GlobalOpt.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/IR/CallSite.h"
26#include "llvm/IR/CallingConv.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/GetElementPtrTypeIterator.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/IR/ValueHandle.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/Target/TargetLibraryInfo.h"
42#include "llvm/Transforms/Utils/GlobalStatus.h"
43#include "llvm/Transforms/Utils/ModuleUtils.h"
44#include <algorithm>
45using namespace llvm;
46
47STATISTIC(NumMarked    , "Number of globals marked constant");
48STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
49STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
50STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
51STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
52STATISTIC(NumDeleted   , "Number of globals deleted");
53STATISTIC(NumFnDeleted , "Number of functions deleted");
54STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
55STATISTIC(NumLocalized , "Number of globals localized");
56STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
57STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
58STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
59STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
60STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
61STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
62STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
63
64namespace {
65  struct GlobalOpt : public ModulePass {
66    void getAnalysisUsage(AnalysisUsage &AU) const override {
67      AU.addRequired<TargetLibraryInfo>();
68    }
69    static char ID; // Pass identification, replacement for typeid
70    GlobalOpt() : ModulePass(ID) {
71      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
72    }
73
74    bool runOnModule(Module &M) override;
75
76  private:
77    GlobalVariable *FindGlobalCtors(Module &M);
78    bool OptimizeFunctions(Module &M);
79    bool OptimizeGlobalVars(Module &M);
80    bool OptimizeGlobalAliases(Module &M);
81    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
82    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
83    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
84                               const GlobalStatus &GS);
85    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
86
87    const DataLayout *DL;
88    TargetLibraryInfo *TLI;
89  };
90}
91
92char GlobalOpt::ID = 0;
93INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
94                "Global Variable Optimizer", false, false)
95INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
96INITIALIZE_PASS_END(GlobalOpt, "globalopt",
97                "Global Variable Optimizer", false, false)
98
99ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
100
101/// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
102/// as a root?  If so, we might not really want to eliminate the stores to it.
103static bool isLeakCheckerRoot(GlobalVariable *GV) {
104  // A global variable is a root if it is a pointer, or could plausibly contain
105  // a pointer.  There are two challenges; one is that we could have a struct
106  // the has an inner member which is a pointer.  We recurse through the type to
107  // detect these (up to a point).  The other is that we may actually be a union
108  // of a pointer and another type, and so our LLVM type is an integer which
109  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
110  // potentially contained here.
111
112  if (GV->hasPrivateLinkage())
113    return false;
114
115  SmallVector<Type *, 4> Types;
116  Types.push_back(cast<PointerType>(GV->getType())->getElementType());
117
118  unsigned Limit = 20;
119  do {
120    Type *Ty = Types.pop_back_val();
121    switch (Ty->getTypeID()) {
122      default: break;
123      case Type::PointerTyID: return true;
124      case Type::ArrayTyID:
125      case Type::VectorTyID: {
126        SequentialType *STy = cast<SequentialType>(Ty);
127        Types.push_back(STy->getElementType());
128        break;
129      }
130      case Type::StructTyID: {
131        StructType *STy = cast<StructType>(Ty);
132        if (STy->isOpaque()) return true;
133        for (StructType::element_iterator I = STy->element_begin(),
134                 E = STy->element_end(); I != E; ++I) {
135          Type *InnerTy = *I;
136          if (isa<PointerType>(InnerTy)) return true;
137          if (isa<CompositeType>(InnerTy))
138            Types.push_back(InnerTy);
139        }
140        break;
141      }
142    }
143    if (--Limit == 0) return true;
144  } while (!Types.empty());
145  return false;
146}
147
148/// Given a value that is stored to a global but never read, determine whether
149/// it's safe to remove the store and the chain of computation that feeds the
150/// store.
151static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
152  do {
153    if (isa<Constant>(V))
154      return true;
155    if (!V->hasOneUse())
156      return false;
157    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
158        isa<GlobalValue>(V))
159      return false;
160    if (isAllocationFn(V, TLI))
161      return true;
162
163    Instruction *I = cast<Instruction>(V);
164    if (I->mayHaveSideEffects())
165      return false;
166    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
167      if (!GEP->hasAllConstantIndices())
168        return false;
169    } else if (I->getNumOperands() != 1) {
170      return false;
171    }
172
173    V = I->getOperand(0);
174  } while (1);
175}
176
177/// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
178/// of the global and clean up any that obviously don't assign the global a
179/// value that isn't dynamically allocated.
180///
181static bool CleanupPointerRootUsers(GlobalVariable *GV,
182                                    const TargetLibraryInfo *TLI) {
183  // A brief explanation of leak checkers.  The goal is to find bugs where
184  // pointers are forgotten, causing an accumulating growth in memory
185  // usage over time.  The common strategy for leak checkers is to whitelist the
186  // memory pointed to by globals at exit.  This is popular because it also
187  // solves another problem where the main thread of a C++ program may shut down
188  // before other threads that are still expecting to use those globals.  To
189  // handle that case, we expect the program may create a singleton and never
190  // destroy it.
191
192  bool Changed = false;
193
194  // If Dead[n].first is the only use of a malloc result, we can delete its
195  // chain of computation and the store to the global in Dead[n].second.
196  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
197
198  // Constants can't be pointers to dynamically allocated memory.
199  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
200       UI != E;) {
201    User *U = *UI++;
202    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
203      Value *V = SI->getValueOperand();
204      if (isa<Constant>(V)) {
205        Changed = true;
206        SI->eraseFromParent();
207      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
208        if (I->hasOneUse())
209          Dead.push_back(std::make_pair(I, SI));
210      }
211    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
212      if (isa<Constant>(MSI->getValue())) {
213        Changed = true;
214        MSI->eraseFromParent();
215      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
216        if (I->hasOneUse())
217          Dead.push_back(std::make_pair(I, MSI));
218      }
219    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
220      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
221      if (MemSrc && MemSrc->isConstant()) {
222        Changed = true;
223        MTI->eraseFromParent();
224      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
225        if (I->hasOneUse())
226          Dead.push_back(std::make_pair(I, MTI));
227      }
228    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
229      if (CE->use_empty()) {
230        CE->destroyConstant();
231        Changed = true;
232      }
233    } else if (Constant *C = dyn_cast<Constant>(U)) {
234      if (isSafeToDestroyConstant(C)) {
235        C->destroyConstant();
236        // This could have invalidated UI, start over from scratch.
237        Dead.clear();
238        CleanupPointerRootUsers(GV, TLI);
239        return true;
240      }
241    }
242  }
243
244  for (int i = 0, e = Dead.size(); i != e; ++i) {
245    if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
246      Dead[i].second->eraseFromParent();
247      Instruction *I = Dead[i].first;
248      do {
249        if (isAllocationFn(I, TLI))
250          break;
251        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
252        if (!J)
253          break;
254        I->eraseFromParent();
255        I = J;
256      } while (1);
257      I->eraseFromParent();
258    }
259  }
260
261  return Changed;
262}
263
264/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
265/// users of the global, cleaning up the obvious ones.  This is largely just a
266/// quick scan over the use list to clean up the easy and obvious cruft.  This
267/// returns true if it made a change.
268static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
269                                       const DataLayout *DL,
270                                       TargetLibraryInfo *TLI) {
271  bool Changed = false;
272  // Note that we need to use a weak value handle for the worklist items. When
273  // we delete a constant array, we may also be holding pointer to one of its
274  // elements (or an element of one of its elements if we're dealing with an
275  // array of arrays) in the worklist.
276  SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
277  while (!WorkList.empty()) {
278    Value *UV = WorkList.pop_back_val();
279    if (!UV)
280      continue;
281
282    User *U = cast<User>(UV);
283
284    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
285      if (Init) {
286        // Replace the load with the initializer.
287        LI->replaceAllUsesWith(Init);
288        LI->eraseFromParent();
289        Changed = true;
290      }
291    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
292      // Store must be unreachable or storing Init into the global.
293      SI->eraseFromParent();
294      Changed = true;
295    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
296      if (CE->getOpcode() == Instruction::GetElementPtr) {
297        Constant *SubInit = 0;
298        if (Init)
299          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
300        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
301      } else if ((CE->getOpcode() == Instruction::BitCast &&
302                  CE->getType()->isPointerTy()) ||
303                 CE->getOpcode() == Instruction::AddrSpaceCast) {
304        // Pointer cast, delete any stores and memsets to the global.
305        Changed |= CleanupConstantGlobalUsers(CE, 0, DL, TLI);
306      }
307
308      if (CE->use_empty()) {
309        CE->destroyConstant();
310        Changed = true;
311      }
312    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
313      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
314      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
315      // and will invalidate our notion of what Init is.
316      Constant *SubInit = 0;
317      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
318        ConstantExpr *CE =
319          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, DL, TLI));
320        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
321          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
322
323        // If the initializer is an all-null value and we have an inbounds GEP,
324        // we already know what the result of any load from that GEP is.
325        // TODO: Handle splats.
326        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
327          SubInit = Constant::getNullValue(GEP->getType()->getElementType());
328      }
329      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
330
331      if (GEP->use_empty()) {
332        GEP->eraseFromParent();
333        Changed = true;
334      }
335    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
336      if (MI->getRawDest() == V) {
337        MI->eraseFromParent();
338        Changed = true;
339      }
340
341    } else if (Constant *C = dyn_cast<Constant>(U)) {
342      // If we have a chain of dead constantexprs or other things dangling from
343      // us, and if they are all dead, nuke them without remorse.
344      if (isSafeToDestroyConstant(C)) {
345        C->destroyConstant();
346        CleanupConstantGlobalUsers(V, Init, DL, TLI);
347        return true;
348      }
349    }
350  }
351  return Changed;
352}
353
354/// isSafeSROAElementUse - Return true if the specified instruction is a safe
355/// user of a derived expression from a global that we want to SROA.
356static bool isSafeSROAElementUse(Value *V) {
357  // We might have a dead and dangling constant hanging off of here.
358  if (Constant *C = dyn_cast<Constant>(V))
359    return isSafeToDestroyConstant(C);
360
361  Instruction *I = dyn_cast<Instruction>(V);
362  if (!I) return false;
363
364  // Loads are ok.
365  if (isa<LoadInst>(I)) return true;
366
367  // Stores *to* the pointer are ok.
368  if (StoreInst *SI = dyn_cast<StoreInst>(I))
369    return SI->getOperand(0) != V;
370
371  // Otherwise, it must be a GEP.
372  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
373  if (GEPI == 0) return false;
374
375  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
376      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
377    return false;
378
379  for (User *U : GEPI->users())
380    if (!isSafeSROAElementUse(U))
381      return false;
382  return true;
383}
384
385
386/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
387/// Look at it and its uses and decide whether it is safe to SROA this global.
388///
389static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
390  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
391  if (!isa<GetElementPtrInst>(U) &&
392      (!isa<ConstantExpr>(U) ||
393       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
394    return false;
395
396  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
397  // don't like < 3 operand CE's, and we don't like non-constant integer
398  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
399  // value of C.
400  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
401      !cast<Constant>(U->getOperand(1))->isNullValue() ||
402      !isa<ConstantInt>(U->getOperand(2)))
403    return false;
404
405  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
406  ++GEPI;  // Skip over the pointer index.
407
408  // If this is a use of an array allocation, do a bit more checking for sanity.
409  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
410    uint64_t NumElements = AT->getNumElements();
411    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
412
413    // Check to make sure that index falls within the array.  If not,
414    // something funny is going on, so we won't do the optimization.
415    //
416    if (Idx->getZExtValue() >= NumElements)
417      return false;
418
419    // We cannot scalar repl this level of the array unless any array
420    // sub-indices are in-range constants.  In particular, consider:
421    // A[0][i].  We cannot know that the user isn't doing invalid things like
422    // allowing i to index an out-of-range subscript that accesses A[1].
423    //
424    // Scalar replacing *just* the outer index of the array is probably not
425    // going to be a win anyway, so just give up.
426    for (++GEPI; // Skip array index.
