GlobalOpt.cpp revision 551ec909057f58b1103f57a9dee45e4d7cf5e061
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/ParameterAttributes.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <set>
38using namespace llvm;
39
40STATISTIC(NumMarked    , "Number of globals marked constant");
41STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
42STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
43STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
44STATISTIC(NumDeleted   , "Number of globals deleted");
45STATISTIC(NumFnDeleted , "Number of functions deleted");
46STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
47STATISTIC(NumLocalized , "Number of globals localized");
48STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
49STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
50STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
51STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
52
53namespace {
54  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      AU.addRequired<TargetData>();
57    }
58    static char ID; // Pass identification, replacement for typeid
59    GlobalOpt() : ModulePass((intptr_t)&ID) {}
60
61    bool runOnModule(Module &M);
62
63  private:
64    GlobalVariable *FindGlobalCtors(Module &M);
65    bool OptimizeFunctions(Module &M);
66    bool OptimizeGlobalVars(Module &M);
67    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
68    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
69  };
70
71  char GlobalOpt::ID = 0;
72  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
73}
74
75ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
76
77/// GlobalStatus - As we analyze each global, keep track of some information
78/// about it.  If we find out that the address of the global is taken, none of
79/// this info will be accurate.
80struct VISIBILITY_HIDDEN GlobalStatus {
81  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
82  /// loaded it can be deleted.
83  bool isLoaded;
84
85  /// StoredType - Keep track of what stores to the global look like.
86  ///
87  enum StoredType {
88    /// NotStored - There is no store to this global.  It can thus be marked
89    /// constant.
90    NotStored,
91
92    /// isInitializerStored - This global is stored to, but the only thing
93    /// stored is the constant it was initialized with.  This is only tracked
94    /// for scalar globals.
95    isInitializerStored,
96
97    /// isStoredOnce - This global is stored to, but only its initializer and
98    /// one other value is ever stored to it.  If this global isStoredOnce, we
99    /// track the value stored to it in StoredOnceValue below.  This is only
100    /// tracked for scalar globals.
101    isStoredOnce,
102
103    /// isStored - This global is stored to by multiple values or something else
104    /// that we cannot track.
105    isStored
106  } StoredType;
107
108  /// StoredOnceValue - If only one value (besides the initializer constant) is
109  /// ever stored to this global, keep track of what value it is.
110  Value *StoredOnceValue;
111
112  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
113  /// null/false.  When the first accessing function is noticed, it is recorded.
114  /// When a second different accessing function is noticed,
115  /// HasMultipleAccessingFunctions is set to true.
116  Function *AccessingFunction;
117  bool HasMultipleAccessingFunctions;
118
119  /// HasNonInstructionUser - Set to true if this global has a user that is not
120  /// an instruction (e.g. a constant expr or GV initializer).
121  bool HasNonInstructionUser;
122
123  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
124  bool HasPHIUser;
125
126  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
127                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
128                   HasNonInstructionUser(false), HasPHIUser(false) {}
129};
130
131
132
133/// ConstantIsDead - Return true if the specified constant is (transitively)
134/// dead.  The constant may be used by other constants (e.g. constant arrays and
135/// constant exprs) as long as they are dead, but it cannot be used by anything
136/// else.
137static bool ConstantIsDead(Constant *C) {
138  if (isa<GlobalValue>(C)) return false;
139
140  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
141    if (Constant *CU = dyn_cast<Constant>(*UI)) {
142      if (!ConstantIsDead(CU)) return false;
143    } else
144      return false;
145  return true;
146}
147
148
149/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
150/// structure.  If the global has its address taken, return true to indicate we
151/// can't do anything with it.
