GlobalOpt.cpp revision 492d06efde44a4e38a6ed321ada4af5a75494df6
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/MallocHelper.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44STATISTIC(NumMarked    , "Number of globals marked constant");
45STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
46STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
47STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
48STATISTIC(NumDeleted   , "Number of globals deleted");
49STATISTIC(NumFnDeleted , "Number of functions deleted");
50STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
51STATISTIC(NumLocalized , "Number of globals localized");
52STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
53STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
54STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
55STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
56STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
57STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
58
59namespace {
60  struct GlobalOpt : public ModulePass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62    }
63    static char ID; // Pass identification, replacement for typeid
64    GlobalOpt() : ModulePass(&ID) {}
65
66    bool runOnModule(Module &M);
67
68  private:
69    GlobalVariable *FindGlobalCtors(Module &M);
70    bool OptimizeFunctions(Module &M);
71    bool OptimizeGlobalVars(Module &M);
72    bool OptimizeGlobalAliases(Module &M);
73    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
74    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
75  };
76}
77
78char GlobalOpt::ID = 0;
79static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
80
81ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
82
83namespace {
84
85/// GlobalStatus - As we analyze each global, keep track of some information
86/// about it.  If we find out that the address of the global is taken, none of
87/// this info will be accurate.
88struct GlobalStatus {
89  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
90  /// loaded it can be deleted.
91  bool isLoaded;
92
93  /// StoredType - Keep track of what stores to the global look like.
94  ///
95  enum StoredType {
96    /// NotStored - There is no store to this global.  It can thus be marked
97    /// constant.
98    NotStored,
99
100    /// isInitializerStored - This global is stored to, but the only thing
101    /// stored is the constant it was initialized with.  This is only tracked
102    /// for scalar globals.
103    isInitializerStored,
104
105    /// isStoredOnce - This global is stored to, but only its initializer and
106    /// one other value is ever stored to it.  If this global isStoredOnce, we
107    /// track the value stored to it in StoredOnceValue below.  This is only
108    /// tracked for scalar globals.
109    isStoredOnce,
110
111    /// isStored - This global is stored to by multiple values or something else
112    /// that we cannot track.
113    isStored
114  } StoredType;
115
116  /// StoredOnceValue - If only one value (besides the initializer constant) is
117  /// ever stored to this global, keep track of what value it is.
118  Value *StoredOnceValue;
119
120  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
121  /// null/false.  When the first accessing function is noticed, it is recorded.
122  /// When a second different accessing function is noticed,
123  /// HasMultipleAccessingFunctions is set to true.
124  Function *AccessingFunction;
125  bool HasMultipleAccessingFunctions;
126
127  /// HasNonInstructionUser - Set to true if this global has a user that is not
128  /// an instruction (e.g. a constant expr or GV initializer).
129  bool HasNonInstructionUser;
130
131  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
132  bool HasPHIUser;
133
134  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
135                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
136                   HasNonInstructionUser(false), HasPHIUser(false) {}
137};
138
139}
140
141// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
142// by constants itself.  Note that constants cannot be cyclic, so this test is
143// pretty easy to implement recursively.
144//
145static bool SafeToDestroyConstant(Constant *C) {
146  if (isa<GlobalValue>(C)) return false;
147
148  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
149    if (Constant *CU = dyn_cast<Constant>(*UI)) {
150      if (!SafeToDestroyConstant(CU)) return false;
151    } else
152      return false;
153  return true;
154}
155
156
157/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
158/// structure.  If the global has its address taken, return true to indicate we
159/// can't do anything with it.
160///
161static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
162                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
163  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
164    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
165      GS.HasNonInstructionUser = true;
166
167      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
168
169    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
170      if (!GS.HasMultipleAccessingFunctions) {
171        Function *F = I->getParent()->getParent();
172        if (GS.AccessingFunction == 0)
173          GS.AccessingFunction = F;
174        else if (GS.AccessingFunction != F)
175          GS.HasMultipleAccessingFunctions = true;
176      }
177      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
178        GS.isLoaded = true;
179        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
180      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
181        // Don't allow a store OF the address, only stores TO the address.
182        if (SI->getOperand(0) == V) return true;
183
184        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
185
186        // If this is a direct store to the global (i.e., the global is a scalar
187        // value, not an aggregate), keep more specific information about
188        // stores.
189        if (GS.StoredType != GlobalStatus::isStored) {
190          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
191            Value *StoredVal = SI->getOperand(0);
192            if (StoredVal == GV->getInitializer()) {
193              if (GS.StoredType < GlobalStatus::isInitializerStored)
194                GS.StoredType = GlobalStatus::isInitializerStored;
195            } else if (isa<LoadInst>(StoredVal) &&
196                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
197              // G = G
198              if (GS.StoredType < GlobalStatus::isInitializerStored)
199                GS.StoredType = GlobalStatus::isInitializerStored;
200            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
201              GS.StoredType = GlobalStatus::isStoredOnce;
202              GS.StoredOnceValue = StoredVal;
203            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
204                       GS.StoredOnceValue == StoredVal) {
205              // noop.
206            } else {
207              GS.StoredType = GlobalStatus::isStored;
208            }
209          } else {
210            GS.StoredType = GlobalStatus::isStored;
211          }
212        }
213      } else if (isa<GetElementPtrInst>(I)) {
214        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
215      } else if (isa<SelectInst>(I)) {
216        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
217      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
218        // PHI nodes we can check just like select or GEP instructions, but we
219        // have to be careful about infinite recursion.
220        if (PHIUsers.insert(PN))  // Not already visited.
221          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
222        GS.HasPHIUser = true;
223      } else if (isa<CmpInst>(I)) {
224      } else if (isa<MemTransferInst>(I)) {
225        if (I->getOperand(1) == V)
226          GS.StoredType = GlobalStatus::isStored;
227        if (I->getOperand(2) == V)
228          GS.isLoaded = true;
229      } else if (isa<MemSetInst>(I)) {
230        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
231        GS.StoredType = GlobalStatus::isStored;
232      } else {
233        return true;  // Any other non-load instruction might take address!
234      }
235    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
236      GS.HasNonInstructionUser = true;
237      // We might have a dead and dangling constant hanging off of here.
238      if (!SafeToDestroyConstant(C))
239        return true;
240    } else {
241      GS.HasNonInstructionUser = true;
242      // Otherwise must be some other user.
243      return true;
244    }
245
246  return false;
247}
248
249static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
250                                             LLVMContext &Context) {
251  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
252  if (!CI) return 0;
253  unsigned IdxV = CI->getZExtValue();
254
255  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
256    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
257  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
258    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
259  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
260    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
261  } else if (isa<ConstantAggregateZero>(Agg)) {
262    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
263      if (IdxV < STy->getNumElements())
264        return Constant::getNullValue(STy->getElementType(IdxV));
265    } else if (const SequentialType *STy =
266               dyn_cast<SequentialType>(Agg->getType())) {
267      return Constant::getNullValue(STy->getElementType());
268    }
269  } else if (isa<UndefValue>(Agg)) {
270    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
271      if (IdxV < STy->getNumElements())
272        return UndefValue::get(STy->getElementType(IdxV));
273    } else if (const SequentialType *STy =
274               dyn_cast<SequentialType>(Agg->getType())) {
275      return UndefValue::get(STy->getElementType());
276    }
277  }
278  return 0;
279}
280
281
282/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
283/// users of the global, cleaning up the obvious ones.  This is largely just a
284/// quick scan over the use list to clean up the easy and obvious cruft.  This
285/// returns true if it made a change.
286static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
287                                       LLVMContext &Context) {
288  bool Changed = false;
289  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
290    User *U = *UI++;
291
292    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
293      if (Init) {
294        // Replace the load with the initializer.
295        LI->replaceAllUsesWith(Init);
296        LI->eraseFromParent();
297        Changed = true;
298      }
299    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
300      // Store must be unreachable or storing Init into the global.
301      SI->eraseFromParent();
302      Changed = true;
303    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
304      if (CE->getOpcode() == Instruction::GetElementPtr) {
305        Constant *SubInit = 0;
306        if (Init)
307          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
308        Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
309      } else if (CE->getOpcode() == Instruction::BitCast &&
310                 isa<PointerType>(CE->getType())) {
311        // Pointer cast, delete any stores and memsets to the global.
312        Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
313      }
314
315      if (CE->use_empty()) {
316        CE->destroyConstant();
317        Changed = true;
318      }
319    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
320      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
321      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
322      // and will invalidate our notion of what Init is.
323      Constant *SubInit = 0;
324      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
325        ConstantExpr *CE =
326          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
327        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
328          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
329      }
330      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
331
332      if (GEP->use_empty()) {
333        GEP->eraseFromParent();
334        Changed = true;
335      }
336    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
337      if (MI->getRawDest() == V) {
338        MI->eraseFromParent();
339        Changed = true;
340      }
341
342    } else if (Constant *C = dyn_cast<Constant>(U)) {
343      // If we have a chain of dead constantexprs or other things dangling from
344      // us, and if they are all dead, nuke them without remorse.
345      if (SafeToDestroyConstant(C)) {
346        C->destroyConstant();
347        // This could have invalidated UI, start over from scratch.
348        CleanupConstantGlobalUsers(V, Init, Context);
349        return true;
350      }
351    }
352  }
353  return Changed;
354}
355
356/// isSafeSROAElementUse - Return true if the specified instruction is a safe
357/// user of a derived expression from a global that we want to SROA.
358static bool isSafeSROAElementUse(Value *V) {
359  // We might have a dead and dangling constant hanging off of here.
360  if (Constant *C = dyn_cast<Constant>(V))
361    return SafeToDestroyConstant(C);
362
363  Instruction *I = dyn_cast<Instruction>(V);
364  if (!I) return false;
365
366  // Loads are ok.
367  if (isa<LoadInst>(I)) return true;
368
369  // Stores *to* the pointer are ok.