427         GEPI != E;
428         ++GEPI) {
429      uint64_t NumElements;
430      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
431        NumElements = SubArrayTy->getNumElements();
432      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
433        NumElements = SubVectorTy->getNumElements();
434      else {
435        assert((*GEPI)->isStructTy() &&
436               "Indexed GEP type is not array, vector, or struct!");
437        continue;
438      }
439
440      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
441      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
442        return false;
443    }
444  }
445
446  for (User *UU : U->users())
447    if (!isSafeSROAElementUse(UU))
448      return false;
449
450  return true;
451}
452
453/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
454/// is safe for us to perform this transformation.
455///
456static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
457  for (User *U : GV->users())
458    if (!IsUserOfGlobalSafeForSRA(U, GV))
459      return false;
460
461  return true;
462}
463
464
465/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
466/// variable.  This opens the door for other optimizations by exposing the
467/// behavior of the program in a more fine-grained way.  We have determined that
468/// this transformation is safe already.  We return the first global variable we
469/// insert so that the caller can reprocess it.
470static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
471  // Make sure this global only has simple uses that we can SRA.
472  if (!GlobalUsersSafeToSRA(GV))
473    return 0;
474
475  assert(GV->hasLocalLinkage() && !GV->isConstant());
476  Constant *Init = GV->getInitializer();
477  Type *Ty = Init->getType();
478
479  std::vector<GlobalVariable*> NewGlobals;
480  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
481
482  // Get the alignment of the global, either explicit or target-specific.
483  unsigned StartAlignment = GV->getAlignment();
484  if (StartAlignment == 0)
485    StartAlignment = DL.getABITypeAlignment(GV->getType());
486
487  if (StructType *STy = dyn_cast<StructType>(Ty)) {
488    NewGlobals.reserve(STy->getNumElements());
489    const StructLayout &Layout = *DL.getStructLayout(STy);
490    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
491      Constant *In = Init->getAggregateElement(i);
492      assert(In && "Couldn't get element of initializer?");
493      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
494                                               GlobalVariable::InternalLinkage,
495                                               In, GV->getName()+"."+Twine(i),
496                                               GV->getThreadLocalMode(),
497                                              GV->getType()->getAddressSpace());
498      Globals.insert(GV, NGV);
499      NewGlobals.push_back(NGV);
500
501      // Calculate the known alignment of the field.  If the original aggregate
502      // had 256 byte alignment for example, something might depend on that:
503      // propagate info to each field.
504      uint64_t FieldOffset = Layout.getElementOffset(i);
505      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
506      if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
507        NGV->setAlignment(NewAlign);
508    }
509  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
510    unsigned NumElements = 0;
511    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
512      NumElements = ATy->getNumElements();
513    else
514      NumElements = cast<VectorType>(STy)->getNumElements();
515
516    if (NumElements > 16 && GV->hasNUsesOrMore(16))
517      return 0; // It's not worth it.
518    NewGlobals.reserve(NumElements);
519
520    uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
521    unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
522    for (unsigned i = 0, e = NumElements; i != e; ++i) {
523      Constant *In = Init->getAggregateElement(i);
524      assert(In && "Couldn't get element of initializer?");
525
526      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
527                                               GlobalVariable::InternalLinkage,
528                                               In, GV->getName()+"."+Twine(i),
529                                               GV->getThreadLocalMode(),
530                                              GV->getType()->getAddressSpace());
531      Globals.insert(GV, NGV);
532      NewGlobals.push_back(NGV);
533
534      // Calculate the known alignment of the field.  If the original aggregate
535      // had 256 byte alignment for example, something might depend on that:
536      // propagate info to each field.
537      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
538      if (NewAlign > EltAlign)
539        NGV->setAlignment(NewAlign);
540    }
541  }
542
543  if (NewGlobals.empty())
544    return 0;
545
546  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
547
548  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
549
550  // Loop over all of the uses of the global, replacing the constantexpr geps,
551  // with smaller constantexpr geps or direct references.
552  while (!GV->use_empty()) {
553    User *GEP = GV->user_back();
554    assert(((isa<ConstantExpr>(GEP) &&
555             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
556            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
557
558    // Ignore the 1th operand, which has to be zero or else the program is quite
559    // broken (undefined).  Get the 2nd operand, which is the structure or array
560    // index.
561    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
562    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
563
564    Value *NewPtr = NewGlobals[Val];
565
566    // Form a shorter GEP if needed.
567    if (GEP->getNumOperands() > 3) {
568      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
569        SmallVector<Constant*, 8> Idxs;
570        Idxs.push_back(NullInt);
571        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
572          Idxs.push_back(CE->getOperand(i));
573        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
574      } else {
575        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
576        SmallVector<Value*, 8> Idxs;
577        Idxs.push_back(NullInt);
578        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
579          Idxs.push_back(GEPI->getOperand(i));
580        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
581                                           GEPI->getName()+"."+Twine(Val),GEPI);
582      }
583    }
584    GEP->replaceAllUsesWith(NewPtr);
585
586    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
587      GEPI->eraseFromParent();
588    else
589      cast<ConstantExpr>(GEP)->destroyConstant();
590  }
591
592  // Delete the old global, now that it is dead.
593  Globals.erase(GV);
594  ++NumSRA;
595
596  // Loop over the new globals array deleting any globals that are obviously
597  // dead.  This can arise due to scalarization of a structure or an array that
598  // has elements that are dead.
599  unsigned FirstGlobal = 0;
600  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
601    if (NewGlobals[i]->use_empty()) {
602      Globals.erase(NewGlobals[i]);
603      if (FirstGlobal == i) ++FirstGlobal;
604    }
605
606  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
607}
608
609/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
610/// value will trap if the value is dynamically null.  PHIs keeps track of any
611/// phi nodes we've seen to avoid reprocessing them.
612static bool AllUsesOfValueWillTrapIfNull(const Value *V,
613                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
614  for (const User *U : V->users())
615    if (isa<LoadInst>(U)) {
616      // Will trap.
617    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
618      if (SI->getOperand(0) == V) {
619        //cerr << "NONTRAPPING USE: " << *U;
620        return false;  // Storing the value.
621      }
622    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
623      if (CI->getCalledValue() != V) {
624        //cerr << "NONTRAPPING USE: " << *U;
625        return false;  // Not calling the ptr
626      }
627    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
628      if (II->getCalledValue() != V) {
629        //cerr << "NONTRAPPING USE: " << *U;
630        return false;  // Not calling the ptr
631      }
632    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
633      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
634    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
635      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
636    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
637      // If we've already seen this phi node, ignore it, it has already been
638      // checked.
639      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
640        return false;
641    } else if (isa<ICmpInst>(U) &&
642               isa<ConstantPointerNull>(U->getOperand(1))) {
643      // Ignore icmp X, null
644    } else {
645      //cerr << "NONTRAPPING USE: " << *U;
646      return false;
647    }
648
649  return true;
650}
651
652/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
653/// from GV will trap if the loaded value is null.  Note that this also permits
654/// comparisons of the loaded value against null, as a special case.
655static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
656  for (const User *U : GV->users())
657    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
658      SmallPtrSet<const PHINode*, 8> PHIs;
659      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
660        return false;
661    } else if (isa<StoreInst>(U)) {
662      // Ignore stores to the global.
663    } else {
664      // We don't know or understand this user, bail out.
665      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
666      return false;
667    }
668  return true;
669}
670
671static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
672  bool Changed = false;
673  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
674    Instruction *I = cast<Instruction>(*UI++);
675    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
676      LI->setOperand(0, NewV);
677      Changed = true;
678    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
679      if (SI->getOperand(1) == V) {
680        SI->setOperand(1, NewV);
681        Changed = true;
682      }
683    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
684      CallSite CS(I);
685      if (CS.getCalledValue() == V) {
686        // Calling through the pointer!  Turn into a direct call, but be careful
687        // that the pointer is not also being passed as an argument.
688        CS.setCalledFunction(NewV);
689        Changed = true;
690        bool PassedAsArg = false;
691        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
692          if (CS.getArgument(i) == V) {
693            PassedAsArg = true;
694            CS.setArgument(i, NewV);
695          }
696
697        if (PassedAsArg) {
698          // Being passed as an argument also.  Be careful to not invalidate UI!
699          UI = V->user_begin();
700        }
701      }
702    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
703      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
704                                ConstantExpr::getCast(CI->getOpcode(),
705                                                      NewV, CI->getType()));
706      if (CI->use_empty()) {
707        Changed = true;
708        CI->eraseFromParent();
709      }
710    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
711      // Should handle GEP here.
712      SmallVector<Constant*, 8> Idxs;
713      Idxs.reserve(GEPI->getNumOperands()-1);
714      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
715           i != e; ++i)
716        if (Constant *C = dyn_cast<Constant>(*i))
717          Idxs.push_back(C);
718        else
719          break;
720      if (Idxs.size() == GEPI->getNumOperands()-1)
721        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
722                          ConstantExpr::getGetElementPtr(NewV, Idxs));
723      if (GEPI->use_empty()) {
724        Changed = true;
725        GEPI->eraseFromParent();
726      }
727    }
728  }
729
730  return Changed;
731}
732
733
734/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
735/// value stored into it.  If there are uses of the loaded value that would trap
736/// if the loaded value is dynamically null, then we know that they cannot be
737/// reachable with a null optimize away the load.
738static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
739                                            const DataLayout *DL,
740                                            TargetLibraryInfo *TLI) {
741  bool Changed = false;
742
743  // Keep track of whether we are able to remove all the uses of the global
744  // other than the store that defines it.
745  bool AllNonStoreUsesGone = true;
746
747  // Replace all uses of loads with uses of uses of the stored value.
748  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
749    User *GlobalUser = *GUI++;
750    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
751      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
752      // If we were able to delete all uses of the loads
753      if (LI->use_empty()) {
754        LI->eraseFromParent();
755        Changed = true;
756      } else {
757        AllNonStoreUsesGone = false;
758      }
759    } else if (isa<StoreInst>(GlobalUser)) {
760      // Ignore the store that stores "LV" to the global.
761      assert(GlobalUser->getOperand(1) == GV &&
762             "Must be storing *to* the global");
763    } else {
764      AllNonStoreUsesGone = false;
765
766      // If we get here we could have other crazy uses that are transitively
767      // loaded.
768      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
769              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
770              isa<BitCastInst>(GlobalUser) ||
771              isa<GetElementPtrInst>(GlobalUser)) &&
772             "Only expect load and stores!");
773    }
774  }
775
776  if (Changed) {
777    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
778    ++NumGlobUses;
779  }
780
781  // If we nuked all of the loads, then none of the stores are needed either,
782  // nor is the global.
783  if (AllNonStoreUsesGone) {
784    if (isLeakCheckerRoot(GV)) {
785      Changed |= CleanupPointerRootUsers(GV, TLI);
786    } else {
787      Changed = true;
788      CleanupConstantGlobalUsers(GV, 0, DL, TLI);
789    }
790    if (GV->use_empty()) {
791      DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
792      Changed = true;
793      GV->eraseFromParent();
794      ++NumDeleted;
795    }
796  }
797  return Changed;
798}
799
800/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
801/// instructions that are foldable.
802static void ConstantPropUsersOf(Value *V, const DataLayout *DL,
803                                TargetLibraryInfo *TLI) {
804  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
805    if (Instruction *I = dyn_cast<Instruction>(*UI++))
806      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
807        I->replaceAllUsesWith(NewC);
808
809        // Advance UI to the next non-I use to avoid invalidating it!
810        // Instructions could multiply use V.
811        while (UI != E && *UI == I)
812          ++UI;
813        I->eraseFromParent();
814      }
815}
816
817/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
818/// variable, and transforms the program as if it always contained the result of
819/// the specified malloc.  Because it is always the result of the specified
820/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
821/// malloc into a global, and any loads of GV as uses of the new global.
822static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
823                                                     CallInst *CI,
824                                                     Type *AllocTy,
825                                                     ConstantInt *NElements,
826                                                     const DataLayout *DL,
827                                                     TargetLibraryInfo *TLI) {
828  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
829
830  Type *GlobalType;
831  if (NElements->getZExtValue() == 1)
832    GlobalType = AllocTy;
833  else
834    // If we have an array allocation, the global variable is of an array.
835    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
836
837  // Create the new global variable.  The contents of the malloc'd memory is
838  // undefined, so initialize with an undef value.