152///
153static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
154                          std::set<PHINode*> &PHIUsers) {
155  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
156    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
157      GS.HasNonInstructionUser = true;
158
159      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
160
161    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
162      if (!GS.HasMultipleAccessingFunctions) {
163        Function *F = I->getParent()->getParent();
164        if (GS.AccessingFunction == 0)
165          GS.AccessingFunction = F;
166        else if (GS.AccessingFunction != F)
167          GS.HasMultipleAccessingFunctions = true;
168      }
169      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
170        GS.isLoaded = true;
171        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
172      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
173        // Don't allow a store OF the address, only stores TO the address.
174        if (SI->getOperand(0) == V) return true;
175
176        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
177
178        // If this is a direct store to the global (i.e., the global is a scalar
179        // value, not an aggregate), keep more specific information about
180        // stores.
181        if (GS.StoredType != GlobalStatus::isStored)
182          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
183            Value *StoredVal = SI->getOperand(0);
184            if (StoredVal == GV->getInitializer()) {
185              if (GS.StoredType < GlobalStatus::isInitializerStored)
186                GS.StoredType = GlobalStatus::isInitializerStored;
187            } else if (isa<LoadInst>(StoredVal) &&
188                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
189              // G = G
190              if (GS.StoredType < GlobalStatus::isInitializerStored)
191                GS.StoredType = GlobalStatus::isInitializerStored;
192            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
193              GS.StoredType = GlobalStatus::isStoredOnce;
194              GS.StoredOnceValue = StoredVal;
195            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
196                       GS.StoredOnceValue == StoredVal) {
197              // noop.
198            } else {
199              GS.StoredType = GlobalStatus::isStored;
200            }
201          } else {
202            GS.StoredType = GlobalStatus::isStored;
203          }
204      } else if (isa<GetElementPtrInst>(I)) {
205        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
206      } else if (isa<SelectInst>(I)) {
207        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
208      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
209        // PHI nodes we can check just like select or GEP instructions, but we
210        // have to be careful about infinite recursion.
211        if (PHIUsers.insert(PN).second)  // Not already visited.
212          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
213        GS.HasPHIUser = true;
214      } else if (isa<CmpInst>(I)) {
215      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
216        if (I->getOperand(1) == V)
217          GS.StoredType = GlobalStatus::isStored;
218        if (I->getOperand(2) == V)
219          GS.isLoaded = true;
220      } else if (isa<MemSetInst>(I)) {
221        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
222        GS.StoredType = GlobalStatus::isStored;
223      } else {
224        return true;  // Any other non-load instruction might take address!
225      }
226    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
227      GS.HasNonInstructionUser = true;
228      // We might have a dead and dangling constant hanging off of here.
229      if (!ConstantIsDead(C))
230        return true;
231    } else {
232      GS.HasNonInstructionUser = true;
233      // Otherwise must be some other user.
234      return true;
235    }
236
237  return false;
238}
239
240static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
241  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
242  if (!CI) return 0;
243  unsigned IdxV = CI->getZExtValue();
244
245  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
246    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
247  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
248    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
249  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
250    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
251  } else if (isa<ConstantAggregateZero>(Agg)) {
252    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
253      if (IdxV < STy->getNumElements())
254        return Constant::getNullValue(STy->getElementType(IdxV));
255    } else if (const SequentialType *STy =
256               dyn_cast<SequentialType>(Agg->getType())) {
257      return Constant::getNullValue(STy->getElementType());
258    }
259  } else if (isa<UndefValue>(Agg)) {
260    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
261      if (IdxV < STy->getNumElements())
262        return UndefValue::get(STy->getElementType(IdxV));
263    } else if (const SequentialType *STy =
264               dyn_cast<SequentialType>(Agg->getType())) {
265      return UndefValue::get(STy->getElementType());
266    }
267  }
268  return 0;
269}
270
271
272/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
273/// users of the global, cleaning up the obvious ones.  This is largely just a
274/// quick scan over the use list to clean up the easy and obvious cruft.  This
275/// returns true if it made a change.
276static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
277  bool Changed = false;
278  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
279    User *U = *UI++;
280
281    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
282      if (Init) {
283        // Replace the load with the initializer.