370  if (StoreInst *SI = dyn_cast<StoreInst>(I))
371    return SI->getOperand(0) != V;
372
373  // Otherwise, it must be a GEP.
374  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
375  if (GEPI == 0) return false;
376
377  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
378      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
379    return false;
380
381  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
382       I != E; ++I)
383    if (!isSafeSROAElementUse(*I))
384      return false;
385  return true;
386}
387
388
389/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
390/// Look at it and its uses and decide whether it is safe to SROA this global.
391///
392static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
393  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
394  if (!isa<GetElementPtrInst>(U) &&
395      (!isa<ConstantExpr>(U) ||
396       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
397    return false;
398
399  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
400  // don't like < 3 operand CE's, and we don't like non-constant integer
401  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
402  // value of C.
403  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
404      !cast<Constant>(U->getOperand(1))->isNullValue() ||
405      !isa<ConstantInt>(U->getOperand(2)))
406    return false;
407
408  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
409  ++GEPI;  // Skip over the pointer index.
410
411  // If this is a use of an array allocation, do a bit more checking for sanity.
412  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
413    uint64_t NumElements = AT->getNumElements();
414    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
415
416    // Check to make sure that index falls within the array.  If not,
417    // something funny is going on, so we won't do the optimization.
418    //
419    if (Idx->getZExtValue() >= NumElements)
420      return false;
421
422    // We cannot scalar repl this level of the array unless any array
423    // sub-indices are in-range constants.  In particular, consider:
424    // A[0][i].  We cannot know that the user isn't doing invalid things like
425    // allowing i to index an out-of-range subscript that accesses A[1].
426    //
427    // Scalar replacing *just* the outer index of the array is probably not
428    // going to be a win anyway, so just give up.
429    for (++GEPI; // Skip array index.
430         GEPI != E;
431         ++GEPI) {
432      uint64_t NumElements;
433      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
434        NumElements = SubArrayTy->getNumElements();
435      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
436        NumElements = SubVectorTy->getNumElements();
437      else {
438        assert(isa<StructType>(*GEPI) &&
439               "Indexed GEP type is not array, vector, or struct!");
440        continue;
441      }
442
443      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
444      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
445        return false;
446    }
447  }
448
449  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
450    if (!isSafeSROAElementUse(*I))
451      return false;
452  return true;
453}
454
455/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
456/// is safe for us to perform this transformation.
457///
458static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
459  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
460       UI != E; ++UI) {
461    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
462      return false;
463  }
464  return true;
465}
466
467
468/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
469/// variable.  This opens the door for other optimizations by exposing the
470/// behavior of the program in a more fine-grained way.  We have determined that
471/// this transformation is safe already.  We return the first global variable we
472/// insert so that the caller can reprocess it.
473static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
474                                 LLVMContext &Context) {
475  // Make sure this global only has simple uses that we can SRA.
476  if (!GlobalUsersSafeToSRA(GV))
477    return 0;
478
479  assert(GV->hasLocalLinkage() && !GV->isConstant());
480  Constant *Init = GV->getInitializer();
481  const Type *Ty = Init->getType();
482
483  std::vector<GlobalVariable*> NewGlobals;
484  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
485
486  // Get the alignment of the global, either explicit or target-specific.
487  unsigned StartAlignment = GV->getAlignment();
488  if (StartAlignment == 0)
489    StartAlignment = TD.getABITypeAlignment(GV->getType());
490
491  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
492    NewGlobals.reserve(STy->getNumElements());
493    const StructLayout &Layout = *TD.getStructLayout(STy);
494    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
495      Constant *In = getAggregateConstantElement(Init,
496                                ConstantInt::get(Type::getInt32Ty(Context), i),
497                                    Context);
498      assert(In && "Couldn't get element of initializer?");
499      GlobalVariable *NGV = new GlobalVariable(Context,
500                                               STy->getElementType(i), false,
501                                               GlobalVariable::InternalLinkage,
502                                               In, GV->getName()+"."+Twine(i),
503                                               GV->isThreadLocal(),
504                                              GV->getType()->getAddressSpace());
505      Globals.insert(GV, NGV);
506      NewGlobals.push_back(NGV);
507
508      // Calculate the known alignment of the field.  If the original aggregate
509      // had 256 byte alignment for example, something might depend on that:
510      // propagate info to each field.
511      uint64_t FieldOffset = Layout.getElementOffset(i);
512      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
513      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
514        NGV->setAlignment(NewAlign);
515    }
516  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
517    unsigned NumElements = 0;
518    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
519      NumElements = ATy->getNumElements();
520    else
521      NumElements = cast<VectorType>(STy)->getNumElements();
522
523    if (NumElements > 16 && GV->hasNUsesOrMore(16))
524      return 0; // It's not worth it.
525    NewGlobals.reserve(NumElements);
526
527    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
528    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
529    for (unsigned i = 0, e = NumElements; i != e; ++i) {
530      Constant *In = getAggregateConstantElement(Init,
531                                ConstantInt::get(Type::getInt32Ty(Context), i),
532                                    Context);
533      assert(In && "Couldn't get element of initializer?");
534
535      GlobalVariable *NGV = new GlobalVariable(Context,
536                                               STy->getElementType(), false,
537                                               GlobalVariable::InternalLinkage,
538                                               In, GV->getName()+"."+Twine(i),
539                                               GV->isThreadLocal(),
540                                              GV->getType()->getAddressSpace());
541      Globals.insert(GV, NGV);
542      NewGlobals.push_back(NGV);
543
544      // Calculate the known alignment of the field.  If the original aggregate
545      // had 256 byte alignment for example, something might depend on that:
546      // propagate info to each field.
547      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
548      if (NewAlign > EltAlign)
549        NGV->setAlignment(NewAlign);
550    }
551  }
552
553  if (NewGlobals.empty())
554    return 0;
555
556  DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV);
557
558  Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context));
559
560  // Loop over all of the uses of the global, replacing the constantexpr geps,
561  // with smaller constantexpr geps or direct references.
562  while (!GV->use_empty()) {
563    User *GEP = GV->use_back();
564    assert(((isa<ConstantExpr>(GEP) &&
565             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
566            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
567
568    // Ignore the 1th operand, which has to be zero or else the program is quite
569    // broken (undefined).  Get the 2nd operand, which is the structure or array
570    // index.
571    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
572    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
573
574    Value *NewPtr = NewGlobals[Val];
575
576    // Form a shorter GEP if needed.
577    if (GEP->getNumOperands() > 3) {
578      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
579        SmallVector<Constant*, 8> Idxs;
580        Idxs.push_back(NullInt);
581        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
582          Idxs.push_back(CE->getOperand(i));
583        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
584                                                &Idxs[0], Idxs.size());
585      } else {
586        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
587        SmallVector<Value*, 8> Idxs;
588        Idxs.push_back(NullInt);
589        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
590          Idxs.push_back(GEPI->getOperand(i));
591        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
592                                           GEPI->getName()+"."+Twine(Val),GEPI);
593      }
594    }
595    GEP->replaceAllUsesWith(NewPtr);
596
597    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
598      GEPI->eraseFromParent();
599    else
600      cast<ConstantExpr>(GEP)->destroyConstant();
601  }
602
603  // Delete the old global, now that it is dead.
604  Globals.erase(GV);
605  ++NumSRA;
606
607  // Loop over the new globals array deleting any globals that are obviously
608  // dead.  This can arise due to scalarization of a structure or an array that
609  // has elements that are dead.
610  unsigned FirstGlobal = 0;
611  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
612    if (NewGlobals[i]->use_empty()) {
613      Globals.erase(NewGlobals[i]);
614      if (FirstGlobal == i) ++FirstGlobal;
615    }
616
617  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
618}
619
620/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
621/// value will trap if the value is dynamically null.  PHIs keeps track of any
622/// phi nodes we've seen to avoid reprocessing them.
623static bool AllUsesOfValueWillTrapIfNull(Value *V,
624                                         SmallPtrSet<PHINode*, 8> &PHIs) {
625  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
626    if (isa<LoadInst>(*UI)) {
627      // Will trap.
628    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
629      if (SI->getOperand(0) == V) {
630        //cerr << "NONTRAPPING USE: " << **UI;
631        return false;  // Storing the value.
632      }
633    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
634      if (CI->getOperand(0) != V) {
635        //cerr << "NONTRAPPING USE: " << **UI;
636        return false;  // Not calling the ptr
637      }
638    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
639      if (II->getOperand(0) != V) {
640        //cerr << "NONTRAPPING USE: " << **UI;
641        return false;  // Not calling the ptr
642      }
643    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
644      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
645    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
646      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
647    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
648      // If we've already seen this phi node, ignore it, it has already been
649      // checked.
650      if (PHIs.insert(PN))
651        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
652    } else if (isa<ICmpInst>(*UI) &&
653               isa<ConstantPointerNull>(UI->getOperand(1))) {
654      // Ignore setcc X, null
655    } else {
656      //cerr << "NONTRAPPING USE: " << **UI;
657      return false;
658    }
659  return true;
660}
661
662/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
663/// from GV will trap if the loaded value is null.  Note that this also permits
664/// comparisons of the loaded value against null, as a special case.
665static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
666  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
667    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
668      SmallPtrSet<PHINode*, 8> PHIs;
669      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
670        return false;
671    } else if (isa<StoreInst>(*UI)) {
672      // Ignore stores to the global.
673    } else {
674      // We don't know or understand this user, bail out.
675      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
676      return false;
677    }
678
679  return true;
680}
681
682static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
683                                           LLVMContext &Context) {
684  bool Changed = false;
685  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
686    Instruction *I = cast<Instruction>(*UI++);
687    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
688      LI->setOperand(0, NewV);
689      Changed = true;
690    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
691      if (SI->getOperand(1) == V) {
692        SI->setOperand(1, NewV);
693        Changed = true;
694      }
695    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
696      if (I->getOperand(0) == V) {
697        // Calling through the pointer!  Turn into a direct call, but be careful
698        // that the pointer is not also being passed as an argument.