839  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
840                                             GlobalType, false,
841                                             GlobalValue::InternalLinkage,
842                                             UndefValue::get(GlobalType),
843                                             GV->getName()+".body",
844                                             GV,
845                                             GV->getThreadLocalMode());
846
847  // If there are bitcast users of the malloc (which is typical, usually we have
848  // a malloc + bitcast) then replace them with uses of the new global.  Update
849  // other users to use the global as well.
850  BitCastInst *TheBC = 0;
851  while (!CI->use_empty()) {
852    Instruction *User = cast<Instruction>(CI->user_back());
853    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
854      if (BCI->getType() == NewGV->getType()) {
855        BCI->replaceAllUsesWith(NewGV);
856        BCI->eraseFromParent();
857      } else {
858        BCI->setOperand(0, NewGV);
859      }
860    } else {
861      if (TheBC == 0)
862        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
863      User->replaceUsesOfWith(CI, TheBC);
864    }
865  }
866
867  Constant *RepValue = NewGV;
868  if (NewGV->getType() != GV->getType()->getElementType())
869    RepValue = ConstantExpr::getBitCast(RepValue,
870                                        GV->getType()->getElementType());
871
872  // If there is a comparison against null, we will insert a global bool to
873  // keep track of whether the global was initialized yet or not.
874  GlobalVariable *InitBool =
875    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
876                       GlobalValue::InternalLinkage,
877                       ConstantInt::getFalse(GV->getContext()),
878                       GV->getName()+".init", GV->getThreadLocalMode());
879  bool InitBoolUsed = false;
880
881  // Loop over all uses of GV, processing them in turn.
882  while (!GV->use_empty()) {
883    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
884      // The global is initialized when the store to it occurs.
885      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
886                    SI->getOrdering(), SI->getSynchScope(), SI);
887      SI->eraseFromParent();
888      continue;
889    }
890
891    LoadInst *LI = cast<LoadInst>(GV->user_back());
892    while (!LI->use_empty()) {
893      Use &LoadUse = *LI->use_begin();
894      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
895      if (!ICI) {
896        LoadUse = RepValue;
897        continue;
898      }
899
900      // Replace the cmp X, 0 with a use of the bool value.
901      // Sink the load to where the compare was, if atomic rules allow us to.
902      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
903                               LI->getOrdering(), LI->getSynchScope(),
904                               LI->isUnordered() ? (Instruction*)ICI : LI);
905      InitBoolUsed = true;
906      switch (ICI->getPredicate()) {
907      default: llvm_unreachable("Unknown ICmp Predicate!");
908      case ICmpInst::ICMP_ULT:
909      case ICmpInst::ICMP_SLT:   // X < null -> always false
910        LV = ConstantInt::getFalse(GV->getContext());
911        break;
912      case ICmpInst::ICMP_ULE:
913      case ICmpInst::ICMP_SLE:
914      case ICmpInst::ICMP_EQ:
915        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
916        break;
917      case ICmpInst::ICMP_NE:
918      case ICmpInst::ICMP_UGE:
919      case ICmpInst::ICMP_SGE:
920      case ICmpInst::ICMP_UGT:
921      case ICmpInst::ICMP_SGT:
922        break;  // no change.
923      }
924      ICI->replaceAllUsesWith(LV);
925      ICI->eraseFromParent();
926    }
927    LI->eraseFromParent();
928  }
929
930  // If the initialization boolean was used, insert it, otherwise delete it.
931  if (!InitBoolUsed) {
932    while (!InitBool->use_empty())  // Delete initializations
933      cast<StoreInst>(InitBool->user_back())->eraseFromParent();
934    delete InitBool;
935  } else
936    GV->getParent()->getGlobalList().insert(GV, InitBool);
937
938  // Now the GV is dead, nuke it and the malloc..
939  GV->eraseFromParent();
940  CI->eraseFromParent();
941
942  // To further other optimizations, loop over all users of NewGV and try to
943  // constant prop them.  This will promote GEP instructions with constant
944  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
945  ConstantPropUsersOf(NewGV, DL, TLI);
946  if (RepValue != NewGV)
947    ConstantPropUsersOf(RepValue, DL, TLI);
948
949  return NewGV;
950}
951
952/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
953/// to make sure that there are no complex uses of V.  We permit simple things
954/// like dereferencing the pointer, but not storing through the address, unless
955/// it is to the specified global.
956static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
957                                                      const GlobalVariable *GV,
958                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
959  for (const User *U : V->users()) {
960    const Instruction *Inst = cast<Instruction>(U);
961
962    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
963      continue; // Fine, ignore.
964    }
965
966    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
967      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
968        return false;  // Storing the pointer itself... bad.
969      continue; // Otherwise, storing through it, or storing into GV... fine.
970    }
971
972    // Must index into the array and into the struct.
973    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
974      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
975        return false;
976      continue;
977    }
978
979    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
980      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
981      // cycles.
982      if (PHIs.insert(PN))
983        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
984          return false;
985      continue;
986    }
987
988    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
989      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
990        return false;
991      continue;
992    }
993
994    return false;
995  }
996  return true;
997}
998
999/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1000/// somewhere.  Transform all uses of the allocation into loads from the
1001/// global and uses of the resultant pointer.  Further, delete the store into
1002/// GV.  This assumes that these value pass the
1003/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1004static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1005                                          GlobalVariable *GV) {
1006  while (!Alloc->use_empty()) {
1007    Instruction *U = cast<Instruction>(*Alloc->user_begin());
1008    Instruction *InsertPt = U;
1009    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1010      // If this is the store of the allocation into the global, remove it.
1011      if (SI->getOperand(1) == GV) {
1012        SI->eraseFromParent();
1013        continue;
1014      }
1015    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1016      // Insert the load in the corresponding predecessor, not right before the
1017      // PHI.
1018      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1019    } else if (isa<BitCastInst>(U)) {
1020      // Must be bitcast between the malloc and store to initialize the global.
1021      ReplaceUsesOfMallocWithGlobal(U, GV);
1022      U->eraseFromParent();
1023      continue;
1024    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1025      // If this is a "GEP bitcast" and the user is a store to the global, then
1026      // just process it as a bitcast.
1027      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1028        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1029          if (SI->getOperand(1) == GV) {
1030            // Must be bitcast GEP between the malloc and store to initialize
1031            // the global.
1032            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1033            GEPI->eraseFromParent();
1034            continue;
1035          }
1036    }
1037
1038    // Insert a load from the global, and use it instead of the malloc.
1039    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1040    U->replaceUsesOfWith(Alloc, NL);
1041  }
1042}
1043
1044/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1045/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1046/// that index through the array and struct field, icmps of null, and PHIs.
1047static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1048                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1049                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1050  // We permit two users of the load: setcc comparing against the null
1051  // pointer, and a getelementptr of a specific form.
1052  for (const User *U : V->users()) {
1053    const Instruction *UI = cast<Instruction>(U);
1054
1055    // Comparison against null is ok.
1056    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1057      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1058        return false;
1059      continue;
1060    }
1061
1062    // getelementptr is also ok, but only a simple form.
1063    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1064      // Must index into the array and into the struct.
1065      if (GEPI->getNumOperands() < 3)
1066        return false;
1067
1068      // Otherwise the GEP is ok.
1069      continue;
1070    }
1071
1072    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1073      if (!LoadUsingPHIsPerLoad.insert(PN))
1074        // This means some phi nodes are dependent on each other.
1075        // Avoid infinite looping!
1076        return false;
1077      if (!LoadUsingPHIs.insert(PN))
1078        // If we have already analyzed this PHI, then it is safe.
1079        continue;
1080
1081      // Make sure all uses of the PHI are simple enough to transform.
1082      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1083                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1084        return false;
1085
1086      continue;
1087    }
1088
1089    // Otherwise we don't know what this is, not ok.
1090    return false;
1091  }
1092
1093  return true;
1094}
1095
1096
1097/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1098/// GV are simple enough to perform HeapSRA, return true.
1099static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1100                                                    Instruction *StoredVal) {
1101  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1102  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1103  for (const User *U : GV->users())
1104    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1105      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1106                                          LoadUsingPHIsPerLoad))
1107        return false;
1108      LoadUsingPHIsPerLoad.clear();
1109    }
1110
1111  // If we reach here, we know that all uses of the loads and transitive uses
1112  // (through PHI nodes) are simple enough to transform.  However, we don't know
1113  // that all inputs the to the PHI nodes are in the same equivalence sets.
1114  // Check to verify that all operands of the PHIs are either PHIS that can be
1115  // transformed, loads from GV, or MI itself.
1116  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1117       , E = LoadUsingPHIs.end(); I != E; ++I) {
1118    const PHINode *PN = *I;
1119    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1120      Value *InVal = PN->getIncomingValue(op);
1121
1122      // PHI of the stored value itself is ok.
1123      if (InVal == StoredVal) continue;
1124
1125      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1126        // One of the PHIs in our set is (optimistically) ok.
1127        if (LoadUsingPHIs.count(InPN))
1128          continue;
1129        return false;
1130      }
1131
1132      // Load from GV is ok.
1133      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1134        if (LI->getOperand(0) == GV)
1135          continue;
1136
1137      // UNDEF? NULL?
1138
1139      // Anything else is rejected.
1140      return false;
1141    }
1142  }
1143
1144  return true;
1145}
1146
1147static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1148               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1149                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1150  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1151
1152  if (FieldNo >= FieldVals.size())
1153    FieldVals.resize(FieldNo+1);
1154
1155  // If we already have this value, just reuse the previously scalarized
1156  // version.
1157  if (Value *FieldVal = FieldVals[FieldNo])
1158    return FieldVal;
1159
1160  // Depending on what instruction this is, we have several cases.
1161  Value *Result;
1162  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1163    // This is a scalarized version of the load from the global.  Just create
1164    // a new Load of the scalarized global.
1165    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1166                                           InsertedScalarizedValues,
1167                                           PHIsToRewrite),
1168                          LI->getName()+".f"+Twine(FieldNo), LI);
1169  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1170    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1171    // field.
1172    StructType *ST = cast<StructType>(PN->getType()->getPointerElementType());
1173
1174    PHINode *NewPN =
1175     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1176                     PN->getNumIncomingValues(),
1177                     PN->getName()+".f"+Twine(FieldNo), PN);
1178    Result = NewPN;
1179    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1180  } else {
1181    llvm_unreachable("Unknown usable value");
1182  }
1183
1184  return FieldVals[FieldNo] = Result;
1185}
1186
1187/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1188/// the load, rewrite the derived value to use the HeapSRoA'd load.
1189static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1190             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1191                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1192  // If this is a comparison against null, handle it.
1193  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1194    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1195    // If we have a setcc of the loaded pointer, we can use a setcc of any
1196    // field.
1197    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1198                                   InsertedScalarizedValues, PHIsToRewrite);
1199
1200    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1201                              Constant::getNullValue(NPtr->getType()),
1202                              SCI->getName());
1203    SCI->replaceAllUsesWith(New);
1204    SCI->eraseFromParent();
1205    return;
1206  }
1207
1208  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1209  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1210    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1211           && "Unexpected GEPI!");
1212
1213    // Load the pointer for this field.
1214    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1215    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1216                                     InsertedScalarizedValues, PHIsToRewrite);
1217
1218    // Create the new GEP idx vector.
1219    SmallVector<Value*, 8> GEPIdx;
1220    GEPIdx.push_back(GEPI->getOperand(1));
1221    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1222
1223    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1224                                             GEPI->getName(), GEPI);
1225    GEPI->replaceAllUsesWith(NGEPI);
1226    GEPI->eraseFromParent();
1227    return;
1228  }
1229
1230  // Recursively transform the users of PHI nodes.  This will lazily create the
1231  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1232  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1233  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1234  // already been seen first by another load, so its uses have already been
1235  // processed.
1236  PHINode *PN = cast<PHINode>(LoadUser);
1237  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1238                                              std::vector<Value*>())).second)
1239    return;
1240
1241  // If this is the first time we've seen this PHI, recursively process all
1242  // users.
1243  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1244    Instruction *User = cast<Instruction>(*UI++);
1245    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1246  }
1247}
1248
1249/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1250/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1251/// use FieldGlobals instead.  All uses of loaded values satisfy
1252/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1253static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1254               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1255                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1256  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1257    Instruction *User = cast<Instruction>(*UI++);
1258    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1259  }
1260
1261  if (Load->use_empty()) {
1262    Load->eraseFromParent();
1263    InsertedScalarizedValues.erase(Load);
1264  }
1265}
1266
1267/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1268/// it up into multiple allocations of arrays of the fields.
