV->use_empty()) {
1780        DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1781                     << "all users and delete global!\n");
1782        GV->eraseFromParent();
1783        ++NumDeleted;
1784      }
1785
1786      ++NumMarked;
1787      return true;
1788    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1789      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1790        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1791          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1792          return true;
1793        }
1794    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1795      // If the initial value for the global was an undef value, and if only
1796      // one other value was stored into it, we can just change the
1797      // initializer to be the stored value, then delete all stores to the
1798      // global.  This allows us to mark it constant.
1799      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1800        if (isa<UndefValue>(GV->getInitializer())) {
1801          // Change the initial value here.
1802          GV->setInitializer(SOVConstant);
1803
1804          // Clean up any obviously simplifiable users now.
1805          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1806
1807          if (GV->use_empty()) {
1808            DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1809                         << "simplify all users and delete global!\n");
1810            GV->eraseFromParent();
1811            ++NumDeleted;
1812          } else {
1813            GVI = GV;
1814          }
1815          ++NumSubstitute;
1816          return true;
1817        }
1818
1819      // Try to optimize globals based on the knowledge that only one value
1820      // (besides its initializer) is ever stored to the global.
1821      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1822                                   getAnalysisIfAvailable<TargetData>()))
1823        return true;
1824
1825      // Otherwise, if the global was not a boolean, we can shrink it to be a
1826      // boolean.
1827      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1828        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1829          ++NumShrunkToBool;
1830          return true;
1831        }
1832    }
1833  }
1834  return false;
1835}
1836
1837/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1838/// function, changing them to FastCC.
1839static void ChangeCalleesToFastCall(Function *F) {
1840  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1841    CallSite User(cast<Instruction>(*UI));
1842    User.setCallingConv(CallingConv::Fast);
1843  }
1844}
1845
1846static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1847  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1848    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1849      continue;
1850
1851    // There can be only one.
1852    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1853  }
1854
1855  return Attrs;
1856}
1857
1858static void RemoveNestAttribute(Function *F) {
1859  F->setAttributes(StripNest(F->getAttributes()));
1860  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1861    CallSite User(cast<Instruction>(*UI));
1862    User.setAttributes(StripNest(User.getAttributes()));
1863  }
1864}
1865
1866bool GlobalOpt::OptimizeFunctions(Module &M) {
1867  bool Changed = false;
1868  // Optimize functions.
1869  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1870    Function *F = FI++;
1871    // Functions without names cannot be referenced outside this module.
1872    if (!F->hasName() && !F->isDeclaration())
1873      F->setLinkage(GlobalValue::InternalLinkage);
1874    F->removeDeadConstantUsers();
1875    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1876      F->eraseFromParent();
1877      Changed = true;
1878      ++NumFnDeleted;
1879    } else if (F->hasLocalLinkage()) {
1880      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1881          !F->hasAddressTaken()) {
1882        // If this function has C calling conventions, is not a varargs
1883        // function, and is only called directly, promote it to use the Fast
1884        // calling convention.
1885        F->setCallingConv(CallingConv::Fast);
1886        ChangeCalleesToFastCall(F);
1887        ++NumFastCallFns;
1888        Changed = true;
1889      }
1890
1891      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1892          !F->hasAddressTaken()) {
1893        // The function is not used by a trampoline intrinsic, so it is safe
1894        // to remove the 'nest' attribute.
1895        RemoveNestAttribute(F);
1896        ++NumNestRemoved;
1897        Changed = true;
1898      }
1899    }
1900  }
1901  return Changed;
1902}
1903
1904bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1905  bool Changed = false;
1906  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1907       GVI != E; ) {
1908    GlobalVariable *GV = GVI++;
1909    // Global variables without names cannot be referenced outside this module.
1910    if (!GV->hasName() && !GV->isDeclaration())
1911      GV->setLinkage(GlobalValue::InternalLinkage);
1912    // Simplify the initializer.
1913    if (GV->hasInitializer())
1914      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1915        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1916        Constant *New = ConstantFoldConstantExpression(CE, TD);
1917        if (New && New != CE)
1918          GV->setInitializer(New);
1919      }
1920    // Do more involved optimizations if the global is internal.