284        LI->replaceAllUsesWith(Init);
285        LI->eraseFromParent();
286        Changed = true;
287      }
288    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
289      // Store must be unreachable or storing Init into the global.
290      SI->eraseFromParent();
291      Changed = true;
292    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
293      if (CE->getOpcode() == Instruction::GetElementPtr) {
294        Constant *SubInit = 0;
295        if (Init)
296          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
297        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
298      } else if (CE->getOpcode() == Instruction::BitCast &&
299                 isa<PointerType>(CE->getType())) {
300        // Pointer cast, delete any stores and memsets to the global.
301        Changed |= CleanupConstantGlobalUsers(CE, 0);
302      }
303
304      if (CE->use_empty()) {
305        CE->destroyConstant();
306        Changed = true;
307      }
308    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
309      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
310      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
311      // and will invalidate our notion of what Init is.
312      Constant *SubInit = 0;
313      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
314        ConstantExpr *CE =
315          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
316        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
317          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
318      }
319      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
320
321      if (GEP->use_empty()) {
322        GEP->eraseFromParent();
323        Changed = true;
324      }
325    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
326      if (MI->getRawDest() == V) {
327        MI->eraseFromParent();
328        Changed = true;
329      }
330
331    } else if (Constant *C = dyn_cast<Constant>(U)) {
332      // If we have a chain of dead constantexprs or other things dangling from
333      // us, and if they are all dead, nuke them without remorse.
334      if (ConstantIsDead(C)) {
335        C->destroyConstant();
336        // This could have invalidated UI, start over from scratch.
337        CleanupConstantGlobalUsers(V, Init);
338        return true;
339      }
340    }
341  }
342  return Changed;
343}
344
345/// isSafeSROAElementUse - Return true if the specified instruction is a safe
346/// user of a derived expression from a global that we want to SROA.
347static bool isSafeSROAElementUse(Value *V) {
348  // We might have a dead and dangling constant hanging off of here.
349  if (Constant *C = dyn_cast<Constant>(V))
350    return ConstantIsDead(C);
351
352  Instruction *I = dyn_cast<Instruction>(V);
353  if (!I) return false;
354
355  // Loads are ok.
356  if (isa<LoadInst>(I)) return true;
357
358  // Stores *to* the pointer are ok.
359  if (StoreInst *SI = dyn_cast<StoreInst>(I))
360    return SI->getOperand(0) != V;
361
362  // Otherwise, it must be a GEP.
363  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
364  if (GEPI == 0) return false;
365
366  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
367      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
368    return false;
369
370  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
371       I != E; ++I)
372    if (!isSafeSROAElementUse(*I))
373      return false;
374  return true;
375}
376
377
378/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
379/// Look at it and its uses and decide whether it is safe to SROA this global.
380///
381static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
382  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
383  if (!isa<GetElementPtrInst>(U) &&
384      (!isa<ConstantExpr>(U) ||
385       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
386    return false;
387
388  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
389  // don't like < 3 operand CE's, and we don't like non-constant integer
390  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
391  // value of C.
392  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
393      !cast<Constant>(U->getOperand(1))->isNullValue() ||
394      !isa<ConstantInt>(U->getOperand(2)))
395    return false;
396
397  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
398  ++GEPI;  // Skip over the pointer index.
399
400  // If this is a use of an array allocation, do a bit more checking for sanity.
401  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
402    uint64_t NumElements = AT->getNumElements();
403    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
404
405    // Check to make sure that index falls within the array.  If not,
406    // something funny is going on, so we won't do the optimization.
407    //
408    if (Idx->getZExtValue() >= NumElements)
409      return false;
410
411    // We cannot scalar repl this level of the array unless any array
412    // sub-indices are in-range constants.  In particular, consider:
413    // A[0][i].  We cannot know that the user isn't doing invalid things like
414    // allowing i to index an out-of-range subscript that accesses A[1].