699        I->setOperand(0, NewV);
700        Changed = true;
701        bool PassedAsArg = false;
702        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
703          if (I->getOperand(i) == V) {
704            PassedAsArg = true;
705            I->setOperand(i, NewV);
706          }
707
708        if (PassedAsArg) {
709          // Being passed as an argument also.  Be careful to not invalidate UI!
710          UI = V->use_begin();
711        }
712      }
713    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
714      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
715                                ConstantExpr::getCast(CI->getOpcode(),
716                                                NewV, CI->getType()), Context);
717      if (CI->use_empty()) {
718        Changed = true;
719        CI->eraseFromParent();
720      }
721    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
722      // Should handle GEP here.
723      SmallVector<Constant*, 8> Idxs;
724      Idxs.reserve(GEPI->getNumOperands()-1);
725      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
726           i != e; ++i)
727        if (Constant *C = dyn_cast<Constant>(*i))
728          Idxs.push_back(C);
729        else
730          break;
731      if (Idxs.size() == GEPI->getNumOperands()-1)
732        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
733                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
734                                                        Idxs.size()), Context);
735      if (GEPI->use_empty()) {
736        Changed = true;
737        GEPI->eraseFromParent();
738      }
739    }
740  }
741
742  return Changed;
743}
744
745
746/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
747/// value stored into it.  If there are uses of the loaded value that would trap
748/// if the loaded value is dynamically null, then we know that they cannot be
749/// reachable with a null optimize away the load.
750static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
751                                            LLVMContext &Context) {
752  bool Changed = false;
753
754  // Keep track of whether we are able to remove all the uses of the global
755  // other than the store that defines it.
756  bool AllNonStoreUsesGone = true;
757
758  // Replace all uses of loads with uses of uses of the stored value.
759  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
760    User *GlobalUser = *GUI++;
761    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
762      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
763      // If we were able to delete all uses of the loads
764      if (LI->use_empty()) {
765        LI->eraseFromParent();
766        Changed = true;
767      } else {
768        AllNonStoreUsesGone = false;
769      }
770    } else if (isa<StoreInst>(GlobalUser)) {
771      // Ignore the store that stores "LV" to the global.
772      assert(GlobalUser->getOperand(1) == GV &&
773             "Must be storing *to* the global");
774    } else {
775      AllNonStoreUsesGone = false;
776
777      // If we get here we could have other crazy uses that are transitively
778      // loaded.
779      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
780              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
781    }
782  }
783
784  if (Changed) {
785    DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
786    ++NumGlobUses;
787  }
788
789  // If we nuked all of the loads, then none of the stores are needed either,
790  // nor is the global.
791  if (AllNonStoreUsesGone) {
792    DEBUG(errs() << "  *** GLOBAL NOW DEAD!\n");
793    CleanupConstantGlobalUsers(GV, 0, Context);
794    if (GV->use_empty()) {
795      GV->eraseFromParent();
796      ++NumDeleted;
797    }
798    Changed = true;
799  }
800  return Changed;
801}
802
803/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
804/// instructions that are foldable.
805static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
806  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
807    if (Instruction *I = dyn_cast<Instruction>(*UI++))
808      if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
809        I->replaceAllUsesWith(NewC);
810
811        // Advance UI to the next non-I use to avoid invalidating it!
812        // Instructions could multiply use V.
813        while (UI != E && *UI == I)
814          ++UI;
815        I->eraseFromParent();
816      }
817}
818
819/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
820/// variable, and transforms the program as if it always contained the result of
821/// the specified malloc.  Because it is always the result of the specified
822/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
823/// malloc into a global, and any loads of GV as uses of the new global.
824static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
825                                                     CallInst *CI,
826                                                     BitCastInst *BCI,
827                                                     LLVMContext &Context,
828                                                     TargetData* TD) {
829  DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV
830               << "  CALL = " << *CI << "  BCI = " << *BCI << '\n');
831
832  const Type *IntPtrTy = TD->getIntPtrType(Context);
833
834  Value* ArraySize = getMallocArraySize(CI, Context, TD);
835  assert(ArraySize && "not a malloc whose array size can be determined");
836  ConstantInt *NElements = cast<ConstantInt>(ArraySize);
837  if (NElements->getZExtValue() != 1) {
838    // If we have an array allocation, transform it to a single element
839    // allocation to make the code below simpler.
840    Type *NewTy = ArrayType::get(getMallocAllocatedType(CI),
841                                 NElements->getZExtValue());
842    Value* NewM = CallInst::CreateMalloc(CI, IntPtrTy, NewTy);
843    Instruction* NewMI = cast<Instruction>(NewM);
844    Value* Indices[2];
845    Indices[0] = Indices[1] = Constant::getNullValue(IntPtrTy);
846    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
847                                              NewMI->getName()+".el0", CI);
848    BCI->replaceAllUsesWith(NewGEP);
849    BCI->eraseFromParent();
850    CI->eraseFromParent();
851    BCI = cast<BitCastInst>(NewMI);
852    CI = extractMallocCallFromBitCast(NewMI);
853  }
854
855  // Create the new global variable.  The contents of the malloc'd memory is
856  // undefined, so initialize with an undef value.
857  const Type *MAT = getMallocAllocatedType(CI);
858  Constant *Init = UndefValue::get(MAT);
859  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
860                                             MAT, false,
861                                             GlobalValue::InternalLinkage, Init,
862                                             GV->getName()+".body",
863                                             GV,
864                                             GV->isThreadLocal());
865
866  // Anything that used the malloc now uses the global directly.
867  BCI->replaceAllUsesWith(NewGV);
868
869  Constant *RepValue = NewGV;
870  if (NewGV->getType() != GV->getType()->getElementType())
871    RepValue = ConstantExpr::getBitCast(RepValue,
872                                        GV->getType()->getElementType());
873
874  // If there is a comparison against null, we will insert a global bool to
875  // keep track of whether the global was initialized yet or not.
876  GlobalVariable *InitBool =
877    new GlobalVariable(Context, Type::getInt1Ty(Context), false,
878                       GlobalValue::InternalLinkage,
879                       ConstantInt::getFalse(Context), GV->getName()+".init",
880                       GV->isThreadLocal());
881  bool InitBoolUsed = false;
882
883  // Loop over all uses of GV, processing them in turn.
884  std::vector<StoreInst*> Stores;
885  while (!GV->use_empty())
886    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
887      while (!LI->use_empty()) {
888        Use &LoadUse = LI->use_begin().getUse();
889        if (!isa<ICmpInst>(LoadUse.getUser()))
890          LoadUse = RepValue;
891        else {
892          ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
893          // Replace the cmp X, 0 with a use of the bool value.
894          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
895          InitBoolUsed = true;
896          switch (ICI->getPredicate()) {
897          default: llvm_unreachable("Unknown ICmp Predicate!");
898          case ICmpInst::ICMP_ULT:
899          case ICmpInst::ICMP_SLT:
900            LV = ConstantInt::getFalse(Context);   // X < null -> always false
901            break;
902          case ICmpInst::ICMP_ULE:
903          case ICmpInst::ICMP_SLE:
904          case ICmpInst::ICMP_EQ:
905            LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
906            break;
907          case ICmpInst::ICMP_NE:
908          case ICmpInst::ICMP_UGE:
909          case ICmpInst::ICMP_SGE:
910          case ICmpInst::ICMP_UGT:
911          case ICmpInst::ICMP_SGT:
912            break;  // no change.
913          }
914          ICI->replaceAllUsesWith(LV);
915          ICI->eraseFromParent();
916        }
917      }
918      LI->eraseFromParent();
919    } else {
920      StoreInst *SI = cast<StoreInst>(GV->use_back());
921      // The global is initialized when the store to it occurs.
922      new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
923      SI->eraseFromParent();
924    }
925
926  // If the initialization boolean was used, insert it, otherwise delete it.
927  if (!InitBoolUsed) {
928    while (!InitBool->use_empty())  // Delete initializations
929      cast<Instruction>(InitBool->use_back())->eraseFromParent();
930    delete InitBool;
931  } else
932    GV->getParent()->getGlobalList().insert(GV, InitBool);
933
934
935  // Now the GV is dead, nuke it and the malloc.
936  GV->eraseFromParent();
937  BCI->eraseFromParent();
938  CI->eraseFromParent();
939
940  // To further other optimizations, loop over all users of NewGV and try to
941  // constant prop them.  This will promote GEP instructions with constant
942  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
943  ConstantPropUsersOf(NewGV, Context);
944  if (RepValue != NewGV)
945    ConstantPropUsersOf(RepValue, Context);
946
947  return NewGV;
948}
949
950/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
951/// to make sure that there are no complex uses of V.  We permit simple things
952/// like dereferencing the pointer, but not storing through the address, unless
953/// it is to the specified global.
954static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
955                                                      GlobalVariable *GV,
956                                              SmallPtrSet<PHINode*, 8> &PHIs) {
957  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
958    Instruction *Inst = cast<Instruction>(*UI);
959
960    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
961      continue; // Fine, ignore.
962    }
963
964    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
965      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
966        return false;  // Storing the pointer itself... bad.
967      continue; // Otherwise, storing through it, or storing into GV... fine.
968    }
969
970    if (isa<GetElementPtrInst>(Inst)) {
971      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
972        return false;
973      continue;
974    }
975
976    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
977      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
978      // cycles.
979      if (PHIs.insert(PN))
980        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
981          return false;
982      continue;
983    }
984
985    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
986      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
987        return false;
988      continue;
989    }
990
991    return false;
992  }
993  return true;
994}
995
996/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
997/// somewhere.  Transform all uses of the allocation into loads from the
998/// global and uses of the resultant pointer.  Further, delete the store into
999/// GV.  This assumes that these value pass the
1000/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1001static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1002                                          GlobalVariable *GV) {
1003  while (!Alloc->use_empty()) {
1004    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1005    Instruction *InsertPt = U;
1006    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1007      // If this is the store of the allocation into the global, remove it.