1921    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1922        GV->hasInitializer())
1923      Changed |= ProcessInternalGlobal(GV, GVI);
1924  }
1925  return Changed;
1926}
1927
1928/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1929/// initializers have an init priority of 65535.
1930GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1931  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1932       I != E; ++I)
1933    if (I->getName() == "llvm.global_ctors") {
1934      // Found it, verify it's an array of { int, void()* }.
1935      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1936      if (!ATy) return 0;
1937      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1938      if (!STy || STy->getNumElements() != 2 ||
1939          !STy->getElementType(0)->isIntegerTy(32)) return 0;
1940      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1941      if (!PFTy) return 0;
1942      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1943      if (!FTy || !FTy->getReturnType()->isVoidTy() ||
1944          FTy->isVarArg() || FTy->getNumParams() != 0)
1945        return 0;
1946
1947      // Verify that the initializer is simple enough for us to handle.
1948      if (!I->hasDefinitiveInitializer()) return 0;
1949      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1950      if (!CA) return 0;
1951      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1952        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1953          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1954            continue;
1955
1956          // Must have a function or null ptr.
1957          if (!isa<Function>(CS->getOperand(1)))
1958            return 0;
1959
1960          // Init priority must be standard.
1961          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1962          if (!CI || CI->getZExtValue() != 65535)
1963            return 0;
1964        } else {
1965          return 0;
1966        }
1967
1968      return I;
1969    }
1970  return 0;
1971}
1972
1973/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1974/// return a list of the functions and null terminator as a vector.
1975static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1976  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1977  std::vector<Function*> Result;
1978  Result.reserve(CA->getNumOperands());
1979  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1980    ConstantStruct *CS = cast<ConstantStruct>(*i);
1981    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1982  }
1983  return Result;
1984}
1985
1986/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1987/// specified array, returning the new global to use.
1988static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1989                                          const std::vector<Function*> &Ctors) {
1990  // If we made a change, reassemble the initializer list.
1991  std::vector<Constant*> CSVals;
1992  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
1993  CSVals.push_back(0);
1994
1995  // Create the new init list.
1996  std::vector<Constant*> CAList;
1997  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1998    if (Ctors[i]) {
1999      CSVals[1] = Ctors[i];
2000    } else {
2001      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2002                                          false);
2003      const PointerType *PFTy = PointerType::getUnqual(FTy);
2004      CSVals[1] = Constant::getNullValue(PFTy);
2005      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2006                                   2147483647);
2007    }
2008    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
2009  }
2010
2011  // Create the array initializer.
2012  const Type *StructTy =
2013      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2014  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2015                                                   CAList.size()), CAList);
2016
2017  // If we didn't change the number of elements, don't create a new GV.
2018  if (CA->getType() == GCL->getInitializer()->getType()) {
2019    GCL->setInitializer(CA);
2020    return GCL;
2021  }
2022
2023  // Create the new global and insert it next to the existing list.
2024  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2025                                           GCL->getLinkage(), CA, "",
2026                                           GCL->isThreadLocal());
2027  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2028  NGV->takeName(GCL);
2029
2030  // Nuke the old list, replacing any uses with the new one.
2031  if (!GCL->use_empty()) {
2032    Constant *V = NGV;
2033    if (V->getType() != GCL->getType())
2034      V = ConstantExpr::getBitCast(V, GCL->getType());
2035    GCL->replaceAllUsesWith(V);
2036  }
2037  GCL->eraseFromParent();
2038
2039  if (Ctors.size())
2040    return NGV;
2041  else
2042    return 0;
2043}
2044
2045
2046static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2047                        Value *V) {
2048  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2049  Constant *R = ComputedValues[V];
2050  assert(R && "Reference to an uncomputed value!");
2051  return R;
2052}
2053
2054/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2055/// enough for us to understand.  In particular, if it is a cast of something,
2056/// we punt.  We basically just support direct accesses to globals and GEP's of
2057/// globals.  This should be kept up to date with CommitValueTo.
2058static bool isSimpleEnoughPointerToCommit(Constant *C) {
2059  // Conservatively, avoid aggregate types. This is because we don't
2060  // want to worry about them partially overlapping other stores.