415    //
416    // Scalar replacing *just* the outer index of the array is probably not
417    // going to be a win anyway, so just give up.
418    for (++GEPI; // Skip array index.
419         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
420         ++GEPI) {
421      uint64_t NumElements;
422      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
423        NumElements = SubArrayTy->getNumElements();
424      else
425        NumElements = cast<VectorType>(*GEPI)->getNumElements();
426
427      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
428      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
429        return false;
430    }
431  }
432
433  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
434    if (!isSafeSROAElementUse(*I))
435      return false;
436  return true;
437}
438
439/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
440/// is safe for us to perform this transformation.
441///
442static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
443  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
444       UI != E; ++UI) {
445    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
446      return false;
447  }
448  return true;
449}
450
451
452/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
453/// variable.  This opens the door for other optimizations by exposing the
454/// behavior of the program in a more fine-grained way.  We have determined that
455/// this transformation is safe already.  We return the first global variable we
456/// insert so that the caller can reprocess it.
457static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
458  // Make sure this global only has simple uses that we can SRA.
459  if (!GlobalUsersSafeToSRA(GV))
460    return 0;
461
462  assert(GV->hasInternalLinkage() && !GV->isConstant());
463  Constant *Init = GV->getInitializer();
464  const Type *Ty = Init->getType();
465
466  std::vector<GlobalVariable*> NewGlobals;
467  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
468
469  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
470    NewGlobals.reserve(STy->getNumElements());
471    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
472      Constant *In = getAggregateConstantElement(Init,
473                                            ConstantInt::get(Type::Int32Ty, i));
474      assert(In && "Couldn't get element of initializer?");
475      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
476                                               GlobalVariable::InternalLinkage,
477                                               In, GV->getName()+"."+utostr(i),
478                                               (Module *)NULL,
479                                               GV->isThreadLocal());
480      Globals.insert(GV, NGV);
481      NewGlobals.push_back(NGV);
482    }
483  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
484    unsigned NumElements = 0;
485    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
486      NumElements = ATy->getNumElements();
487    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
488      NumElements = PTy->getNumElements();
489    else
490      assert(0 && "Unknown aggregate sequential type!");
491
492    if (NumElements > 16 && GV->hasNUsesOrMore(16))
493      return 0; // It's not worth it.
494    NewGlobals.reserve(NumElements);
495    for (unsigned i = 0, e = NumElements; i != e; ++i) {
496      Constant *In = getAggregateConstantElement(Init,
497                                            ConstantInt::get(Type::Int32Ty, i));
498      assert(In && "Couldn't get element of initializer?");
499
500      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
501                                               GlobalVariable::InternalLinkage,
502                                               In, GV->getName()+"."+utostr(i),
503                                               (Module *)NULL,
504                                               GV->isThreadLocal());
505      Globals.insert(GV, NGV);
506      NewGlobals.push_back(NGV);
507    }
508  }
509
510  if (NewGlobals.empty())
511    return 0;
512
513  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
514
515  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
516
517  // Loop over all of the uses of the global, replacing the constantexpr geps,
518  // with smaller constantexpr geps or direct references.
519  while (!GV->use_empty()) {
520    User *GEP = GV->use_back();
521    assert(((isa<ConstantExpr>(GEP) &&
522             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
523            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
524
525    // Ignore the 1th operand, which has to be zero or else the program is quite
526    // broken (undefined).  Get the 2nd operand, which is the structure or array
527    // index.
528    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
529    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
530
531    Value *NewPtr = NewGlobals[Val];
532
533    // Form a shorter GEP if needed.