1008      if (SI->getOperand(1) == GV) {
1009        SI->eraseFromParent();
1010        continue;
1011      }
1012    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1013      // Insert the load in the corresponding predecessor, not right before the
1014      // PHI.
1015      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1016    } else if (isa<BitCastInst>(U)) {
1017      // Must be bitcast between the malloc and store to initialize the global.
1018      ReplaceUsesOfMallocWithGlobal(U, GV);
1019      U->eraseFromParent();
1020      continue;
1021    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1022      // If this is a "GEP bitcast" and the user is a store to the global, then
1023      // just process it as a bitcast.
1024      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1025        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1026          if (SI->getOperand(1) == GV) {
1027            // Must be bitcast GEP between the malloc and store to initialize
1028            // the global.
1029            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1030            GEPI->eraseFromParent();
1031            continue;
1032          }
1033    }
1034
1035    // Insert a load from the global, and use it instead of the malloc.
1036    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1037    U->replaceUsesOfWith(Alloc, NL);
1038  }
1039}
1040
1041/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1042/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1043/// that index through the array and struct field, icmps of null, and PHIs.
1044static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1045                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1046                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1047  // We permit two users of the load: setcc comparing against the null
1048  // pointer, and a getelementptr of a specific form.
1049  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1050    Instruction *User = cast<Instruction>(*UI);
1051
1052    // Comparison against null is ok.
1053    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1054      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1055        return false;
1056      continue;
1057    }
1058
1059    // getelementptr is also ok, but only a simple form.
1060    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1061      // Must index into the array and into the struct.
1062      if (GEPI->getNumOperands() < 3)
1063        return false;
1064
1065      // Otherwise the GEP is ok.
1066      continue;
1067    }
1068
1069    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1070      if (!LoadUsingPHIsPerLoad.insert(PN))
1071        // This means some phi nodes are dependent on each other.
1072        // Avoid infinite looping!
1073        return false;
1074      if (!LoadUsingPHIs.insert(PN))
1075        // If we have already analyzed this PHI, then it is safe.
1076        continue;
1077
1078      // Make sure all uses of the PHI are simple enough to transform.
1079      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1080                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1081        return false;
1082
1083      continue;
1084    }
1085
1086    // Otherwise we don't know what this is, not ok.
1087    return false;
1088  }
1089
1090  return true;
1091}
1092
1093
1094/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1095/// GV are simple enough to perform HeapSRA, return true.
1096static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1097                                                    Instruction *StoredVal) {
1098  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1099  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1100  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1101       ++UI)
1102    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1103      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1104                                          LoadUsingPHIsPerLoad))
1105        return false;
1106      LoadUsingPHIsPerLoad.clear();
1107    }
1108
1109  // If we reach here, we know that all uses of the loads and transitive uses
1110  // (through PHI nodes) are simple enough to transform.  However, we don't know
1111  // that all inputs the to the PHI nodes are in the same equivalence sets.
1112  // Check to verify that all operands of the PHIs are either PHIS that can be
1113  // transformed, loads from GV, or MI itself.
1114  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1115       E = LoadUsingPHIs.end(); I != E; ++I) {
1116    PHINode *PN = *I;
1117    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1118      Value *InVal = PN->getIncomingValue(op);
1119
1120      // PHI of the stored value itself is ok.
1121      if (InVal == StoredVal) continue;
1122
1123      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1124        // One of the PHIs in our set is (optimistically) ok.
1125        if (LoadUsingPHIs.count(InPN))
1126          continue;
1127        return false;
1128      }
1129
1130      // Load from GV is ok.
1131      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1132        if (LI->getOperand(0) == GV)
1133          continue;
1134
1135      // UNDEF? NULL?
1136
1137      // Anything else is rejected.
1138      return false;
1139    }
1140  }
1141
1142  return true;
1143}
1144
1145static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1146               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1147                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1148                   LLVMContext &Context) {
1149  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1150
1151  if (FieldNo >= FieldVals.size())
1152    FieldVals.resize(FieldNo+1);
1153
1154  // If we already have this value, just reuse the previously scalarized
1155  // version.
1156  if (Value *FieldVal = FieldVals[FieldNo])
1157    return FieldVal;
1158
1159  // Depending on what instruction this is, we have several cases.
1160  Value *Result;
1161  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1162    // This is a scalarized version of the load from the global.  Just create
1163    // a new Load of the scalarized global.
1164    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1165                                           InsertedScalarizedValues,
1166                                           PHIsToRewrite, Context),
1167                          LI->getName()+".f"+Twine(FieldNo), LI);
1168  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1169    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1170    // field.
1171    const StructType *ST =
1172      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1173
1174    Result =
1175     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1176                     PN->getName()+".f"+Twine(FieldNo), PN);
1177    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1178  } else {
1179    llvm_unreachable("Unknown usable value");
1180    Result = 0;
1181  }
1182
1183  return FieldVals[FieldNo] = Result;
1184}
1185
1186/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1187/// the load, rewrite the derived value to use the HeapSRoA'd load.
1188static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1189             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1190                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1191                   LLVMContext &Context) {
1192  // If this is a comparison against null, handle it.
1193  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1194    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1195    // If we have a setcc of the loaded pointer, we can use a setcc of any
1196    // field.
1197    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1198                                   InsertedScalarizedValues, PHIsToRewrite,
1199                                   Context);
1200
1201    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1202                              Constant::getNullValue(NPtr->getType()),
1203                              SCI->getName());
1204    SCI->replaceAllUsesWith(New);
1205    SCI->eraseFromParent();
1206    return;
1207  }
1208
1209  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1210  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1211    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1212           && "Unexpected GEPI!");
1213
1214    // Load the pointer for this field.
1215    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1216    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1217                                     InsertedScalarizedValues, PHIsToRewrite,
1218                                     Context);
1219
1220    // Create the new GEP idx vector.
1221    SmallVector<Value*, 8> GEPIdx;
1222    GEPIdx.push_back(GEPI->getOperand(1));
1223    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1224
1225    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1226                                             GEPIdx.begin(), GEPIdx.end(),
1227                                             GEPI->getName(), GEPI);
1228    GEPI->replaceAllUsesWith(NGEPI);
1229    GEPI->eraseFromParent();
1230    return;
1231  }
1232
1233  // Recursively transform the users of PHI nodes.  This will lazily create the
1234  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1235  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1236  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1237  // already been seen first by another load, so its uses have already been
1238  // processed.
1239  PHINode *PN = cast<PHINode>(LoadUser);
1240  bool Inserted;
1241  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1242  tie(InsertPos, Inserted) =
1243    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1244  if (!Inserted) return;
1245
1246  // If this is the first time we've seen this PHI, recursively process all
1247  // users.
1248  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1249    Instruction *User = cast<Instruction>(*UI++);
1250    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1251                            Context);
1252  }
1253}
1254
1255/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1256/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1257/// use FieldGlobals instead.  All uses of loaded values satisfy
1258/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1259static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1260               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1261                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1262                   LLVMContext &Context) {
1263  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1264       UI != E; ) {
1265    Instruction *User = cast<Instruction>(*UI++);
1266    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1267                            Context);
1268  }
1269
1270  if (Load->use_empty()) {
1271    Load->eraseFromParent();
1272    InsertedScalarizedValues.erase(Load);
1273  }
1274}
1275
1276/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1277/// it up into multiple allocations of arrays of the fields.
1278static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV,
1279                                            CallInst *CI, BitCastInst* BCI,
1280                                            LLVMContext &Context,
1281                                            TargetData *TD){
1282  DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC CALL = " << *CI
1283               << " BITCAST = " << *BCI << '\n');
1284  const Type* MAT = getMallocAllocatedType(CI);
1285  const StructType *STy = cast<StructType>(MAT);
1286  Value* ArraySize = getMallocArraySize(CI, Context, TD);
1287  assert(ArraySize && "not a malloc whose array size can be determined");
1288
1289  // There is guaranteed to be at least one use of the malloc (storing
1290  // it into GV).  If there are other uses, change them to be uses of
1291  // the global to simplify later code.  This also deletes the store
1292  // into GV.
1293  ReplaceUsesOfMallocWithGlobal(BCI, GV);
1294
1295  // Okay, at this point, there are no users of the malloc.  Insert N
1296  // new mallocs at the same place as CI, and N globals.
1297  std::vector<Value*> FieldGlobals;
1298  std::vector<Value*> FieldMallocs;
1299
1300  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1301    const Type *FieldTy = STy->getElementType(FieldNo);
1302    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1303
1304    GlobalVariable *NGV =
1305      new GlobalVariable(*GV->getParent(),
1306                         PFieldTy, false, GlobalValue::InternalLinkage,
1307                         Constant::getNullValue(PFieldTy),
1308                         GV->getName() + ".f" + Twine(FieldNo), GV,
1309                         GV->isThreadLocal());
1310    FieldGlobals.push_back(NGV);
1311
1312    Value *NMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context),
1313                                        FieldTy, ArraySize,
1314                                        BCI->getName() + ".f" + Twine(FieldNo));
1315    FieldMallocs.push_back(NMI);
1316    new StoreInst(NMI, NGV, BCI);
1317  }
1318
1319  // The tricky aspect of this transformation is handling the case when malloc
1320  // fails.  In the original code, malloc failing would set the result pointer
1321  // of malloc to null.  In this case, some mallocs could succeed and others
1322  // could fail.  As such, we emit code that looks like this:
1323  //    F0 = malloc(field0)
1324  //    F1 = malloc(field1)
1325  //    F2 = malloc(field2)
1326  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1327  //      if (F0) { free(F0); F0 = 0; }
1328  //      if (F1) { free(F1); F1 = 0; }
1329  //      if (F2) { free(F2); F2 = 0; }
1330  //    }
1331  Value *RunningOr = 0;
1332  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1333    Value *Cond = new ICmpInst(BCI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1334                              Constant::getNullValue(FieldMallocs[i]->getType()),
1335                                  "isnull");
1336    if (!RunningOr)
1337      RunningOr = Cond;   // First seteq
1338    else
1339      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", BCI);
1340  }
1341
1342  // Split the basic block at the old malloc.