2061  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2062    return false;
2063
2064  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2065    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2066    // external globals.
2067    return GV->hasDefinitiveInitializer();
2068
2069  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2070    // Handle a constantexpr gep.
2071    if (CE->getOpcode() == Instruction::GetElementPtr &&
2072        isa<GlobalVariable>(CE->getOperand(0)) &&
2073        cast<GEPOperator>(CE)->isInBounds()) {
2074      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2075      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2076      // external globals.
2077      if (!GV->hasDefinitiveInitializer())
2078        return false;
2079
2080      // The first index must be zero.
2081      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2082      if (!CI || !CI->isZero()) return false;
2083
2084      // The remaining indices must be compile-time known integers within the
2085      // notional bounds of the corresponding static array types.
2086      if (!CE->isGEPWithNoNotionalOverIndexing())
2087        return false;
2088
2089      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2090    }
2091  return false;
2092}
2093
2094/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2095/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2096/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2097static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2098                                   ConstantExpr *Addr, unsigned OpNo) {
2099  // Base case of the recursion.
2100  if (OpNo == Addr->getNumOperands()) {
2101    assert(Val->getType() == Init->getType() && "Type mismatch!");
2102    return Val;
2103  }
2104
2105  std::vector<Constant*> Elts;
2106  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2107
2108    // Break up the constant into its elements.
2109    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2110      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2111        Elts.push_back(cast<Constant>(*i));
2112    } else if (isa<ConstantAggregateZero>(Init)) {
2113      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2114        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2115    } else if (isa<UndefValue>(Init)) {
2116      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2117        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2118    } else {
2119      llvm_unreachable("This code is out of sync with "
2120             " ConstantFoldLoadThroughGEPConstantExpr");
2121    }
2122
2123    // Replace the element that we are supposed to.
2124    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2125    unsigned Idx = CU->getZExtValue();
2126    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2127    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2128
2129    // Return the modified struct.
2130    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2131                               STy->isPacked());
2132  } else {
2133    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2134    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2135
2136    uint64_t NumElts;
2137    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2138      NumElts = ATy->getNumElements();
2139    else
2140      NumElts = cast<VectorType>(InitTy)->getNumElements();
2141
2142
2143    // Break up the array into elements.
2144    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2145      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2146        Elts.push_back(cast<Constant>(*i));
2147    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2148      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2149        Elts.push_back(cast<Constant>(*i));
2150    } else if (isa<ConstantAggregateZero>(Init)) {
2151      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2152    } else {
2153      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2154             " ConstantFoldLoadThroughGEPConstantExpr");
2155      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2156    }
2157
2158    assert(CI->getZExtValue() < NumElts);
2159    Elts[CI->getZExtValue()] =
2160      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2161
2162    if (Init->getType()->isArrayTy())
2163      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2164    else
2165      return ConstantVector::get(&Elts[0], Elts.size());
2166  }
2167}
2168
2169/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2170/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2171static void CommitValueTo(Constant *Val, Constant *Addr) {
2172  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2173    assert(GV->hasInitializer());
2174    GV->setInitializer(Val);
2175    return;
2176  }
2177
2178  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2179  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2180  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2181}
2182
2183/// ComputeLoadResult - Return the value that would be computed by a load from
2184/// P after the stores reflected by 'memory' have been performed.  If we can't
2185/// decide, return null.
2186static Constant *ComputeLoadResult(Constant *P,
2187                                const DenseMap<Constant*, Constant*> &Memory) {
2188  // If this memory location has been recently stored, use the stored value: it
2189  // is the most up-to-date.
2190  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2191  if (I != Memory.end()) return I->second;
2192
2193  // Access it.
2194  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2195    if (GV->hasDefinitiveInitializer())
2196      return GV->getInitializer();
2197    return 0;
2198  }
2199
2200  // Handle a constantexpr getelementptr.
2201  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2202    if (CE->getOpcode() == Instruction::GetElementPtr &&
2203        isa<GlobalVariable>(CE->getOperand(0))) {
2204      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2205      if (GV->hasDefinitiveInitializer())
2206        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2207    }
2208
2209  return 0;  // don't know how to evaluate.