1269static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1270                                            Value *NElems, const DataLayout *DL,
1271                                            const TargetLibraryInfo *TLI) {
1272  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1273  Type *MAT = getMallocAllocatedType(CI, TLI);
1274  StructType *STy = cast<StructType>(MAT);
1275
1276  // There is guaranteed to be at least one use of the malloc (storing
1277  // it into GV).  If there are other uses, change them to be uses of
1278  // the global to simplify later code.  This also deletes the store
1279  // into GV.
1280  ReplaceUsesOfMallocWithGlobal(CI, GV);
1281
1282  // Okay, at this point, there are no users of the malloc.  Insert N
1283  // new mallocs at the same place as CI, and N globals.
1284  std::vector<Value*> FieldGlobals;
1285  std::vector<Value*> FieldMallocs;
1286
1287  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1288    Type *FieldTy = STy->getElementType(FieldNo);
1289    PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1290
1291    GlobalVariable *NGV =
1292      new GlobalVariable(*GV->getParent(),
1293                         PFieldTy, false, GlobalValue::InternalLinkage,
1294                         Constant::getNullValue(PFieldTy),
1295                         GV->getName() + ".f" + Twine(FieldNo), GV,
1296                         GV->getThreadLocalMode());
1297    FieldGlobals.push_back(NGV);
1298
1299    unsigned TypeSize = DL->getTypeAllocSize(FieldTy);
1300    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1301      TypeSize = DL->getStructLayout(ST)->getSizeInBytes();
1302    Type *IntPtrTy = DL->getIntPtrType(CI->getType());
1303    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1304                                        ConstantInt::get(IntPtrTy, TypeSize),
1305                                        NElems, 0,
1306                                        CI->getName() + ".f" + Twine(FieldNo));
1307    FieldMallocs.push_back(NMI);
1308    new StoreInst(NMI, NGV, CI);
1309  }
1310
1311  // The tricky aspect of this transformation is handling the case when malloc
1312  // fails.  In the original code, malloc failing would set the result pointer
1313  // of malloc to null.  In this case, some mallocs could succeed and others
1314  // could fail.  As such, we emit code that looks like this:
1315  //    F0 = malloc(field0)
1316  //    F1 = malloc(field1)
1317  //    F2 = malloc(field2)
1318  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1319  //      if (F0) { free(F0); F0 = 0; }
1320  //      if (F1) { free(F1); F1 = 0; }
1321  //      if (F2) { free(F2); F2 = 0; }
1322  //    }
1323  // The malloc can also fail if its argument is too large.
1324  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1325  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1326                                  ConstantZero, "isneg");
1327  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1328    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1329                             Constant::getNullValue(FieldMallocs[i]->getType()),
1330                               "isnull");
1331    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1332  }
1333
1334  // Split the basic block at the old malloc.
1335  BasicBlock *OrigBB = CI->getParent();
1336  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1337
1338  // Create the block to check the first condition.  Put all these blocks at the
1339  // end of the function as they are unlikely to be executed.
1340  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1341                                                "malloc_ret_null",
1342                                                OrigBB->getParent());
1343
1344  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1345  // branch on RunningOr.
1346  OrigBB->getTerminator()->eraseFromParent();
1347  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1348
1349  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1350  // pointer, because some may be null while others are not.
1351  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1352    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1353    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1354                              Constant::getNullValue(GVVal->getType()));
1355    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1356                                               OrigBB->getParent());
1357    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1358                                               OrigBB->getParent());
1359    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1360                                         Cmp, NullPtrBlock);
1361
1362    // Fill in FreeBlock.
1363    CallInst::CreateFree(GVVal, BI);
1364    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1365                  FreeBlock);
1366    BranchInst::Create(NextBlock, FreeBlock);
1367
1368    NullPtrBlock = NextBlock;
1369  }
1370
1371  BranchInst::Create(ContBB, NullPtrBlock);
1372
1373  // CI is no longer needed, remove it.
1374  CI->eraseFromParent();
1375
1376  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1377  /// update all uses of the load, keep track of what scalarized loads are
1378  /// inserted for a given load.
1379  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1380  InsertedScalarizedValues[GV] = FieldGlobals;
1381
1382  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1383
1384  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1385  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1386  // of the per-field globals instead.
1387  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1388    Instruction *User = cast<Instruction>(*UI++);
1389
1390    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1391      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1392      continue;
1393    }
1394
1395    // Must be a store of null.
1396    StoreInst *SI = cast<StoreInst>(User);
1397    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1398           "Unexpected heap-sra user!");
1399
1400    // Insert a store of null into each global.
1401    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1402      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1403      Constant *Null = Constant::getNullValue(PT->getElementType());
1404      new StoreInst(Null, FieldGlobals[i], SI);
1405    }
1406    // Erase the original store.
1407    SI->eraseFromParent();
1408  }
1409
1410  // While we have PHIs that are interesting to rewrite, do it.
1411  while (!PHIsToRewrite.empty()) {
1412    PHINode *PN = PHIsToRewrite.back().first;
1413    unsigned FieldNo = PHIsToRewrite.back().second;
1414    PHIsToRewrite.pop_back();
1415    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1416    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1417
1418    // Add all the incoming values.  This can materialize more phis.
1419    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1420      Value *InVal = PN->getIncomingValue(i);
1421      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1422                               PHIsToRewrite);
1423      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1424    }
1425  }
1426
1427  // Drop all inter-phi links and any loads that made it this far.
1428  for (DenseMap<Value*, std::vector<Value*> >::iterator
1429       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1430       I != E; ++I) {
1431    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1432      PN->dropAllReferences();
1433    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1434      LI->dropAllReferences();
1435  }
1436
1437  // Delete all the phis and loads now that inter-references are dead.
1438  for (DenseMap<Value*, std::vector<Value*> >::iterator
1439       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1440       I != E; ++I) {
1441    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1442      PN->eraseFromParent();
1443    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1444      LI->eraseFromParent();
1445  }
1446
1447  // The old global is now dead, remove it.
1448  GV->eraseFromParent();
1449
1450  ++NumHeapSRA;
1451  return cast<GlobalVariable>(FieldGlobals[0]);
1452}
1453
1454/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1455/// pointer global variable with a single value stored it that is a malloc or
1456/// cast of malloc.
1457static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1458                                               CallInst *CI,
1459                                               Type *AllocTy,
1460                                               AtomicOrdering Ordering,
1461                                               Module::global_iterator &GVI,
1462                                               const DataLayout *DL,
1463                                               TargetLibraryInfo *TLI) {
1464  if (!DL)
1465    return false;
1466
1467  // If this is a malloc of an abstract type, don't touch it.
1468  if (!AllocTy->isSized())
1469    return false;
1470
1471  // We can't optimize this global unless all uses of it are *known* to be
1472  // of the malloc value, not of the null initializer value (consider a use
1473  // that compares the global's value against zero to see if the malloc has
1474  // been reached).  To do this, we check to see if all uses of the global
1475  // would trap if the global were null: this proves that they must all
1476  // happen after the malloc.
1477  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1478    return false;
1479
1480  // We can't optimize this if the malloc itself is used in a complex way,
1481  // for example, being stored into multiple globals.  This allows the
1482  // malloc to be stored into the specified global, loaded icmp'd, and
1483  // GEP'd.  These are all things we could transform to using the global
1484  // for.
1485  SmallPtrSet<const PHINode*, 8> PHIs;
1486  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1487    return false;
1488
1489  // If we have a global that is only initialized with a fixed size malloc,
1490  // transform the program to use global memory instead of malloc'd memory.
1491  // This eliminates dynamic allocation, avoids an indirection accessing the
1492  // data, and exposes the resultant global to further GlobalOpt.
1493  // We cannot optimize the malloc if we cannot determine malloc array size.
1494  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1495  if (!NElems)
1496    return false;
1497
1498  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1499    // Restrict this transformation to only working on small allocations
1500    // (2048 bytes currently), as we don't want to introduce a 16M global or
1501    // something.
1502    if (NElements->getZExtValue() * DL->getTypeAllocSize(AllocTy) < 2048) {
1503      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1504      return true;
1505    }
1506
1507  // If the allocation is an array of structures, consider transforming this
1508  // into multiple malloc'd arrays, one for each field.  This is basically
1509  // SRoA for malloc'd memory.
1510
1511  if (Ordering != NotAtomic)
1512    return false;
1513
1514  // If this is an allocation of a fixed size array of structs, analyze as a
1515  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1516  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1517    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1518      AllocTy = AT->getElementType();
1519
1520  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1521  if (!AllocSTy)
1522    return false;
1523
1524  // This the structure has an unreasonable number of fields, leave it
1525  // alone.
1526  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1527      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1528
1529    // If this is a fixed size array, transform the Malloc to be an alloc of
1530    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1531    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1532      Type *IntPtrTy = DL->getIntPtrType(CI->getType());
1533      unsigned TypeSize = DL->getStructLayout(AllocSTy)->getSizeInBytes();
1534      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1535      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1536      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1537                                                   AllocSize, NumElements,
1538                                                   0, CI->getName());
1539      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1540      CI->replaceAllUsesWith(Cast);
1541      CI->eraseFromParent();
1542      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1543        CI = cast<CallInst>(BCI->getOperand(0));
1544      else
1545        CI = cast<CallInst>(Malloc);
1546    }
1547
1548    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
1549                               DL, TLI);
1550    return true;
1551  }
1552
1553  return false;
1554}
1555
1556// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1557// that only one value (besides its initializer) is ever stored to the global.
1558static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1559                                     AtomicOrdering Ordering,
1560                                     Module::global_iterator &GVI,
1561                                     const DataLayout *DL,
1562                                     TargetLibraryInfo *TLI) {
1563  // Ignore no-op GEPs and bitcasts.
1564  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1565
1566  // If we are dealing with a pointer global that is initialized to null and
1567  // only has one (non-null) value stored into it, then we can optimize any
1568  // users of the loaded value (often calls and loads) that would trap if the
1569  // value was null.
1570  if (GV->getInitializer()->getType()->isPointerTy() &&
1571      GV->getInitializer()->isNullValue()) {
1572    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1573      if (GV->getInitializer()->getType() != SOVC->getType())
1574        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1575
1576      // Optimize away any trapping uses of the loaded value.
1577      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
1578        return true;
1579    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
1580      Type *MallocType = getMallocAllocatedType(CI, TLI);
1581      if (MallocType &&
1582          TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
1583                                             DL, TLI))
1584        return true;
1585    }
1586  }
1587
1588  return false;
1589}
1590
1591/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1592/// two values ever stored into GV are its initializer and OtherVal.  See if we
1593/// can shrink the global into a boolean and select between the two values
1594/// whenever it is used.  This exposes the values to other scalar optimizations.
1595static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1596  Type *GVElType = GV->getType()->getElementType();
1597
1598  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1599  // an FP value, pointer or vector, don't do this optimization because a select
1600  // between them is very expensive and unlikely to lead to later
1601  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1602  // where v1 and v2 both require constant pool loads, a big loss.
1603  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1604      GVElType->isFloatingPointTy() ||
1605      GVElType->isPointerTy() || GVElType->isVectorTy())
1606    return false;
1607
1608  // Walk the use list of the global seeing if all the uses are load or store.
1609  // If there is anything else, bail out.
1610  for (User *U : GV->users())
1611    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1612      return false;
1613
1614  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1615
1616  // Create the new global, initializing it to false.
1617  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1618                                             false,
1619                                             GlobalValue::InternalLinkage,
1620                                        ConstantInt::getFalse(GV->getContext()),
1621                                             GV->getName()+".b",
1622                                             GV->getThreadLocalMode(),
1623                                             GV->getType()->getAddressSpace());
1624  GV->getParent()->getGlobalList().insert(GV, NewGV);
1625
1626  Constant *InitVal = GV->getInitializer();
1627  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1628         "No reason to shrink to bool!");
1629
1630  // If initialized to zero and storing one into the global, we can use a cast
1631  // instead of a select to synthesize the desired value.