1343  BasicBlock *OrigBB = BCI->getParent();
1344  BasicBlock *ContBB = OrigBB->splitBasicBlock(BCI, "malloc_cont");
1345
1346  // Create the block to check the first condition.  Put all these blocks at the
1347  // end of the function as they are unlikely to be executed.
1348  BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
1349                                                OrigBB->getParent());
1350
1351  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1352  // branch on RunningOr.
1353  OrigBB->getTerminator()->eraseFromParent();
1354  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1355
1356  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1357  // pointer, because some may be null while others are not.
1358  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1359    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1360    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1361                              Constant::getNullValue(GVVal->getType()),
1362                              "tmp");
1363    BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
1364                                               OrigBB->getParent());
1365    BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
1366                                               OrigBB->getParent());
1367    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1368                                         Cmp, NullPtrBlock);
1369
1370    // Fill in FreeBlock.
1371    CallInst::CreateFree(GVVal, BI);
1372    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1373                  FreeBlock);
1374    BranchInst::Create(NextBlock, FreeBlock);
1375
1376    NullPtrBlock = NextBlock;
1377  }
1378
1379  BranchInst::Create(ContBB, NullPtrBlock);
1380
1381  // CI and BCI are no longer needed, remove them.
1382  BCI->eraseFromParent();
1383  CI->eraseFromParent();
1384
1385  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1386  /// update all uses of the load, keep track of what scalarized loads are
1387  /// inserted for a given load.
1388  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1389  InsertedScalarizedValues[GV] = FieldGlobals;
1390
1391  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1392
1393  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1394  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1395  // of the per-field globals instead.
1396  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1397    Instruction *User = cast<Instruction>(*UI++);
1398
1399    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1400      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
1401                                   Context);
1402      continue;
1403    }
1404
1405    // Must be a store of null.
1406    StoreInst *SI = cast<StoreInst>(User);
1407    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1408           "Unexpected heap-sra user!");
1409
1410    // Insert a store of null into each global.
1411    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1412      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1413      Constant *Null = Constant::getNullValue(PT->getElementType());
1414      new StoreInst(Null, FieldGlobals[i], SI);
1415    }
1416    // Erase the original store.
1417    SI->eraseFromParent();
1418  }
1419
1420  // While we have PHIs that are interesting to rewrite, do it.
1421  while (!PHIsToRewrite.empty()) {
1422    PHINode *PN = PHIsToRewrite.back().first;
1423    unsigned FieldNo = PHIsToRewrite.back().second;
1424    PHIsToRewrite.pop_back();
1425    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1426    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1427
1428    // Add all the incoming values.  This can materialize more phis.
1429    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1430      Value *InVal = PN->getIncomingValue(i);
1431      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1432                               PHIsToRewrite, Context);
1433      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1434    }
1435  }
1436
1437  // Drop all inter-phi links and any loads that made it this far.
1438  for (DenseMap<Value*, std::vector<Value*> >::iterator
1439       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1440       I != E; ++I) {
1441    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1442      PN->dropAllReferences();
1443    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1444      LI->dropAllReferences();
1445  }
1446
1447  // Delete all the phis and loads now that inter-references are dead.
1448  for (DenseMap<Value*, std::vector<Value*> >::iterator
1449       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1450       I != E; ++I) {
1451    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1452      PN->eraseFromParent();
1453    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1454      LI->eraseFromParent();
1455  }
1456
1457  // The old global is now dead, remove it.
1458  GV->eraseFromParent();
1459
1460  ++NumHeapSRA;
1461  return cast<GlobalVariable>(FieldGlobals[0]);
1462}
1463
1464/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1465/// pointer global variable with a single value stored it that is a malloc or
1466/// cast of malloc.
1467static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1468                                               CallInst *CI,
1469                                               BitCastInst *BCI,
1470                                               Module::global_iterator &GVI,
1471                                               TargetData *TD,
1472                                               LLVMContext &Context) {
1473  // If we can't figure out the type being malloced, then we can't optimize.
1474  const Type *AllocTy = getMallocAllocatedType(CI);
1475  assert(AllocTy);
1476
1477  // If this is a malloc of an abstract type, don't touch it.
1478  if (!AllocTy->isSized())
1479    return false;
1480
1481  // We can't optimize this global unless all uses of it are *known* to be
1482  // of the malloc value, not of the null initializer value (consider a use
1483  // that compares the global's value against zero to see if the malloc has
1484  // been reached).  To do this, we check to see if all uses of the global
1485  // would trap if the global were null: this proves that they must all
1486  // happen after the malloc.
1487  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1488    return false;
1489
1490  // We can't optimize this if the malloc itself is used in a complex way,
1491  // for example, being stored into multiple globals.  This allows the
1492  // malloc to be stored into the specified global, loaded setcc'd, and
1493  // GEP'd.  These are all things we could transform to using the global
1494  // for.
1495  {
1496    SmallPtrSet<PHINode*, 8> PHIs;
1497    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1498      return false;
1499  }
1500
1501  // If we have a global that is only initialized with a fixed size malloc,
1502  // transform the program to use global memory instead of malloc'd memory.
1503  // This eliminates dynamic allocation, avoids an indirection accessing the
1504  // data, and exposes the resultant global to further GlobalOpt.
1505  Value *NElems = getMallocArraySize(CI, Context, TD);
1506  // We cannot optimize the malloc if we cannot determine malloc array size.
1507  if (NElems) {
1508    if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1509      // Restrict this transformation to only working on small allocations
1510      // (2048 bytes currently), as we don't want to introduce a 16M global or
1511      // something.
1512      if (TD &&
1513          NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1514        GVI = OptimizeGlobalAddressOfMalloc(GV, CI, BCI, Context, TD);
1515        return true;
1516      }
1517
1518    // If the allocation is an array of structures, consider transforming this
1519    // into multiple malloc'd arrays, one for each field.  This is basically
1520    // SRoA for malloc'd memory.
1521
1522    // If this is an allocation of a fixed size array of structs, analyze as a
1523    // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1524    if (!isArrayMalloc(CI, Context, TD))
1525      if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1526        AllocTy = AT->getElementType();
1527
1528    if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1529      // This the structure has an unreasonable number of fields, leave it
1530      // alone.
1531      if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1532          AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, BCI)) {
1533
1534        // If this is a fixed size array, transform the Malloc to be an alloc of
1535        // structs.  malloc [100 x struct],1 -> malloc struct, 100
1536        if (const ArrayType *AT =
1537                              dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1538          Value* NumElements = ConstantInt::get(Type::getInt32Ty(Context),
1539                                                AT->getNumElements());
1540          Value* NewMI = CallInst::CreateMalloc(CI, TD->getIntPtrType(Context),
1541                                                AllocSTy, NumElements,
1542                                                BCI->getName());
1543          Value *Cast = new BitCastInst(NewMI, getMallocType(CI), "tmp", CI);
1544          BCI->replaceAllUsesWith(Cast);
1545          BCI->eraseFromParent();
1546          CI->eraseFromParent();
1547          BCI = cast<BitCastInst>(NewMI);
1548          CI = extractMallocCallFromBitCast(NewMI);
1549        }
1550
1551        GVI = PerformHeapAllocSRoA(GV, CI, BCI, Context, TD);
1552        return true;
1553      }
1554    }
1555  }
1556
1557  return false;
1558}
1559
1560// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1561// that only one value (besides its initializer) is ever stored to the global.
1562static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1563                                     Module::global_iterator &GVI,
1564                                     TargetData *TD, LLVMContext &Context) {
1565  // Ignore no-op GEPs and bitcasts.
1566  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1567
1568  // If we are dealing with a pointer global that is initialized to null and
1569  // only has one (non-null) value stored into it, then we can optimize any
1570  // users of the loaded value (often calls and loads) that would trap if the
1571  // value was null.
1572  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1573      GV->getInitializer()->isNullValue()) {
1574    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1575      if (GV->getInitializer()->getType() != SOVC->getType())
1576        SOVC =
1577         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1578
1579      // Optimize away any trapping uses of the loaded value.
1580      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
1581        return true;
1582    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1583      if (getMallocAllocatedType(CI)) {
1584        BitCastInst* BCI = NULL;
1585        for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
1586             UI != E; )
1587          BCI = dyn_cast<BitCastInst>(cast<Instruction>(*UI++));
1588        if (BCI &&
1589            TryToOptimizeStoreOfMallocToGlobal(GV, CI, BCI, GVI, TD, Context))
1590          return true;
1591      }
1592    }
1593  }
1594
1595  return false;
1596}
1597
1598/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1599/// two values ever stored into GV are its initializer and OtherVal.  See if we
1600/// can shrink the global into a boolean and select between the two values
1601/// whenever it is used.  This exposes the values to other scalar optimizations.
1602static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
1603                                       LLVMContext &Context) {
1604  const Type *GVElType = GV->getType()->getElementType();
1605
1606  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1607  // an FP value, pointer or vector, don't do this optimization because a select
1608  // between them is very expensive and unlikely to lead to later
1609  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1610  // where v1 and v2 both require constant pool loads, a big loss.
1611  if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() ||
1612      isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1613    return false;
1614
1615  // Walk the use list of the global seeing if all the uses are load or store.
1616  // If there is anything else, bail out.
1617  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1618    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1619      return false;
1620
1621  DEBUG(errs() << "   *** SHRINKING TO BOOL: " << *GV);
1622
1623  // Create the new global, initializing it to false.