2210}
2211
2212/// EvaluateFunction - Evaluate a call to function F, returning true if
2213/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2214/// arguments for the function.
2215static bool EvaluateFunction(Function *F, Constant *&RetVal,
2216                             const SmallVectorImpl<Constant*> &ActualArgs,
2217                             std::vector<Function*> &CallStack,
2218                             DenseMap<Constant*, Constant*> &MutatedMemory,
2219                             std::vector<GlobalVariable*> &AllocaTmps) {
2220  // Check to see if this function is already executing (recursion).  If so,
2221  // bail out.  TODO: we might want to accept limited recursion.
2222  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2223    return false;
2224
2225  CallStack.push_back(F);
2226
2227  /// Values - As we compute SSA register values, we store their contents here.
2228  DenseMap<Value*, Constant*> Values;
2229
2230  // Initialize arguments to the incoming values specified.
2231  unsigned ArgNo = 0;
2232  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2233       ++AI, ++ArgNo)
2234    Values[AI] = ActualArgs[ArgNo];
2235
2236  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2237  /// we can only evaluate any one basic block at most once.  This set keeps
2238  /// track of what we have executed so we can detect recursive cases etc.
2239  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2240
2241  // CurInst - The current instruction we're evaluating.
2242  BasicBlock::iterator CurInst = F->begin()->begin();
2243
2244  // This is the main evaluation loop.
2245  while (1) {
2246    Constant *InstResult = 0;
2247
2248    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2249      if (SI->isVolatile()) return false;  // no volatile accesses.
2250      Constant *Ptr = getVal(Values, SI->getOperand(1));
2251      if (!isSimpleEnoughPointerToCommit(Ptr))
2252        // If this is too complex for us to commit, reject it.
2253        return false;
2254      Constant *Val = getVal(Values, SI->getOperand(0));
2255      MutatedMemory[Ptr] = Val;
2256    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2257      InstResult = ConstantExpr::get(BO->getOpcode(),
2258                                     getVal(Values, BO->getOperand(0)),
2259                                     getVal(Values, BO->getOperand(1)));
2260    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2261      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2262                                            getVal(Values, CI->getOperand(0)),
2263                                            getVal(Values, CI->getOperand(1)));
2264    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2265      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2266                                         getVal(Values, CI->getOperand(0)),
2267                                         CI->getType());
2268    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2269      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2270                                           getVal(Values, SI->getOperand(1)),
2271                                           getVal(Values, SI->getOperand(2)));
2272    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2273      Constant *P = getVal(Values, GEP->getOperand(0));
2274      SmallVector<Constant*, 8> GEPOps;
2275      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2276           i != e; ++i)
2277        GEPOps.push_back(getVal(Values, *i));
2278      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2279          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2280          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2281    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2282      if (LI->isVolatile()) return false;  // no volatile accesses.
2283      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2284                                     MutatedMemory);
2285      if (InstResult == 0) return false; // Could not evaluate load.
2286    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2287      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2288      const Type *Ty = AI->getType()->getElementType();
2289      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2290                                              GlobalValue::InternalLinkage,
2291                                              UndefValue::get(Ty),
2292                                              AI->getName()));
2293      InstResult = AllocaTmps.back();
2294    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2295
2296      // Debug info can safely be ignored here.
2297      if (isa<DbgInfoIntrinsic>(CI)) {
2298        ++CurInst;
2299        continue;
2300      }
2301
2302      // Cannot handle inline asm.
2303      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2304
2305      // Resolve function pointers.
2306      Function *Callee = dyn_cast<Function>(getVal(Values,
2307                                                   CI->getCalledValue()));
2308      if (!Callee) return false;  // Cannot resolve.
2309
2310      SmallVector<Constant*, 8> Formals;
2311      CallSite CS(CI);
2312      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2313           i != e; ++i)
2314        Formals.push_back(getVal(Values, *i));
2315
2316      if (Callee->isDeclaration()) {
2317        // If this is a function we can constant fold, do it.