1632  bool IsOneZero = false;
1633  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1634    IsOneZero = InitVal->isNullValue() && CI->isOne();
1635
1636  while (!GV->use_empty()) {
1637    Instruction *UI = cast<Instruction>(GV->user_back());
1638    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1639      // Change the store into a boolean store.
1640      bool StoringOther = SI->getOperand(0) == OtherVal;
1641      // Only do this if we weren't storing a loaded value.
1642      Value *StoreVal;
1643      if (StoringOther || SI->getOperand(0) == InitVal) {
1644        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1645                                    StoringOther);
1646      } else {
1647        // Otherwise, we are storing a previously loaded copy.  To do this,
1648        // change the copy from copying the original value to just copying the
1649        // bool.
1650        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1651
1652        // If we've already replaced the input, StoredVal will be a cast or
1653        // select instruction.  If not, it will be a load of the original
1654        // global.
1655        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1656          assert(LI->getOperand(0) == GV && "Not a copy!");
1657          // Insert a new load, to preserve the saved value.
1658          StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1659                                  LI->getOrdering(), LI->getSynchScope(), LI);
1660        } else {
1661          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1662                 "This is not a form that we understand!");
1663          StoreVal = StoredVal->getOperand(0);
1664          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1665        }
1666      }
1667      new StoreInst(StoreVal, NewGV, false, 0,
1668                    SI->getOrdering(), SI->getSynchScope(), SI);
1669    } else {
1670      // Change the load into a load of bool then a select.
1671      LoadInst *LI = cast<LoadInst>(UI);
1672      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
1673                                   LI->getOrdering(), LI->getSynchScope(), LI);
1674      Value *NSI;
1675      if (IsOneZero)
1676        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1677      else
1678        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1679      NSI->takeName(LI);
1680      LI->replaceAllUsesWith(NSI);
1681    }
1682    UI->eraseFromParent();
1683  }
1684
1685  // Retain the name of the old global variable. People who are debugging their
1686  // programs may expect these variables to be named the same.
1687  NewGV->takeName(GV);
1688  GV->eraseFromParent();
1689  return true;
1690}
1691
1692
1693/// ProcessGlobal - Analyze the specified global variable and optimize it if
1694/// possible.  If we make a change, return true.
1695bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1696                              Module::global_iterator &GVI) {
1697  if (!GV->isDiscardableIfUnused())
1698    return false;
1699
1700  // Do more involved optimizations if the global is internal.
1701  GV->removeDeadConstantUsers();
1702
1703  if (GV->use_empty()) {
1704    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1705    GV->eraseFromParent();
1706    ++NumDeleted;
1707    return true;
1708  }
1709
1710  if (!GV->hasLocalLinkage())
1711    return false;
1712
1713  GlobalStatus GS;
1714
1715  if (GlobalStatus::analyzeGlobal(GV, GS))
1716    return false;
1717
1718  if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
1719    GV->setUnnamedAddr(true);
1720    NumUnnamed++;
1721  }
1722
1723  if (GV->isConstant() || !GV->hasInitializer())
1724    return false;
1725
1726  return ProcessInternalGlobal(GV, GVI, GS);
1727}
1728
1729/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1730/// it if possible.  If we make a change, return true.
1731bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1732                                      Module::global_iterator &GVI,
1733                                      const GlobalStatus &GS) {
1734  // If this is a first class global and has only one accessing function
1735  // and this function is main (which we know is not recursive), we replace
1736  // the global with a local alloca in this function.
1737  //
1738  // NOTE: It doesn't make sense to promote non-single-value types since we
1739  // are just replacing static memory to stack memory.
1740  //
1741  // If the global is in different address space, don't bring it to stack.
1742  if (!GS.HasMultipleAccessingFunctions &&
1743      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1744      GV->getType()->getElementType()->isSingleValueType() &&
1745      GS.AccessingFunction->getName() == "main" &&
1746      GS.AccessingFunction->hasExternalLinkage() &&
1747      GV->getType()->getAddressSpace() == 0) {
1748    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1749    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1750                                                   ->getEntryBlock().begin());
1751    Type *ElemTy = GV->getType()->getElementType();
1752    // FIXME: Pass Global's alignment when globals have alignment
1753    AllocaInst *Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1754    if (!isa<UndefValue>(GV->getInitializer()))
1755      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1756
1757    GV->replaceAllUsesWith(Alloca);
1758    GV->eraseFromParent();
1759    ++NumLocalized;
1760    return true;
1761  }
1762
1763  // If the global is never loaded (but may be stored to), it is dead.
1764  // Delete it now.
1765  if (!GS.IsLoaded) {
1766    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1767
1768    bool Changed;
1769    if (isLeakCheckerRoot(GV)) {
1770      // Delete any constant stores to the global.
1771      Changed = CleanupPointerRootUsers(GV, TLI);
1772    } else {
1773      // Delete any stores we can find to the global.  We may not be able to
1774      // make it completely dead though.
1775      Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1776    }
1777
1778    // If the global is dead now, delete it.
1779    if (GV->use_empty()) {
1780      GV->eraseFromParent();
1781      ++NumDeleted;
1782      Changed = true;
1783    }
1784    return Changed;
1785
1786  } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
1787    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1788    GV->setConstant(true);
1789
1790    // Clean up any obviously simplifiable users now.
1791    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1792
1793    // If the global is dead now, just nuke it.
1794    if (GV->use_empty()) {
1795      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1796            << "all users and delete global!\n");
1797      GV->eraseFromParent();
1798      ++NumDeleted;
1799    }
1800
1801    ++NumMarked;
1802    return true;
1803  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1804    if (DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>()) {
1805      const DataLayout &DL = DLP->getDataLayout();
1806      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
1807        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1808        return true;
1809      }
1810    }
1811  } else if (GS.StoredType == GlobalStatus::StoredOnce) {
1812    // If the initial value for the global was an undef value, and if only
1813    // one other value was stored into it, we can just change the
1814    // initializer to be the stored value, then delete all stores to the
1815    // global.  This allows us to mark it constant.
1816    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1817      if (isa<UndefValue>(GV->getInitializer())) {
1818        // Change the initial value here.
1819        GV->setInitializer(SOVConstant);
1820
1821        // Clean up any obviously simplifiable users now.
1822        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
1823
1824        if (GV->use_empty()) {
1825          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1826                       << "simplify all users and delete global!\n");
1827          GV->eraseFromParent();
1828          ++NumDeleted;
1829        } else {
1830          GVI = GV;
1831        }
1832        ++NumSubstitute;
1833        return true;
1834      }
1835
1836    // Try to optimize globals based on the knowledge that only one value
1837    // (besides its initializer) is ever stored to the global.
1838    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
1839                                 DL, TLI))
1840      return true;
1841
1842    // Otherwise, if the global was not a boolean, we can shrink it to be a
1843    // boolean.
1844    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1845      if (GS.Ordering == NotAtomic) {
1846        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1847          ++NumShrunkToBool;
1848          return true;
1849        }
1850      }
1851    }
1852  }
1853
1854  return false;
1855}
1856
1857/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1858/// function, changing them to FastCC.
1859static void ChangeCalleesToFastCall(Function *F) {
1860  for (User *U : F->users()) {
1861    if (isa<BlockAddress>(U))
1862      continue;
1863    CallSite CS(cast<Instruction>(U));
1864    CS.setCallingConv(CallingConv::Fast);
1865  }
1866}
1867
1868static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
1869  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1870    unsigned Index = Attrs.getSlotIndex(i);
1871    if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
1872      continue;
1873
1874    // There can be only one.
1875    return Attrs.removeAttribute(C, Index, Attribute::Nest);
1876  }
1877
1878  return Attrs;
1879}
1880
1881static void RemoveNestAttribute(Function *F) {
1882  F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
1883  for (User *U : F->users()) {
1884    if (isa<BlockAddress>(U))
1885      continue;
1886    CallSite CS(cast<Instruction>(U));
1887    CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
1888  }
1889}
1890
1891/// Return true if this is a calling convention that we'd like to change.  The
1892/// idea here is that we don't want to mess with the convention if the user
1893/// explicitly requested something with performance implications like coldcc,
1894/// GHC, or anyregcc.
1895static bool isProfitableToMakeFastCC(Function *F) {
1896  CallingConv::ID CC = F->getCallingConv();
1897  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1898  return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
1899}
1900
1901bool GlobalOpt::OptimizeFunctions(Module &M) {
1902  bool Changed = false;
1903  // Optimize functions.
1904  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1905    Function *F = FI++;
1906    // Functions without names cannot be referenced outside this module.
1907    if (!F->hasName() && !F->isDeclaration())
1908      F->setLinkage(GlobalValue::InternalLinkage);
1909    F->removeDeadConstantUsers();
1910    if (F->isDefTriviallyDead()) {
1911      F->eraseFromParent();
1912      Changed = true;
1913      ++NumFnDeleted;
1914    } else if (F->hasLocalLinkage()) {
1915      if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
1916          !F->hasAddressTaken()) {
1917        // If this function has a calling convention worth changing, is not a
1918        // varargs function, and is only called directly, promote it to use the
1919        // Fast calling convention.
1920        F->setCallingConv(CallingConv::Fast);
1921        ChangeCalleesToFastCall(F);
1922        ++NumFastCallFns;
1923        Changed = true;
1924      }
1925
1926      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1927          !F->hasAddressTaken()) {
1928        // The function is not used by a trampoline intrinsic, so it is safe
1929        // to remove the 'nest' attribute.
1930        RemoveNestAttribute(F);
1931        ++NumNestRemoved;
1932        Changed = true;
1933      }
1934    }
1935  }
1936  return Changed;
1937}
1938
1939bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1940  bool Changed = false;
1941  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1942       GVI != E; ) {
1943    GlobalVariable *GV = GVI++;
1944    // Global variables without names cannot be referenced outside this module.
1945    if (!GV->hasName() && !GV->isDeclaration())
1946      GV->setLinkage(GlobalValue::InternalLinkage);
1947    // Simplify the initializer.
1948    if (GV->hasInitializer())
1949      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1950        Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
1951        if (New && New != CE)
1952          GV->setInitializer(New);
1953      }
1954
1955    Changed |= ProcessGlobal(GV, GVI);
1956  }
1957  return Changed;
1958}
1959
1960/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
1961/// initializers have an init priority of 65535.
1962GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1963  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1964  if (GV == 0) return 0;
1965
1966  // Verify that the initializer is simple enough for us to handle. We are
1967  // only allowed to optimize the initializer if it is unique.
1968  if (!GV->hasUniqueInitializer()) return 0;
1969
1970  if (isa<ConstantAggregateZero>(GV->getInitializer()))
1971    return GV;
1972  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1973
1974  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1975    if (isa<ConstantAggregateZero>(*i))
1976      continue;
1977    ConstantStruct *CS = cast<ConstantStruct>(*i);
1978    if (isa<ConstantPointerNull>(CS->getOperand(1)))
1979      continue;
1980
1981    // Must have a function or null ptr.
1982    if (!isa<Function>(CS->getOperand(1)))
1983      return 0;
1984
1985    // Init priority must be standard.
1986    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
1987    if (CI->getZExtValue() != 65535)
1988      return 0;
1989  }
1990
1991  return GV;
1992}
1993
1994/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1995/// return a list of the functions and null terminator as a vector.
1996static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1997  if (GV->getInitializer()->isNullValue())
1998    return std::vector<Function*>();
1999  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
2000  std::vector<Function*> Result;
2001  Result.reserve(CA->getNumOperands());
2002  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
2003    ConstantStruct *CS = cast<ConstantStruct>(*i);
2004    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
2005  }
2006  return Result;
2007}
2008
2009/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
2010/// specified array, returning the new global to use.
2011static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
2012                                          const std::vector<Function*> &Ctors) {
2013  // If we made a change, reassemble the initializer list.
2014  Constant *CSVals[2];
2015  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2016  CSVals[1] = 0;
2017
2018  StructType *StructTy =
2019    cast<StructType>(GCL->getType()->getElementType()->getArrayElementType());
2020
2021  // Create the new init list.
2022  std::vector<Constant*> CAList;
2023  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2024    if (Ctors[i]) {
2025      CSVals[1] = Ctors[i];
2026    } else {
2027      Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2028                                          false);
2029      PointerType *PFTy = PointerType::getUnqual(FTy);
2030      CSVals[1] = Constant::getNullValue(PFTy);
2031      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2032                                   0x7fffffff);
2033    }
2034    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2035  }
2036
2037  // Create the array initializer.