1624  GlobalVariable *NewGV = new GlobalVariable(Context,
1625                                             Type::getInt1Ty(Context), false,
1626         GlobalValue::InternalLinkage, ConstantInt::getFalse(Context),
1627                                             GV->getName()+".b",
1628                                             GV->isThreadLocal());
1629  GV->getParent()->getGlobalList().insert(GV, NewGV);
1630
1631  Constant *InitVal = GV->getInitializer();
1632  assert(InitVal->getType() != Type::getInt1Ty(Context) &&
1633         "No reason to shrink to bool!");
1634
1635  // If initialized to zero and storing one into the global, we can use a cast
1636  // instead of a select to synthesize the desired value.
1637  bool IsOneZero = false;
1638  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1639    IsOneZero = InitVal->isNullValue() && CI->isOne();
1640
1641  while (!GV->use_empty()) {
1642    Instruction *UI = cast<Instruction>(GV->use_back());
1643    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1644      // Change the store into a boolean store.
1645      bool StoringOther = SI->getOperand(0) == OtherVal;
1646      // Only do this if we weren't storing a loaded value.
1647      Value *StoreVal;
1648      if (StoringOther || SI->getOperand(0) == InitVal)
1649        StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther);
1650      else {
1651        // Otherwise, we are storing a previously loaded copy.  To do this,
1652        // change the copy from copying the original value to just copying the
1653        // bool.
1654        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1655
1656        // If we're already replaced the input, StoredVal will be a cast or
1657        // select instruction.  If not, it will be a load of the original
1658        // global.
1659        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1660          assert(LI->getOperand(0) == GV && "Not a copy!");
1661          // Insert a new load, to preserve the saved value.
1662          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1663        } else {
1664          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1665                 "This is not a form that we understand!");
1666          StoreVal = StoredVal->getOperand(0);
1667          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1668        }
1669      }
1670      new StoreInst(StoreVal, NewGV, SI);
1671    } else {
1672      // Change the load into a load of bool then a select.
1673      LoadInst *LI = cast<LoadInst>(UI);
1674      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1675      Value *NSI;
1676      if (IsOneZero)
1677        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1678      else
1679        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1680      NSI->takeName(LI);
1681      LI->replaceAllUsesWith(NSI);
1682    }
1683    UI->eraseFromParent();
1684  }
1685
1686  GV->eraseFromParent();
1687  return true;
1688}
1689
1690
1691/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1692/// it if possible.  If we make a change, return true.
1693bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1694                                      Module::global_iterator &GVI) {
1695  SmallPtrSet<PHINode*, 16> PHIUsers;
1696  GlobalStatus GS;
1697  GV->removeDeadConstantUsers();
1698
1699  if (GV->use_empty()) {
1700    DEBUG(errs() << "GLOBAL DEAD: " << *GV);
1701    GV->eraseFromParent();
1702    ++NumDeleted;
1703    return true;
1704  }
1705
1706  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1707#if 0
1708    cerr << "Global: " << *GV;
1709    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1710    cerr << "  StoredType = ";
1711    switch (GS.StoredType) {
1712    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1713    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1714    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1715    case GlobalStatus::isStored: cerr << "stored\n"; break;
1716    }
1717    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1718      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1719    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1720      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1721                << "\n";
1722    cerr << "  HasMultipleAccessingFunctions =  "
1723              << GS.HasMultipleAccessingFunctions << "\n";
1724    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1725    cerr << "\n";
1726#endif
1727
1728    // If this is a first class global and has only one accessing function
1729    // and this function is main (which we know is not recursive we can make
1730    // this global a local variable) we replace the global with a local alloca
1731    // in this function.
1732    //
1733    // NOTE: It doesn't make sense to promote non single-value types since we
1734    // are just replacing static memory to stack memory.
1735    //
1736    // If the global is in different address space, don't bring it to stack.
1737    if (!GS.HasMultipleAccessingFunctions &&
1738        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1739        GV->getType()->getElementType()->isSingleValueType() &&
1740        GS.AccessingFunction->getName() == "main" &&
1741        GS.AccessingFunction->hasExternalLinkage() &&
1742        GV->getType()->getAddressSpace() == 0) {
1743      DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV);
1744      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1745      const Type* ElemTy = GV->getType()->getElementType();
1746      // FIXME: Pass Global's alignment when globals have alignment
1747      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1748      if (!isa<UndefValue>(GV->getInitializer()))
1749        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1750
1751      GV->replaceAllUsesWith(Alloca);
1752      GV->eraseFromParent();
1753      ++NumLocalized;
1754      return true;
1755    }
1756
1757    // If the global is never loaded (but may be stored to), it is dead.
1758    // Delete it now.
1759    if (!GS.isLoaded) {
1760      DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV);
1761
1762      // Delete any stores we can find to the global.  We may not be able to
1763      // make it completely dead though.
1764      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1765                                                GV->getContext());
1766
1767      // If the global is dead now, delete it.
1768      if (GV->use_empty()) {
1769        GV->eraseFromParent();
1770        ++NumDeleted;
1771        Changed = true;
1772      }
1773      return Changed;
1774
1775    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1776      DEBUG(errs() << "MARKING CONSTANT: " << *GV);
1777      GV->setConstant(true);
1778
1779      // Clean up any obviously simplifiable users now.
1780      CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
1781
1782      // If the global is dead now, just nuke it.
1783      if (GV->use_empty()) {
1784        DEBUG(errs() << "   *** Marking constant allowed us to simplify "
1785                     << "all users and delete global!\n");
1786        GV->eraseFromParent();
1787        ++NumDeleted;
1788      }
1789
1790      ++NumMarked;
1791      return true;
1792    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1793      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1794        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD,
1795                                                   GV->getContext())) {
1796          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1797          return true;
1798        }
1799    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1800      // If the initial value for the global was an undef value, and if only
1801      // one other value was stored into it, we can just change the
1802      // initializer to be the stored value, then delete all stores to the
1803      // global.  This allows us to mark it constant.
1804      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1805        if (isa<UndefValue>(GV->getInitializer())) {
1806          // Change the initial value here.
1807          GV->setInitializer(SOVConstant);
1808
1809          // Clean up any obviously simplifiable users now.
1810          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1811                                     GV->getContext());
1812
1813          if (GV->use_empty()) {
1814            DEBUG(errs() << "   *** Substituting initializer allowed us to "
1815                         << "simplify all users and delete global!\n");
1816            GV->eraseFromParent();
1817            ++NumDeleted;
1818          } else {
1819            GVI = GV;
1820          }
1821          ++NumSubstitute;
1822          return true;
1823        }
1824
1825      // Try to optimize globals based on the knowledge that only one value
1826      // (besides its initializer) is ever stored to the global.
1827      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1828                                   getAnalysisIfAvailable<TargetData>(),
1829                                   GV->getContext()))
1830        return true;
1831
1832      // Otherwise, if the global was not a boolean, we can shrink it to be a
1833      // boolean.
1834      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1835        if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
1836          ++NumShrunkToBool;
1837          return true;
1838        }
1839    }
1840  }
1841  return false;
1842}
1843
1844/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1845/// function, changing them to FastCC.
1846static void ChangeCalleesToFastCall(Function *F) {
1847  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1848    CallSite User(cast<Instruction>(*UI));
1849    User.setCallingConv(CallingConv::Fast);
1850  }
1851}
1852
1853static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1854  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1855    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1856      continue;
1857
1858    // There can be only one.
1859    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1860  }
1861
1862  return Attrs;
1863}
1864
1865static void RemoveNestAttribute(Function *F) {
1866  F->setAttributes(StripNest(F->getAttributes()));
1867  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1868    CallSite User(cast<Instruction>(*UI));
1869    User.setAttributes(StripNest(User.getAttributes()));
1870  }
1871}
1872
1873bool GlobalOpt::OptimizeFunctions(Module &M) {
1874  bool Changed = false;
1875  // Optimize functions.
1876  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1877    Function *F = FI++;
1878    // Functions without names cannot be referenced outside this module.
1879    if (!F->hasName() && !F->isDeclaration())
1880      F->setLinkage(GlobalValue::InternalLinkage);
1881    F->removeDeadConstantUsers();
1882    if (F->use_empty() && (F->hasLocalLinkage() ||
1883                           F->hasLinkOnceLinkage())) {
1884      M.getFunctionList().erase(F);
1885      Changed = true;
1886      ++NumFnDeleted;
1887    } else if (F->hasLocalLinkage()) {
1888      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1889          !F->hasAddressTaken()) {
1890        // If this function has C calling conventions, is not a varargs
1891        // function, and is only called directly, promote it to use the Fast
1892        // calling convention.
1893        F->setCallingConv(CallingConv::Fast);
1894        ChangeCalleesToFastCall(F);
1895        ++NumFastCallFns;
1896        Changed = true;
1897      }
1898
1899      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1900          !F->hasAddressTaken()) {
1901        // The function is not used by a trampoline intrinsic, so it is safe
1902        // to remove the 'nest' attribute.
1903        RemoveNestAttribute(F);
1904        ++NumNestRemoved;
1905        Changed = true;
1906      }
1907    }
1908  }
1909  return Changed;
1910}
1911
1912bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1913  bool Changed = false;
1914  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1915       GVI != E; ) {
1916    GlobalVariable *GV = GVI++;
1917    // Global variables without names cannot be referenced outside this module.
1918    if (!GV->hasName() && !GV->isDeclaration())
1919      GV->setLinkage(GlobalValue::InternalLinkage);
1920    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1921        GV->hasInitializer())
1922      Changed |= ProcessInternalGlobal(GV, GVI);
1923  }
1924  return Changed;
1925}
1926
1927/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1928/// initializers have an init priority of 65535.
1929GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1930  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1931       I != E; ++I)
1932    if (I->getName() == "llvm.global_ctors") {
1933      // Found it, verify it's an array of { int, void()* }.