2318        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2319                                           Formals.size())) {
2320          InstResult = C;
2321        } else {
2322          return false;
2323        }
2324      } else {
2325        if (Callee->getFunctionType()->isVarArg())
2326          return false;
2327
2328        Constant *RetVal;
2329        // Execute the call, if successful, use the return value.
2330        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2331                              MutatedMemory, AllocaTmps))
2332          return false;
2333        InstResult = RetVal;
2334      }
2335    } else if (isa<TerminatorInst>(CurInst)) {
2336      BasicBlock *NewBB = 0;
2337      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2338        if (BI->isUnconditional()) {
2339          NewBB = BI->getSuccessor(0);
2340        } else {
2341          ConstantInt *Cond =
2342            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2343          if (!Cond) return false;  // Cannot determine.
2344
2345          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2346        }
2347      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2348        ConstantInt *Val =
2349          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2350        if (!Val) return false;  // Cannot determine.
2351        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2352      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2353        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2354        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2355          NewBB = BA->getBasicBlock();
2356        else
2357          return false;  // Cannot determine.
2358      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2359        if (RI->getNumOperands())
2360          RetVal = getVal(Values, RI->getOperand(0));
2361
2362        CallStack.pop_back();  // return from fn.
2363        return true;  // We succeeded at evaluating this ctor!
2364      } else {
2365        // invoke, unwind, unreachable.
2366        return false;  // Cannot handle this terminator.
2367      }
2368
2369      // Okay, we succeeded in evaluating this control flow.  See if we have
2370      // executed the new block before.  If so, we have a looping function,
2371      // which we cannot evaluate in reasonable time.
2372      if (!ExecutedBlocks.insert(NewBB))
2373        return false;  // looped!
2374
2375      // Okay, we have never been in this block before.  Check to see if there
2376      // are any PHI nodes.  If so, evaluate them with information about where
2377      // we came from.
2378      BasicBlock *OldBB = CurInst->getParent();
2379      CurInst = NewBB->begin();
2380      PHINode *PN;
2381      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2382        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2383
2384      // Do NOT increment CurInst.  We know that the terminator had no value.
2385      continue;
2386    } else {
2387      // Did not know how to evaluate this!
2388      return false;
2389    }
2390
2391    if (!CurInst->use_empty())
2392      Values[CurInst] = InstResult;
2393
2394    // Advance program counter.
2395    ++CurInst;
2396  }
2397}
2398
2399/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2400/// we can.  Return true if we can, false otherwise.
2401static bool EvaluateStaticConstructor(Function *F) {
2402  /// MutatedMemory - For each store we execute, we update this map.  Loads
2403  /// check this to get the most up-to-date value.  If evaluation is successful,
2404  /// this state is committed to the process.
2405  DenseMap<Constant*, Constant*> MutatedMemory;
2406
2407  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2408  /// to represent its body.  This vector is needed so we can delete the
2409  /// temporary globals when we are done.
2410  std::vector<GlobalVariable*> AllocaTmps;
2411
2412  /// CallStack - This is used to detect recursion.  In pathological situations
2413  /// we could hit exponential behavior, but at least there is nothing
2414  /// unbounded.
2415  std::vector<Function*> CallStack;
2416
2417  // Call the function.
2418  Constant *RetValDummy;
2419  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2420                                      SmallVector<Constant*, 0>(), CallStack,
2421                                      MutatedMemory, AllocaTmps);
2422  if (EvalSuccess) {
2423    // We succeeded at evaluation: commit the result.
2424    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2425          << F->getName() << "' to " << MutatedMemory.size()
2426          << " stores.\n");
2427    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2428         E = MutatedMemory.end(); I != E; ++I)
2429      CommitValueTo(I->second, I->first);
2430  }
2431
2432  // At this point, we are done interpreting.  If we created any 'alloca'
2433  // temporaries, release them now.
2434  while (!AllocaTmps.empty()) {
2435    GlobalVariable *Tmp = AllocaTmps.back();
2436    AllocaTmps.pop_back();
2437
2438    // If there are still users of the alloca, the program is doing something
2439    // silly, e.g. storing the address of the alloca somewhere and using it
2440    // later.  Since this is undefined, we'll just make it be null.