2038  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2039                                                   CAList.size()), CAList);
2040
2041  // If we didn't change the number of elements, don't create a new GV.
2042  if (CA->getType() == GCL->getInitializer()->getType()) {
2043    GCL->setInitializer(CA);
2044    return GCL;
2045  }
2046
2047  // Create the new global and insert it next to the existing list.
2048  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2049                                           GCL->getLinkage(), CA, "",
2050                                           GCL->getThreadLocalMode());
2051  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2052  NGV->takeName(GCL);
2053
2054  // Nuke the old list, replacing any uses with the new one.
2055  if (!GCL->use_empty()) {
2056    Constant *V = NGV;
2057    if (V->getType() != GCL->getType())
2058      V = ConstantExpr::getBitCast(V, GCL->getType());
2059    GCL->replaceAllUsesWith(V);
2060  }
2061  GCL->eraseFromParent();
2062
2063  if (Ctors.size())
2064    return NGV;
2065  else
2066    return 0;
2067}
2068
2069
2070static inline bool
2071isSimpleEnoughValueToCommit(Constant *C,
2072                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2073                            const DataLayout *DL);
2074
2075
2076/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2077/// handled by the code generator.  We don't want to generate something like:
2078///   void *X = &X/42;
2079/// because the code generator doesn't have a relocation that can handle that.
2080///
2081/// This function should be called if C was not found (but just got inserted)
2082/// in SimpleConstants to avoid having to rescan the same constants all the
2083/// time.
2084static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2085                                   SmallPtrSet<Constant*, 8> &SimpleConstants,
2086                                   const DataLayout *DL) {
2087  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2088  // all supported.
2089  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2090      isa<GlobalValue>(C))
2091    return true;
2092
2093  // Aggregate values are safe if all their elements are.
2094  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2095      isa<ConstantVector>(C)) {
2096    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2097      Constant *Op = cast<Constant>(C->getOperand(i));
2098      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
2099        return false;
2100    }
2101    return true;
2102  }
2103
2104  // We don't know exactly what relocations are allowed in constant expressions,
2105  // so we allow &global+constantoffset, which is safe and uniformly supported
2106  // across targets.
2107  ConstantExpr *CE = cast<ConstantExpr>(C);
2108  switch (CE->getOpcode()) {
2109  case Instruction::BitCast:
2110    // Bitcast is fine if the casted value is fine.
2111    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2112
2113  case Instruction::IntToPtr:
2114  case Instruction::PtrToInt:
2115    // int <=> ptr is fine if the int type is the same size as the
2116    // pointer type.
2117    if (!DL || DL->getTypeSizeInBits(CE->getType()) !=
2118               DL->getTypeSizeInBits(CE->getOperand(0)->getType()))
2119      return false;
2120    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2121
2122  // GEP is fine if it is simple + constant offset.
2123  case Instruction::GetElementPtr:
2124    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2125      if (!isa<ConstantInt>(CE->getOperand(i)))
2126        return false;
2127    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2128
2129  case Instruction::Add:
2130    // We allow simple+cst.
2131    if (!isa<ConstantInt>(CE->getOperand(1)))
2132      return false;
2133    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
2134  }
2135  return false;
2136}
2137
2138static inline bool
2139isSimpleEnoughValueToCommit(Constant *C,
2140                            SmallPtrSet<Constant*, 8> &SimpleConstants,
2141                            const DataLayout *DL) {
2142  // If we already checked this constant, we win.
2143  if (!SimpleConstants.insert(C)) return true;
2144  // Check the constant.
2145  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
2146}
2147
2148
2149/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2150/// enough for us to understand.  In particular, if it is a cast to anything
2151/// other than from one pointer type to another pointer type, we punt.
2152/// We basically just support direct accesses to globals and GEP's of
2153/// globals.  This should be kept up to date with CommitValueTo.
2154static bool isSimpleEnoughPointerToCommit(Constant *C) {
2155  // Conservatively, avoid aggregate types. This is because we don't
2156  // want to worry about them partially overlapping other stores.
2157  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2158    return false;
2159
2160  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2161    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2162    // external globals.
2163    return GV->hasUniqueInitializer();
2164
2165  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2166    // Handle a constantexpr gep.
2167    if (CE->getOpcode() == Instruction::GetElementPtr &&
2168        isa<GlobalVariable>(CE->getOperand(0)) &&
2169        cast<GEPOperator>(CE)->isInBounds()) {
2170      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2171      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2172      // external globals.
2173      if (!GV->hasUniqueInitializer())
2174        return false;
2175
2176      // The first index must be zero.
2177      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
2178      if (!CI || !CI->isZero()) return false;
2179
2180      // The remaining indices must be compile-time known integers within the
2181      // notional bounds of the corresponding static array types.
2182      if (!CE->isGEPWithNoNotionalOverIndexing())
2183        return false;
2184
2185      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2186
2187    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2188    // and we know how to evaluate it by moving the bitcast from the pointer
2189    // operand to the value operand.
2190    } else if (CE->getOpcode() == Instruction::BitCast &&
2191               isa<GlobalVariable>(CE->getOperand(0))) {
2192      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2193      // external globals.
2194      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2195    }
2196  }
2197
2198  return false;
2199}
2200
2201/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2202/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2203/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2204static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2205                                   ConstantExpr *Addr, unsigned OpNo) {
2206  // Base case of the recursion.
2207  if (OpNo == Addr->getNumOperands()) {
2208    assert(Val->getType() == Init->getType() && "Type mismatch!");
2209    return Val;
2210  }
2211
2212  SmallVector<Constant*, 32> Elts;
2213  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2214    // Break up the constant into its elements.
2215    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2216      Elts.push_back(Init->getAggregateElement(i));
2217
2218    // Replace the element that we are supposed to.
2219    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2220    unsigned Idx = CU->getZExtValue();
2221    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2222    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2223
2224    // Return the modified struct.
2225    return ConstantStruct::get(STy, Elts);
2226  }
2227
2228  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2229  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2230
2231  uint64_t NumElts;
2232  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2233    NumElts = ATy->getNumElements();
2234  else
2235    NumElts = InitTy->getVectorNumElements();
2236
2237  // Break up the array into elements.
2238  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2239    Elts.push_back(Init->getAggregateElement(i));
2240
2241  assert(CI->getZExtValue() < NumElts);
2242  Elts[CI->getZExtValue()] =
2243    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2244
2245  if (Init->getType()->isArrayTy())
2246    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2247  return ConstantVector::get(Elts);
2248}
2249
2250/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2251/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2252static void CommitValueTo(Constant *Val, Constant *Addr) {
2253  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2254    assert(GV->hasInitializer());
2255    GV->setInitializer(Val);
2256    return;
2257  }
2258
2259  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2260  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2261  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2262}
2263
2264namespace {
2265
2266/// Evaluator - This class evaluates LLVM IR, producing the Constant
2267/// representing each SSA instruction.  Changes to global variables are stored
2268/// in a mapping that can be iterated over after the evaluation is complete.
2269/// Once an evaluation call fails, the evaluation object should not be reused.
2270class Evaluator {
2271public:
2272  Evaluator(const DataLayout *DL, const TargetLibraryInfo *TLI)
2273    : DL(DL), TLI(TLI) {
2274    ValueStack.push_back(new DenseMap<Value*, Constant*>);
2275  }
2276
2277  ~Evaluator() {
2278    DeleteContainerPointers(ValueStack);
2279    while (!AllocaTmps.empty()) {
2280      GlobalVariable *Tmp = AllocaTmps.back();
2281      AllocaTmps.pop_back();
2282
2283      // If there are still users of the alloca, the program is doing something
2284      // silly, e.g. storing the address of the alloca somewhere and using it
2285      // later.  Since this is undefined, we'll just make it be null.
2286      if (!Tmp->use_empty())
2287        Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2288      delete Tmp;
2289    }
2290  }
2291
2292  /// EvaluateFunction - Evaluate a call to function F, returning true if
2293  /// successful, false if we can't evaluate it.  ActualArgs contains the formal
2294  /// arguments for the function.
2295  bool EvaluateFunction(Function *F, Constant *&RetVal,
2296                        const SmallVectorImpl<Constant*> &ActualArgs);
2297
2298  /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2299  /// successful, false if we can't evaluate it.  NewBB returns the next BB that
2300  /// control flows into, or null upon return.
2301  bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
2302
2303  Constant *getVal(Value *V) {
2304    if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2305    Constant *R = ValueStack.back()->lookup(V);
2306    assert(R && "Reference to an uncomputed value!");
2307    return R;
2308  }
2309
2310  void setVal(Value *V, Constant *C) {
2311    ValueStack.back()->operator[](V) = C;
2312  }
2313
2314  const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
2315    return MutatedMemory;
2316  }
2317
2318  const SmallPtrSet<GlobalVariable*, 8> &getInvariants() const {
2319    return Invariants;
2320  }
2321
2322private:
2323  Constant *ComputeLoadResult(Constant *P);
2324
2325  /// ValueStack - As we compute SSA register values, we store their contents
2326  /// here. The back of the vector contains the current function and the stack
2327  /// contains the values in the calling frames.
2328  SmallVector<DenseMap<Value*, Constant*>*, 4> ValueStack;
2329
2330  /// CallStack - This is used to detect recursion.  In pathological situations
2331  /// we could hit exponential behavior, but at least there is nothing
2332  /// unbounded.
2333  SmallVector<Function*, 4> CallStack;
2334
2335  /// MutatedMemory - For each store we execute, we update this map.  Loads
2336  /// check this to get the most up-to-date value.  If evaluation is successful,
2337  /// this state is committed to the process.
2338  DenseMap<Constant*, Constant*> MutatedMemory;
2339
2340  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2341  /// to represent its body.  This vector is needed so we can delete the
2342  /// temporary globals when we are done.
2343  SmallVector<GlobalVariable*, 32> AllocaTmps;
2344
2345  /// Invariants - These global variables have been marked invariant by the
2346  /// static constructor.
2347  SmallPtrSet<GlobalVariable*, 8> Invariants;
2348
2349  /// SimpleConstants - These are constants we have checked and know to be
2350  /// simple enough to live in a static initializer of a global.
2351  SmallPtrSet<Constant*, 8> SimpleConstants;
2352
2353  const DataLayout *DL;
2354  const TargetLibraryInfo *TLI;
2355};
2356
2357}  // anonymous namespace
2358
2359/// ComputeLoadResult - Return the value that would be computed by a load from
2360/// P after the stores reflected by 'memory' have been performed.  If we can't
2361/// decide, return null.
2362Constant *Evaluator::ComputeLoadResult(Constant *P) {
2363  // If this memory location has been recently stored, use the stored value: it
2364  // is the most up-to-date.
2365  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
2366  if (I != MutatedMemory.end()) return I->second;
2367
2368  // Access it.
2369  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2370    if (GV->hasDefinitiveInitializer())
2371      return GV->getInitializer();
2372    return 0;
2373  }
2374
2375  // Handle a constantexpr getelementptr.
2376  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2377    if (CE->getOpcode() == Instruction::GetElementPtr &&
2378        isa<GlobalVariable>(CE->getOperand(0))) {
2379      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2380      if (GV->hasDefinitiveInitializer())
2381        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2382    }
2383
2384  return 0;  // don't know how to evaluate.
2385}
2386
2387/// EvaluateBlock - Evaluate all instructions in block BB, returning true if
2388/// successful, false if we can't evaluate it.  NewBB returns the next BB that
2389/// control flows into, or null upon return.
2390bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
2391                              BasicBlock *&NextBB) {
2392  // This is the main evaluation loop.
2393  while (1) {
2394    Constant *InstResult = 0;
2395
2396    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
2397
2398    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2399      if (!SI->isSimple()) {
2400        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
2401        return false;  // no volatile/atomic accesses.
2402      }
2403      Constant *Ptr = getVal(SI->getOperand(1));
2404      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2405        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
2406        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2407        DEBUG(dbgs() << "; To: " << *Ptr << "\n");
2408      }
2409      if (!isSimpleEnoughPointerToCommit(Ptr)) {
2410        // If this is too complex for us to commit, reject it.