1934      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1935      if (!ATy) return 0;
1936      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1937      if (!STy || STy->getNumElements() != 2 ||
1938          STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
1939      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1940      if (!PFTy) return 0;
1941      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1942      if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
1943          FTy->isVarArg() || FTy->getNumParams() != 0)
1944        return 0;
1945
1946      // Verify that the initializer is simple enough for us to handle.
1947      if (!I->hasDefinitiveInitializer()) return 0;
1948      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1949      if (!CA) return 0;
1950      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1951        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1952          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1953            continue;
1954
1955          // Must have a function or null ptr.
1956          if (!isa<Function>(CS->getOperand(1)))
1957            return 0;
1958
1959          // Init priority must be standard.
1960          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1961          if (!CI || CI->getZExtValue() != 65535)
1962            return 0;
1963        } else {
1964          return 0;
1965        }
1966
1967      return I;
1968    }
1969  return 0;
1970}
1971
1972/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1973/// return a list of the functions and null terminator as a vector.
1974static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1975  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1976  std::vector<Function*> Result;
1977  Result.reserve(CA->getNumOperands());
1978  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1979    ConstantStruct *CS = cast<ConstantStruct>(*i);
1980    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1981  }
1982  return Result;
1983}
1984
1985/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1986/// specified array, returning the new global to use.
1987static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1988                                          const std::vector<Function*> &Ctors,
1989                                          LLVMContext &Context) {
1990  // If we made a change, reassemble the initializer list.
1991  std::vector<Constant*> CSVals;
1992  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535));
1993  CSVals.push_back(0);
1994
1995  // Create the new init list.
1996  std::vector<Constant*> CAList;
1997  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1998    if (Ctors[i]) {
1999      CSVals[1] = Ctors[i];
2000    } else {
2001      const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false);
2002      const PointerType *PFTy = PointerType::getUnqual(FTy);
2003      CSVals[1] = Constant::getNullValue(PFTy);
2004      CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647);
2005    }
2006    CAList.push_back(ConstantStruct::get(Context, CSVals, false));
2007  }
2008
2009  // Create the array initializer.
2010  const Type *StructTy =
2011      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2012  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2013                                                   CAList.size()), CAList);
2014
2015  // If we didn't change the number of elements, don't create a new GV.
2016  if (CA->getType() == GCL->getInitializer()->getType()) {
2017    GCL->setInitializer(CA);
2018    return GCL;
2019  }
2020
2021  // Create the new global and insert it next to the existing list.
2022  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
2023                                           GCL->isConstant(),
2024                                           GCL->getLinkage(), CA, "",
2025                                           GCL->isThreadLocal());
2026  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2027  NGV->takeName(GCL);
2028
2029  // Nuke the old list, replacing any uses with the new one.
2030  if (!GCL->use_empty()) {
2031    Constant *V = NGV;
2032    if (V->getType() != GCL->getType())
2033      V = ConstantExpr::getBitCast(V, GCL->getType());
2034    GCL->replaceAllUsesWith(V);
2035  }
2036  GCL->eraseFromParent();
2037
2038  if (Ctors.size())
2039    return NGV;
2040  else
2041    return 0;
2042}
2043
2044
2045static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2046                        Value *V) {
2047  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2048  Constant *R = ComputedValues[V];
2049  assert(R && "Reference to an uncomputed value!");
2050  return R;
2051}
2052
2053/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2054/// enough for us to understand.  In particular, if it is a cast of something,
2055/// we punt.  We basically just support direct accesses to globals and GEP's of
2056/// globals.  This should be kept up to date with CommitValueTo.
2057static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
2058  // Conservatively, avoid aggregate types. This is because we don't
2059  // want to worry about them partially overlapping other stores.
2060  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2061    return false;
2062
2063  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2064    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2065    // external globals.
2066    return GV->hasDefinitiveInitializer();
2067
2068  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2069    // Handle a constantexpr gep.
2070    if (CE->getOpcode() == Instruction::GetElementPtr &&
2071        isa<GlobalVariable>(CE->getOperand(0)) &&
2072        cast<GEPOperator>(CE)->isInBounds()) {
2073      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2074      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2075      // external globals.
2076      if (!GV->hasDefinitiveInitializer())
2077        return false;
2078
2079      // The first index must be zero.
2080      ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2081      if (!CI || !CI->isZero()) return false;
2082
2083      // The remaining indices must be compile-time known integers within the
2084      // notional bounds of the corresponding static array types.
2085      if (!CE->isGEPWithNoNotionalOverIndexing())
2086        return false;
2087
2088      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2089    }
2090  return false;
2091}
2092
2093/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2094/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2095/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2096static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2097                                   ConstantExpr *Addr, unsigned OpNo,
2098                                   LLVMContext &Context) {
2099  // Base case of the recursion.
2100  if (OpNo == Addr->getNumOperands()) {
2101    assert(Val->getType() == Init->getType() && "Type mismatch!");
2102    return Val;
2103  }
2104
2105  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2106    std::vector<Constant*> Elts;
2107
2108    // Break up the constant into its elements.
2109    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2110      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2111        Elts.push_back(cast<Constant>(*i));
2112    } else if (isa<ConstantAggregateZero>(Init)) {
2113      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2114        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2115    } else if (isa<UndefValue>(Init)) {
2116      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2117        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2118    } else {
2119      llvm_unreachable("This code is out of sync with "
2120             " ConstantFoldLoadThroughGEPConstantExpr");
2121    }
2122
2123    // Replace the element that we are supposed to.
2124    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2125    unsigned Idx = CU->getZExtValue();
2126    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2127    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
2128
2129    // Return the modified struct.
2130    return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked());
2131  } else {
2132    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2133    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2134
2135    // Break up the array into elements.
2136    std::vector<Constant*> Elts;
2137    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2138      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2139        Elts.push_back(cast<Constant>(*i));
2140    } else if (isa<ConstantAggregateZero>(Init)) {
2141      Constant *Elt = Constant::getNullValue(ATy->getElementType());
2142      Elts.assign(ATy->getNumElements(), Elt);
2143    } else if (isa<UndefValue>(Init)) {
2144      Constant *Elt = UndefValue::get(ATy->getElementType());
2145      Elts.assign(ATy->getNumElements(), Elt);
2146    } else {
2147      llvm_unreachable("This code is out of sync with "
2148             " ConstantFoldLoadThroughGEPConstantExpr");
2149    }
2150
2151    assert(CI->getZExtValue() < ATy->getNumElements());
2152    Elts[CI->getZExtValue()] =
2153      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
2154    return ConstantArray::get(ATy, Elts);
2155  }
2156}
2157
2158/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2159/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2160static void CommitValueTo(Constant *Val, Constant *Addr,
2161                          LLVMContext &Context) {
2162  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2163    assert(GV->hasInitializer());
2164    GV->setInitializer(Val);
2165    return;
2166  }
2167
2168  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2169  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2170
2171  Constant *Init = GV->getInitializer();
2172  Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
2173  GV->setInitializer(Init);
2174}
2175
2176/// ComputeLoadResult - Return the value that would be computed by a load from
2177/// P after the stores reflected by 'memory' have been performed.  If we can't
2178/// decide, return null.
2179static Constant *ComputeLoadResult(Constant *P,
2180                                const DenseMap<Constant*, Constant*> &Memory,
2181                                LLVMContext &Context) {
2182  // If this memory location has been recently stored, use the stored value: it
2183  // is the most up-to-date.
2184  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2185  if (I != Memory.end()) return I->second;
2186
2187  // Access it.
2188  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2189    if (GV->hasDefinitiveInitializer())
2190      return GV->getInitializer();
2191    return 0;
2192  }
2193
2194  // Handle a constantexpr getelementptr.
2195  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2196    if (CE->getOpcode() == Instruction::GetElementPtr &&
2197        isa<GlobalVariable>(CE->getOperand(0))) {
2198      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2199      if (GV->hasDefinitiveInitializer())
2200        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2201    }
2202
2203  return 0;  // don't know how to evaluate.
2204}
2205
2206/// EvaluateFunction - Evaluate a call to function F, returning true if
2207/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2208/// arguments for the function.
2209static bool EvaluateFunction(Function *F, Constant *&RetVal,
2210                             const SmallVectorImpl<Constant*> &ActualArgs,
2211                             std::vector<Function*> &CallStack,
2212                             DenseMap<Constant*, Constant*> &MutatedMemory,
2213                             std::vector<GlobalVariable*> &AllocaTmps) {
2214  // Check to see if this function is already executing (recursion).  If so,
2215  // bail out.  TODO: we might want to accept limited recursion.
2216  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2217    return false;
2218
2219  LLVMContext &Context = F->getContext();
2220
2221  CallStack.push_back(F);
2222
2223  /// Values - As we compute SSA register values, we store their contents here.
2224  DenseMap<Value*, Constant*> Values;
2225
2226  // Initialize arguments to the incoming values specified.
2227  unsigned ArgNo = 0;
2228  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2229       ++AI, ++ArgNo)
2230    Values[AI] = ActualArgs[ArgNo];
2231
2232  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2233  /// we can only evaluate any one basic block at most once.  This set keeps
2234  /// track of what we have executed so we can detect recursive cases etc.
2235  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2236
2237  // CurInst - The current instruction we're evaluating.
2238  BasicBlock::iterator CurInst = F->begin()->begin();
2239
2240  // This is the main evaluation loop.
2241  while (1) {
2242    Constant *InstResult = 0;
2243
2244    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2245      if (SI->isVolatile()) return false;  // no volatile accesses.
2246      Constant *Ptr = getVal(Values, SI->getOperand(1));
2247      if (!isSimpleEnoughPointerToCommit(Ptr, Context))
2248        // If this is too complex for us to commit, reject it.