2441    if (!Tmp->use_empty())
2442      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2443    delete Tmp;
2444  }
2445
2446  return EvalSuccess;
2447}
2448
2449
2450
2451/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2452/// Return true if anything changed.
2453bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2454  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2455  bool MadeChange = false;
2456  if (Ctors.empty()) return false;
2457
2458  // Loop over global ctors, optimizing them when we can.
2459  for (unsigned i = 0; i != Ctors.size(); ++i) {
2460    Function *F = Ctors[i];
2461    // Found a null terminator in the middle of the list, prune off the rest of
2462    // the list.
2463    if (F == 0) {
2464      if (i != Ctors.size()-1) {
2465        Ctors.resize(i+1);
2466        MadeChange = true;
2467      }
2468      break;
2469    }
2470
2471    // We cannot simplify external ctor functions.
2472    if (F->empty()) continue;
2473
2474    // If we can evaluate the ctor at compile time, do.
2475    if (EvaluateStaticConstructor(F)) {
2476      Ctors.erase(Ctors.begin()+i);
2477      MadeChange = true;
2478      --i;
2479      ++NumCtorsEvaluated;
2480      continue;
2481    }
2482  }
2483
2484  if (!MadeChange) return false;
2485
2486  GCL = InstallGlobalCtors(GCL, Ctors);
2487  return true;
2488}
2489
2490bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2491  bool Changed = false;
2492
2493  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2494       I != E;) {
2495    Module::alias_iterator J = I++;
2496    // Aliases without names cannot be referenced outside this module.
2497    if (!J->hasName() && !J->isDeclaration())
2498      J->setLinkage(GlobalValue::InternalLinkage);
2499    // If the aliasee may change at link time, nothing can be done - bail out.
2500    if (J->mayBeOverridden())
2501      continue;
2502
2503    Constant *Aliasee = J->getAliasee();
2504    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2505    Target->removeDeadConstantUsers();
2506    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2507
2508    // Make all users of the alias use the aliasee instead.
2509    if (!J->use_empty()) {
2510      J->replaceAllUsesWith(Aliasee);
2511      ++NumAliasesResolved;
2512      Changed = true;
2513    }
2514
2515    // If the alias is externally visible, we may still be able to simplify it.
2516    if (!J->hasLocalLinkage()) {
2517      // If the aliasee has internal linkage, give it the name and linkage
2518      // of the alias, and delete the alias.  This turns:
2519      //   define internal ... @f(...)
2520      //   @a = alias ... @f
2521      // into:
2522      //   define ... @a(...)
2523      if (!Target->hasLocalLinkage())
2524        continue;
2525
2526      // Do not perform the transform if multiple aliases potentially target the
2527      // aliasee. This check also ensures that it is safe to replace the section
2528      // and other attributes of the aliasee with those of the alias.
2529      if (!hasOneUse)
2530        continue;
2531
2532      // Give the aliasee the name, linkage and other attributes of the alias.
2533      Target->takeName(J);
2534      Target->setLinkage(J->getLinkage());
2535      Target->GlobalValue::copyAttributesFrom(J);
2536    }
2537
2538    // Delete the alias.
2539    M.getAliasList().erase(J);
2540    ++NumAliasesRemoved;
2541    Changed = true;
2542  }
2543
2544  return Changed;
2545}
2546
2547bool GlobalOpt::runOnModule(Module &M) {
2548  bool Changed = false;
2549
2550  // Try to find the llvm.globalctors list.
2551  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2552
2553  bool LocalChange = true;
2554  while (LocalChange) {
2555    LocalChange = false;
2556
2557    // Delete functions that are trivially dead, ccc -> fastcc
2558    LocalChange |= OptimizeFunctions(M);
2559
2560    // Optimize global_ctors list.
2561    if (GlobalCtors)
2562      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2563
2564    // Optimize non-address-taken globals.
2565    LocalChange |= OptimizeGlobalVars(M);
2566
2567    // Resolve aliases, when possible.
2568    LocalChange |= OptimizeGlobalAliases(M);
2569    Changed |= LocalChange;
2570  }
2571
2572  // TODO: Move all global ctors functions to the end of the module for code
2573  // layout.
2574
2575  return Changed;
2576}
2577