2411        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
2412        return false;
2413      }
2414
2415      Constant *Val = getVal(SI->getOperand(0));
2416
2417      // If this might be too difficult for the backend to handle (e.g. the addr
2418      // of one global variable divided by another) then we can't commit it.
2419      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
2420        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
2421              << "\n");
2422        return false;
2423      }
2424
2425      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2426        if (CE->getOpcode() == Instruction::BitCast) {
2427          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
2428          // If we're evaluating a store through a bitcast, then we need
2429          // to pull the bitcast off the pointer type and push it onto the
2430          // stored value.
2431          Ptr = CE->getOperand(0);
2432
2433          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
2434
2435          // In order to push the bitcast onto the stored value, a bitcast
2436          // from NewTy to Val's type must be legal.  If it's not, we can try
2437          // introspecting NewTy to find a legal conversion.
2438          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2439            // If NewTy is a struct, we can convert the pointer to the struct
2440            // into a pointer to its first member.
2441            // FIXME: This could be extended to support arrays as well.
2442            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2443              NewTy = STy->getTypeAtIndex(0U);
2444
2445              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
2446              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2447              Constant * const IdxList[] = {IdxZero, IdxZero};
2448
2449              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2450              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2451                Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2452
2453            // If we can't improve the situation by introspecting NewTy,
2454            // we have to give up.
2455            } else {
2456              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
2457                    "evaluate.\n");
2458              return false;
2459            }
2460          }
2461
2462          // If we found compatible types, go ahead and push the bitcast
2463          // onto the stored value.
2464          Val = ConstantExpr::getBitCast(Val, NewTy);
2465
2466          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
2467        }
2468      }
2469
2470      MutatedMemory[Ptr] = Val;
2471    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2472      InstResult = ConstantExpr::get(BO->getOpcode(),
2473                                     getVal(BO->getOperand(0)),
2474                                     getVal(BO->getOperand(1)));
2475      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
2476            << "\n");
2477    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2478      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2479                                            getVal(CI->getOperand(0)),
2480                                            getVal(CI->getOperand(1)));
2481      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
2482            << "\n");
2483    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2484      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2485                                         getVal(CI->getOperand(0)),
2486                                         CI->getType());
2487      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
2488            << "\n");
2489    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2490      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
2491                                           getVal(SI->getOperand(1)),
2492                                           getVal(SI->getOperand(2)));
2493      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
2494            << "\n");
2495    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2496      Constant *P = getVal(GEP->getOperand(0));
2497      SmallVector<Constant*, 8> GEPOps;
2498      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2499           i != e; ++i)
2500        GEPOps.push_back(getVal(*i));
2501      InstResult =
2502        ConstantExpr::getGetElementPtr(P, GEPOps,
2503                                       cast<GEPOperator>(GEP)->isInBounds());
2504      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
2505            << "\n");
2506    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2507
2508      if (!LI->isSimple()) {
2509        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
2510        return false;  // no volatile/atomic accesses.
2511      }
2512
2513      Constant *Ptr = getVal(LI->getOperand(0));
2514      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
2515        Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
2516        DEBUG(dbgs() << "Found a constant pointer expression, constant "
2517              "folding: " << *Ptr << "\n");
2518      }
2519      InstResult = ComputeLoadResult(Ptr);
2520      if (InstResult == 0) {
2521        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
2522              "\n");
2523        return false; // Could not evaluate load.
2524      }
2525
2526      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
2527    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2528      if (AI->isArrayAllocation()) {
2529        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
2530        return false;  // Cannot handle array allocs.
2531      }
2532      Type *Ty = AI->getType()->getElementType();
2533      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2534                                              GlobalValue::InternalLinkage,
2535                                              UndefValue::get(Ty),
2536                                              AI->getName()));
2537      InstResult = AllocaTmps.back();
2538      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
2539    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
2540      CallSite CS(CurInst);
2541
2542      // Debug info can safely be ignored here.
2543      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
2544        DEBUG(dbgs() << "Ignoring debug info.\n");
2545        ++CurInst;
2546        continue;
2547      }
2548
2549      // Cannot handle inline asm.
2550      if (isa<InlineAsm>(CS.getCalledValue())) {
2551        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
2552        return false;
2553      }
2554
2555      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
2556        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
2557          if (MSI->isVolatile()) {
2558            DEBUG(dbgs() << "Can not optimize a volatile memset " <<
2559                  "intrinsic.\n");
2560            return false;
2561          }
2562          Constant *Ptr = getVal(MSI->getDest());
2563          Constant *Val = getVal(MSI->getValue());
2564          Constant *DestVal = ComputeLoadResult(getVal(Ptr));
2565          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2566            // This memset is a no-op.
2567            DEBUG(dbgs() << "Ignoring no-op memset.\n");
2568            ++CurInst;
2569            continue;
2570          }
2571        }
2572
2573        if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2574            II->getIntrinsicID() == Intrinsic::lifetime_end) {
2575          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
2576          ++CurInst;
2577          continue;
2578        }
2579
2580        if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2581          // We don't insert an entry into Values, as it doesn't have a
2582          // meaningful return value.
2583          if (!II->use_empty()) {
2584            DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
2585            return false;
2586          }
2587          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
2588          Value *PtrArg = getVal(II->getArgOperand(1));
2589          Value *Ptr = PtrArg->stripPointerCasts();
2590          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
2591            Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
2592            if (DL && !Size->isAllOnesValue() &&
2593                Size->getValue().getLimitedValue() >=
2594                DL->getTypeStoreSize(ElemTy)) {
2595              Invariants.insert(GV);
2596              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
2597                    << "\n");
2598            } else {
2599              DEBUG(dbgs() << "Found a global var, but can not treat it as an "
2600                    "invariant.\n");
2601            }
2602          }
2603          // Continue even if we do nothing.
2604          ++CurInst;
2605          continue;
2606        }
2607
2608        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
2609        return false;
2610      }
2611
2612      // Resolve function pointers.
2613      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
2614      if (!Callee || Callee->mayBeOverridden()) {
2615        DEBUG(dbgs() << "Can not resolve function pointer.\n");
2616        return false;  // Cannot resolve.
2617      }
2618
2619      SmallVector<Constant*, 8> Formals;
2620      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
2621        Formals.push_back(getVal(*i));
2622
2623      if (Callee->isDeclaration()) {
2624        // If this is a function we can constant fold, do it.
2625        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
2626          InstResult = C;
2627          DEBUG(dbgs() << "Constant folded function call. Result: " <<
2628                *InstResult << "\n");
2629        } else {
2630          DEBUG(dbgs() << "Can not constant fold function call.\n");
2631          return false;
2632        }
2633      } else {
2634        if (Callee->getFunctionType()->isVarArg()) {
2635          DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
2636          return false;
2637        }
2638
2639        Constant *RetVal = 0;
2640        // Execute the call, if successful, use the return value.
2641        ValueStack.push_back(new DenseMap<Value*, Constant*>);
2642        if (!EvaluateFunction(Callee, RetVal, Formals)) {
2643          DEBUG(dbgs() << "Failed to evaluate function.\n");
2644          return false;
2645        }
2646        delete ValueStack.pop_back_val();
2647        InstResult = RetVal;
2648
2649        if (InstResult != NULL) {
2650          DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
2651                InstResult << "\n\n");
2652        } else {
2653          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
2654        }
2655      }
2656    } else if (isa<TerminatorInst>(CurInst)) {
2657      DEBUG(dbgs() << "Found a terminator instruction.\n");
2658
2659      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2660        if (BI->isUnconditional()) {
2661          NextBB = BI->getSuccessor(0);
2662        } else {
2663          ConstantInt *Cond =
2664            dyn_cast<ConstantInt>(getVal(BI->getCondition()));
2665          if (!Cond) return false;  // Cannot determine.
2666
2667          NextBB = BI->getSuccessor(!Cond->getZExtValue());
2668        }
2669      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2670        ConstantInt *Val =
2671          dyn_cast<ConstantInt>(getVal(SI->getCondition()));
2672        if (!Val) return false;  // Cannot determine.
2673        NextBB = SI->findCaseValue(Val).getCaseSuccessor();
2674      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2675        Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
2676        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2677          NextBB = BA->getBasicBlock();
2678        else
2679          return false;  // Cannot determine.
2680      } else if (isa<ReturnInst>(CurInst)) {
2681        NextBB = 0;
2682      } else {
2683        // invoke, unwind, resume, unreachable.
2684        DEBUG(dbgs() << "Can not handle terminator.");
2685        return false;  // Cannot handle this terminator.
2686      }
2687
2688      // We succeeded at evaluating this block!
2689      DEBUG(dbgs() << "Successfully evaluated block.\n");
2690      return true;
2691    } else {
2692      // Did not know how to evaluate this!
2693      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
2694            "\n");
2695      return false;
2696    }
2697
2698    if (!CurInst->use_empty()) {
2699      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2700        InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
2701
2702      setVal(CurInst, InstResult);
2703    }
2704
2705    // If we just processed an invoke, we finished evaluating the block.
2706    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
2707      NextBB = II->getNormalDest();
2708      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
2709      return true;
2710    }
2711
2712    // Advance program counter.
2713    ++CurInst;
2714  }
2715}
2716
2717/// EvaluateFunction - Evaluate a call to function F, returning true if
2718/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2719/// arguments for the function.
2720bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
2721                                 const SmallVectorImpl<Constant*> &ActualArgs) {
2722  // Check to see if this function is already executing (recursion).  If so,
2723  // bail out.  TODO: we might want to accept limited recursion.
2724  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2725    return false;
2726
2727  CallStack.push_back(F);
2728
2729  // Initialize arguments to the incoming values specified.
2730  unsigned ArgNo = 0;
2731  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2732       ++AI, ++ArgNo)
2733    setVal(AI, ActualArgs[ArgNo]);
2734
2735  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2736  // we can only evaluate any one basic block at most once.  This set keeps
2737  // track of what we have executed so we can detect recursive cases etc.
2738  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2739
2740  // CurBB - The current basic block we're evaluating.
2741  BasicBlock *CurBB = F->begin();
2742
2743  BasicBlock::iterator CurInst = CurBB->begin();
2744
2745  while (1) {
2746    BasicBlock *NextBB = 0; // Initialized to avoid compiler warnings.
2747    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
2748
2749    if (!EvaluateBlock(CurInst, NextBB))
2750      return false;
2751
2752    if (NextBB == 0) {
2753      // Successfully running until there's no next block means that we found
2754      // the return.  Fill it the return value and pop the call stack.
2755      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
2756      if (RI->getNumOperands())
2757        RetVal = getVal(RI->getOperand(0));
2758      CallStack.pop_back();
2759      return true;
2760    }
2761
2762    // Okay, we succeeded in evaluating this control flow.  See if we have
2763    // executed the new block before.  If so, we have a looping function,
2764    // which we cannot evaluate in reasonable time.
2765    if (!ExecutedBlocks.insert(NextBB))
2766      return false;  // looped!
2767
2768    // Okay, we have never been in this block before.  Check to see if there
2769    // are any PHI nodes.  If so, evaluate them with information about where
2770    // we came from.
2771    PHINode *PN = 0;
2772    for (CurInst = NextBB->begin();
2773         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2774      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
2775
2776    // Advance to the next block.
2777    CurBB = NextBB;
2778  }
2779}
2780
2781/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2782/// we can.  Return true if we can, false otherwise.
2783static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL,
2784                                      const TargetLibraryInfo *TLI) {
2785  // Call the function.
2786  Evaluator Eval(DL, TLI);
2787  Constant *RetValDummy;
2788  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2789                                           SmallVector<Constant*, 0>());
2790
2791  if (EvalSuccess) {
2792    // We succeeded at evaluation: commit the result.
2793    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2794          << F->getName() << "' to " << Eval.getMutatedMemory().size()
2795          << " stores.\n");
2796    for (DenseMap<Constant*, Constant*>::const_iterator I =
2797           Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
2798         I != E; ++I)
2799      CommitValueTo(I->second, I->first);
2800    for (SmallPtrSet<GlobalVariable*, 8>::const_iterator I =
2801           Eval.getInvariants().begin(), E = Eval.getInvariants().end();
2802         I != E; ++I)
2803      (*I)->setConstant(true);
2804  }
2805
2806  return EvalSuccess;
2807}
2808
2809/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2810/// Return true if anything changed.