2249        return false;
2250      Constant *Val = getVal(Values, SI->getOperand(0));
2251      MutatedMemory[Ptr] = Val;
2252    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2253      InstResult = ConstantExpr::get(BO->getOpcode(),
2254                                     getVal(Values, BO->getOperand(0)),
2255                                     getVal(Values, BO->getOperand(1)));
2256    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2257      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2258                                            getVal(Values, CI->getOperand(0)),
2259                                            getVal(Values, CI->getOperand(1)));
2260    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2261      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2262                                         getVal(Values, CI->getOperand(0)),
2263                                         CI->getType());
2264    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2265      InstResult =
2266            ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2267                                           getVal(Values, SI->getOperand(1)),
2268                                           getVal(Values, SI->getOperand(2)));
2269    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2270      Constant *P = getVal(Values, GEP->getOperand(0));
2271      SmallVector<Constant*, 8> GEPOps;
2272      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2273           i != e; ++i)
2274        GEPOps.push_back(getVal(Values, *i));
2275      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2276          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2277          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2278    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2279      if (LI->isVolatile()) return false;  // no volatile accesses.
2280      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2281                                     MutatedMemory, Context);
2282      if (InstResult == 0) return false; // Could not evaluate load.
2283    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2284      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2285      const Type *Ty = AI->getType()->getElementType();
2286      AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
2287                                              GlobalValue::InternalLinkage,
2288                                              UndefValue::get(Ty),
2289                                              AI->getName()));
2290      InstResult = AllocaTmps.back();
2291    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2292
2293      // Debug info can safely be ignored here.
2294      if (isa<DbgInfoIntrinsic>(CI)) {
2295        ++CurInst;
2296        continue;
2297      }
2298
2299      // Cannot handle inline asm.
2300      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2301
2302      // Resolve function pointers.
2303      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2304      if (!Callee) return false;  // Cannot resolve.
2305
2306      SmallVector<Constant*, 8> Formals;
2307      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2308           i != e; ++i)
2309        Formals.push_back(getVal(Values, *i));
2310
2311      if (Callee->isDeclaration()) {
2312        // If this is a function we can constant fold, do it.
2313        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2314                                           Formals.size())) {
2315          InstResult = C;
2316        } else {
2317          return false;
2318        }
2319      } else {
2320        if (Callee->getFunctionType()->isVarArg())
2321          return false;
2322
2323        Constant *RetVal;
2324        // Execute the call, if successful, use the return value.
2325        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2326                              MutatedMemory, AllocaTmps))
2327          return false;
2328        InstResult = RetVal;
2329      }
2330    } else if (isa<TerminatorInst>(CurInst)) {
2331      BasicBlock *NewBB = 0;
2332      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2333        if (BI->isUnconditional()) {
2334          NewBB = BI->getSuccessor(0);
2335        } else {
2336          ConstantInt *Cond =
2337            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2338          if (!Cond) return false;  // Cannot determine.
2339
2340          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2341        }
2342      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2343        ConstantInt *Val =
2344          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2345        if (!Val) return false;  // Cannot determine.
2346        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2347      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2348        if (RI->getNumOperands())
2349          RetVal = getVal(Values, RI->getOperand(0));
2350
2351        CallStack.pop_back();  // return from fn.
2352        return true;  // We succeeded at evaluating this ctor!
2353      } else {
2354        // invoke, unwind, unreachable.
2355        return false;  // Cannot handle this terminator.
2356      }
2357
2358      // Okay, we succeeded in evaluating this control flow.  See if we have
2359      // executed the new block before.  If so, we have a looping function,
2360      // which we cannot evaluate in reasonable time.
2361      if (!ExecutedBlocks.insert(NewBB))
2362        return false;  // looped!
2363
2364      // Okay, we have never been in this block before.  Check to see if there
2365      // are any PHI nodes.  If so, evaluate them with information about where
2366      // we came from.
2367      BasicBlock *OldBB = CurInst->getParent();
2368      CurInst = NewBB->begin();
2369      PHINode *PN;
2370      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2371        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2372
2373      // Do NOT increment CurInst.  We know that the terminator had no value.
2374      continue;
2375    } else {
2376      // Did not know how to evaluate this!
2377      return false;
2378    }
2379
2380    if (!CurInst->use_empty())
2381      Values[CurInst] = InstResult;
2382
2383    // Advance program counter.
2384    ++CurInst;
2385  }
2386}
2387
2388/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2389/// we can.  Return true if we can, false otherwise.
2390static bool EvaluateStaticConstructor(Function *F) {
2391  /// MutatedMemory - For each store we execute, we update this map.  Loads
2392  /// check this to get the most up-to-date value.  If evaluation is successful,
2393  /// this state is committed to the process.
2394  DenseMap<Constant*, Constant*> MutatedMemory;
2395
2396  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2397  /// to represent its body.  This vector is needed so we can delete the
2398  /// temporary globals when we are done.
2399  std::vector<GlobalVariable*> AllocaTmps;
2400
2401  /// CallStack - This is used to detect recursion.  In pathological situations
2402  /// we could hit exponential behavior, but at least there is nothing
2403  /// unbounded.
2404  std::vector<Function*> CallStack;
2405
2406  // Call the function.
2407  Constant *RetValDummy;
2408  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2409                                      SmallVector<Constant*, 0>(), CallStack,
2410                                      MutatedMemory, AllocaTmps);
2411  if (EvalSuccess) {
2412    // We succeeded at evaluation: commit the result.
2413    DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2414          << F->getName() << "' to " << MutatedMemory.size()
2415          << " stores.\n");
2416    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2417         E = MutatedMemory.end(); I != E; ++I)
2418      CommitValueTo(I->second, I->first, F->getContext());
2419  }
2420
2421  // At this point, we are done interpreting.  If we created any 'alloca'
2422  // temporaries, release them now.
2423  while (!AllocaTmps.empty()) {
2424    GlobalVariable *Tmp = AllocaTmps.back();
2425    AllocaTmps.pop_back();
2426
2427    // If there are still users of the alloca, the program is doing something
2428    // silly, e.g. storing the address of the alloca somewhere and using it
2429    // later.  Since this is undefined, we'll just make it be null.
2430    if (!Tmp->use_empty())
2431      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2432    delete Tmp;
2433  }
2434
2435  return EvalSuccess;
2436}
2437
2438
2439
2440/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2441/// Return true if anything changed.
2442bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2443  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2444  bool MadeChange = false;
2445  if (Ctors.empty()) return false;
2446
2447  // Loop over global ctors, optimizing them when we can.
2448  for (unsigned i = 0; i != Ctors.size(); ++i) {
2449    Function *F = Ctors[i];
2450    // Found a null terminator in the middle of the list, prune off the rest of
2451    // the list.
2452    if (F == 0) {
2453      if (i != Ctors.size()-1) {
2454        Ctors.resize(i+1);
2455        MadeChange = true;
2456      }
2457      break;
2458    }
2459
2460    // We cannot simplify external ctor functions.
2461    if (F->empty()) continue;
2462
2463    // If we can evaluate the ctor at compile time, do.
2464    if (EvaluateStaticConstructor(F)) {
2465      Ctors.erase(Ctors.begin()+i);
2466      MadeChange = true;
2467      --i;
2468      ++NumCtorsEvaluated;
2469      continue;
2470    }
2471  }
2472
2473  if (!MadeChange) return false;
2474
2475  GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
2476  return true;
2477}
2478
2479bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2480  bool Changed = false;
2481
2482  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2483       I != E;) {
2484    Module::alias_iterator J = I++;
2485    // Aliases without names cannot be referenced outside this module.
2486    if (!J->hasName() && !J->isDeclaration())
2487      J->setLinkage(GlobalValue::InternalLinkage);
2488    // If the aliasee may change at link time, nothing can be done - bail out.
2489    if (J->mayBeOverridden())
2490      continue;
2491
2492    Constant *Aliasee = J->getAliasee();
2493    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2494    Target->removeDeadConstantUsers();
2495    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2496
2497    // Make all users of the alias use the aliasee instead.
2498    if (!J->use_empty()) {
2499      J->replaceAllUsesWith(Aliasee);
2500      ++NumAliasesResolved;
2501      Changed = true;
2502    }
2503
2504    // If the aliasee has internal linkage, give it the name and linkage
2505    // of the alias, and delete the alias.  This turns:
2506    //   define internal ... @f(...)
2507    //   @a = alias ... @f
2508    // into:
2509    //   define ... @a(...)
2510    if (!Target->hasLocalLinkage())
2511      continue;
2512
2513    // The transform is only useful if the alias does not have internal linkage.
2514    if (J->hasLocalLinkage())
2515      continue;
2516
2517    // Do not perform the transform if multiple aliases potentially target the
2518    // aliasee.  This check also ensures that it is safe to replace the section
2519    // and other attributes of the aliasee with those of the alias.
2520    if (!hasOneUse)
2521      continue;
2522
2523    // Give the aliasee the name, linkage and other attributes of the alias.
2524    Target->takeName(J);
2525    Target->setLinkage(J->getLinkage());
2526    Target->GlobalValue::copyAttributesFrom(J);
2527
2528    // Delete the alias.
2529    M.getAliasList().erase(J);
2530    ++NumAliasesRemoved;
2531    Changed = true;
2532  }
2533
2534  return Changed;
2535}
2536
2537bool GlobalOpt::runOnModule(Module &M) {
2538  bool Changed = false;
2539
2540  // Try to find the llvm.globalctors list.
2541  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2542
2543  bool LocalChange = true;
2544  while (LocalChange) {
2545    LocalChange = false;
2546
2547    // Delete functions that are trivially dead, ccc -> fastcc
2548    LocalChange |= OptimizeFunctions(M);
2549
2550    // Optimize global_ctors list.
2551    if (GlobalCtors)
2552      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2553
2554    // Optimize non-address-taken globals.
2555    LocalChange |= OptimizeGlobalVars(M);
2556
2557    // Resolve aliases, when possible.
2558    LocalChange |= OptimizeGlobalAliases(M);
2559    Changed |= LocalChange;
2560  }
2561
2562  // TODO: Move all global ctors functions to the end of the module for code
2563  // layout.
2564
2565  return Changed;
2566}
2567