2811bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2812  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2813  bool MadeChange = false;
2814  if (Ctors.empty()) return false;
2815
2816  // Loop over global ctors, optimizing them when we can.
2817  for (unsigned i = 0; i != Ctors.size(); ++i) {
2818    Function *F = Ctors[i];
2819    // Found a null terminator in the middle of the list, prune off the rest of
2820    // the list.
2821    if (F == 0) {
2822      if (i != Ctors.size()-1) {
2823        Ctors.resize(i+1);
2824        MadeChange = true;
2825      }
2826      break;
2827    }
2828    DEBUG(dbgs() << "Optimizing Global Constructor: " << *F << "\n");
2829
2830    // We cannot simplify external ctor functions.
2831    if (F->empty()) continue;
2832
2833    // If we can evaluate the ctor at compile time, do.
2834    if (EvaluateStaticConstructor(F, DL, TLI)) {
2835      Ctors.erase(Ctors.begin()+i);
2836      MadeChange = true;
2837      --i;
2838      ++NumCtorsEvaluated;
2839      continue;
2840    }
2841  }
2842
2843  if (!MadeChange) return false;
2844
2845  GCL = InstallGlobalCtors(GCL, Ctors);
2846  return true;
2847}
2848
2849static int compareNames(Constant *const *A, Constant *const *B) {
2850  return (*A)->getName().compare((*B)->getName());
2851}
2852
2853static void setUsedInitializer(GlobalVariable &V,
2854                               SmallPtrSet<GlobalValue *, 8> Init) {
2855  if (Init.empty()) {
2856    V.eraseFromParent();
2857    return;
2858  }
2859
2860  // Type of pointer to the array of pointers.
2861  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2862
2863  SmallVector<llvm::Constant *, 8> UsedArray;
2864  for (SmallPtrSet<GlobalValue *, 8>::iterator I = Init.begin(), E = Init.end();
2865       I != E; ++I) {
2866    Constant *Cast
2867      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(*I, Int8PtrTy);
2868    UsedArray.push_back(Cast);
2869  }
2870  // Sort to get deterministic order.
2871  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2872  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2873
2874  Module *M = V.getParent();
2875  V.removeFromParent();
2876  GlobalVariable *NV =
2877      new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
2878                         llvm::ConstantArray::get(ATy, UsedArray), "");
2879  NV->takeName(&V);
2880  NV->setSection("llvm.metadata");
2881  delete &V;
2882}
2883
2884namespace {
2885/// \brief An easy to access representation of llvm.used and llvm.compiler.used.
2886class LLVMUsed {
2887  SmallPtrSet<GlobalValue *, 8> Used;
2888  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2889  GlobalVariable *UsedV;
2890  GlobalVariable *CompilerUsedV;
2891
2892public:
2893  LLVMUsed(Module &M) {
2894    UsedV = collectUsedGlobalVariables(M, Used, false);
2895    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2896  }
2897  typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
2898  iterator usedBegin() { return Used.begin(); }
2899  iterator usedEnd() { return Used.end(); }
2900  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2901  iterator compilerUsedEnd() { return CompilerUsed.end(); }
2902  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2903  bool compilerUsedCount(GlobalValue *GV) const {
2904    return CompilerUsed.count(GV);
2905  }
2906  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2907  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2908  bool usedInsert(GlobalValue *GV) { return Used.insert(GV); }
2909  bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); }
2910
2911  void syncVariablesAndSets() {
2912    if (UsedV)
2913      setUsedInitializer(*UsedV, Used);
2914    if (CompilerUsedV)
2915      setUsedInitializer(*CompilerUsedV, CompilerUsed);
2916  }
2917};
2918}
2919
2920static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2921  if (GA.use_empty()) // No use at all.
2922    return false;
2923
2924  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2925         "We should have removed the duplicated "
2926         "element from llvm.compiler.used");
2927  if (!GA.hasOneUse())
2928    // Strictly more than one use. So at least one is not in llvm.used and
2929    // llvm.compiler.used.
2930    return true;
2931
2932  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2933  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2934}
2935
2936static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2937                                               const LLVMUsed &U) {
2938  unsigned N = 2;
2939  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2940         "We should have removed the duplicated "
2941         "element from llvm.compiler.used");
2942  if (U.usedCount(&V) || U.compilerUsedCount(&V))
2943    ++N;
2944  return V.hasNUsesOrMore(N);
2945}
2946
2947static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2948  if (!GA.hasLocalLinkage())
2949    return true;
2950
2951  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2952}
2953
2954static bool hasUsesToReplace(GlobalAlias &GA, LLVMUsed &U, bool &RenameTarget) {
2955  RenameTarget = false;
2956  bool Ret = false;
2957  if (hasUseOtherThanLLVMUsed(GA, U))
2958    Ret = true;
2959
2960  // If the alias is externally visible, we may still be able to simplify it.
2961  if (!mayHaveOtherReferences(GA, U))
2962    return Ret;
2963
2964  // If the aliasee has internal linkage, give it the name and linkage
2965  // of the alias, and delete the alias.  This turns:
2966  //   define internal ... @f(...)
2967  //   @a = alias ... @f
2968  // into:
2969  //   define ... @a(...)
2970  Constant *Aliasee = GA.getAliasee();
2971  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2972  if (!Target->hasLocalLinkage())
2973    return Ret;
2974
2975  // Do not perform the transform if multiple aliases potentially target the
2976  // aliasee. This check also ensures that it is safe to replace the section
2977  // and other attributes of the aliasee with those of the alias.
2978  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2979    return Ret;
2980
2981  RenameTarget = true;
2982  return true;
2983}
2984
2985bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2986  bool Changed = false;
2987  LLVMUsed Used(M);
2988
2989  for (SmallPtrSet<GlobalValue *, 8>::iterator I = Used.usedBegin(),
2990                                               E = Used.usedEnd();
2991       I != E; ++I)
2992    Used.compilerUsedErase(*I);
2993
2994  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2995       I != E;) {
2996    Module::alias_iterator J = I++;
2997    // Aliases without names cannot be referenced outside this module.
2998    if (!J->hasName() && !J->isDeclaration())
2999      J->setLinkage(GlobalValue::InternalLinkage);
3000    // If the aliasee may change at link time, nothing can be done - bail out.
3001    if (J->mayBeOverridden())
3002      continue;
3003
3004    Constant *Aliasee = J->getAliasee();
3005    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
3006    Target->removeDeadConstantUsers();
3007
3008    // Make all users of the alias use the aliasee instead.
3009    bool RenameTarget;
3010    if (!hasUsesToReplace(*J, Used, RenameTarget))
3011      continue;
3012
3013    J->replaceAllUsesWith(Aliasee);
3014    ++NumAliasesResolved;
3015    Changed = true;
3016
3017    if (RenameTarget) {
3018      // Give the aliasee the name, linkage and other attributes of the alias.
3019      Target->takeName(J);
3020      Target->setLinkage(J->getLinkage());
3021      Target->setVisibility(J->getVisibility());
3022      Target->setDLLStorageClass(J->getDLLStorageClass());
3023
3024      if (Used.usedErase(J))
3025        Used.usedInsert(Target);
3026
3027      if (Used.compilerUsedErase(J))
3028        Used.compilerUsedInsert(Target);
3029    } else if (mayHaveOtherReferences(*J, Used))
3030      continue;
3031
3032    // Delete the alias.
3033    M.getAliasList().erase(J);
3034    ++NumAliasesRemoved;
3035    Changed = true;
3036  }
3037
3038  Used.syncVariablesAndSets();
3039
3040  return Changed;
3041}
3042
3043static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
3044  if (!TLI->has(LibFunc::cxa_atexit))
3045    return 0;
3046
3047  Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
3048
3049  if (!Fn)
3050    return 0;
3051
3052  FunctionType *FTy = Fn->getFunctionType();
3053
3054  // Checking that the function has the right return type, the right number of
3055  // parameters and that they all have pointer types should be enough.
3056  if (!FTy->getReturnType()->isIntegerTy() ||
3057      FTy->getNumParams() != 3 ||
3058      !FTy->getParamType(0)->isPointerTy() ||
3059      !FTy->getParamType(1)->isPointerTy() ||
3060      !FTy->getParamType(2)->isPointerTy())
3061    return 0;
3062
3063  return Fn;
3064}
3065
3066/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
3067/// destructor and can therefore be eliminated.
3068/// Note that we assume that other optimization passes have already simplified
3069/// the code so we only look for a function with a single basic block, where
3070/// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
3071/// other side-effect free instructions.
3072static bool cxxDtorIsEmpty(const Function &Fn,
3073                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
3074  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
3075  // nounwind, but that doesn't seem worth doing.
3076  if (Fn.isDeclaration())
3077    return false;
3078
3079  if (++Fn.begin() != Fn.end())
3080    return false;
3081
3082  const BasicBlock &EntryBlock = Fn.getEntryBlock();
3083  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
3084       I != E; ++I) {
3085    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
3086      // Ignore debug intrinsics.
3087      if (isa<DbgInfoIntrinsic>(CI))
3088        continue;
3089
3090      const Function *CalledFn = CI->getCalledFunction();
3091
3092      if (!CalledFn)
3093        return false;
3094
3095      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
3096
3097      // Don't treat recursive functions as empty.
3098      if (!NewCalledFunctions.insert(CalledFn))
3099        return false;
3100
3101      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
3102        return false;
3103    } else if (isa<ReturnInst>(*I))
3104      return true; // We're done.
3105    else if (I->mayHaveSideEffects())
3106      return false; // Destructor with side effects, bail.
3107  }
3108
3109  return false;
3110}
3111
3112bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
3113  /// Itanium C++ ABI p3.3.5:
3114  ///
3115  ///   After constructing a global (or local static) object, that will require
3116  ///   destruction on exit, a termination function is registered as follows:
3117  ///
3118  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
3119  ///
3120  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
3121  ///   call f(p) when DSO d is unloaded, before all such termination calls
3122  ///   registered before this one. It returns zero if registration is
3123  ///   successful, nonzero on failure.
3124
3125  // This pass will look for calls to __cxa_atexit where the function is trivial
3126  // and remove them.
3127  bool Changed = false;
3128
3129  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
3130       I != E;) {
3131    // We're only interested in calls. Theoretically, we could handle invoke
3132    // instructions as well, but neither llvm-gcc nor clang generate invokes
3133    // to __cxa_atexit.
3134    CallInst *CI = dyn_cast<CallInst>(*I++);
3135    if (!CI)
3136      continue;
3137
3138    Function *DtorFn =
3139      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
3140    if (!DtorFn)
3141      continue;
3142
3143    SmallPtrSet<const Function *, 8> CalledFunctions;
3144    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
3145      continue;
3146
3147    // Just remove the call.
3148    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
3149    CI->eraseFromParent();
3150
3151    ++NumCXXDtorsRemoved;
3152
3153    Changed |= true;
3154  }
3155
3156  return Changed;
3157}
3158
3159bool GlobalOpt::runOnModule(Module &M) {
3160  bool Changed = false;
3161
3162  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
3163  DL = DLP ? &DLP->getDataLayout() : 0;
3164  TLI = &getAnalysis<TargetLibraryInfo>();
3165
3166  // Try to find the llvm.globalctors list.
3167  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
3168
3169  bool LocalChange = true;
3170  while (LocalChange) {
3171    LocalChange = false;
3172
3173    // Delete functions that are trivially dead, ccc -> fastcc
3174    LocalChange |= OptimizeFunctions(M);
3175
3176    // Optimize global_ctors list.
3177    if (GlobalCtors)
3178      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
3179
3180    // Optimize non-address-taken globals.
3181    LocalChange |= OptimizeGlobalVars(M);
3182
3183    // Resolve aliases, when possible.
3184    LocalChange |= OptimizeGlobalAliases(M);
3185
3186    // Try to remove trivial global destructors if they are not removed
3187    // already.
3188    Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
3189    if (CXAAtExitFn)
3190      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
3191
3192    Changed |= LocalChange;
3193  }
3194
3195  // TODO: Move all global ctors functions to the end of the module for code
3196  // layout.
3197
3198  return Changed;
3199}
3200