534    if (GEP->getNumOperands() > 3)
535      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
536        SmallVector<Constant*, 8> Idxs;
537        Idxs.push_back(NullInt);
538        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
539          Idxs.push_back(CE->getOperand(i));
540        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
541                                                &Idxs[0], Idxs.size());
542      } else {
543        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
544        SmallVector<Value*, 8> Idxs;
545        Idxs.push_back(NullInt);
546        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
547          Idxs.push_back(GEPI->getOperand(i));
548        NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
549                                       GEPI->getName()+"."+utostr(Val), GEPI);
550      }
551    GEP->replaceAllUsesWith(NewPtr);
552
553    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
554      GEPI->eraseFromParent();
555    else
556      cast<ConstantExpr>(GEP)->destroyConstant();
557  }
558
559  // Delete the old global, now that it is dead.
560  Globals.erase(GV);
561  ++NumSRA;
562
563  // Loop over the new globals array deleting any globals that are obviously
564  // dead.  This can arise due to scalarization of a structure or an array that
565  // has elements that are dead.
566  unsigned FirstGlobal = 0;
567  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
568    if (NewGlobals[i]->use_empty()) {
569      Globals.erase(NewGlobals[i]);
570      if (FirstGlobal == i) ++FirstGlobal;
571    }
572
573  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
574}
575
576/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
577/// value will trap if the value is dynamically null.  PHIs keeps track of any
578/// phi nodes we've seen to avoid reprocessing them.
579static bool AllUsesOfValueWillTrapIfNull(Value *V,
580                                         SmallPtrSet<PHINode*, 8> &PHIs) {
581  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
582    if (isa<LoadInst>(*UI)) {
583      // Will trap.
584    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
585      if (SI->getOperand(0) == V) {
586        //cerr << "NONTRAPPING USE: " << **UI;
587        return false;  // Storing the value.
588      }
589    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
590      if (CI->getOperand(0) != V) {
591        //cerr << "NONTRAPPING USE: " << **UI;
592        return false;  // Not calling the ptr
593      }
594    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
595      if (II->getOperand(0) != V) {
596        //cerr << "NONTRAPPING USE: " << **UI;
597        return false;  // Not calling the ptr
598      }
599    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
600      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
601    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
602      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
603    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
604      // If we've already seen this phi node, ignore it, it has already been
605      // checked.
606      if (PHIs.insert(PN))
607        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
608    } else if (isa<ICmpInst>(*UI) &&
609               isa<ConstantPointerNull>(UI->getOperand(1))) {
610      // Ignore setcc X, null
611    } else {
612      //cerr << "NONTRAPPING USE: " << **UI;
613      return false;
614    }
615  return true;
616}
617
618/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
619/// from GV will trap if the loaded value is null.  Note that this also permits
620/// comparisons of the loaded value against null, as a special case.
621static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
622  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
623    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
624      SmallPtrSet<PHINode*, 8> PHIs;
625      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
626        return false;
627    } else if (isa<StoreInst>(*UI)) {
628      // Ignore stores to the global.
629    } else {
630      // We don't know or understand this user, bail out.
631      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
632      return false;
633    }
634
635  return true;
636}
637
638static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
639  bool Changed = false;
640  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
641    Instruction *I = cast<Instruction>(*UI++);
642    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
643      LI->setOperand(0, NewV);
644      Changed = true;
645    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
646      if (SI->getOperand(1) == V) {
647        SI->setOperand(1, NewV);
648        Changed = true;
649      }
650    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
651      if (I->getOperand(0) == V) {
652        // Calling through the pointer!  Turn into a direct call, but be careful
653        // that the pointer is not also being passed as an argument.
654        I->setOperand(0, NewV);
655        Changed = true;
656        bool PassedAsArg = false;
657        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
658          if (I->getOperand(i) == V) {
659            PassedAsArg = true;
660            I->setOperand(i, NewV);
661          }
662
663        if (PassedAsArg) {
664          // Being passed as an argument also.  Be careful to not invalidate UI!
665          UI = V->use_begin();
666        }
667      }
668    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
669      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
670                                ConstantExpr::getCast(CI->getOpcode(),
671                                                      NewV, CI->getType()));
672      if (CI->use_empty()) {
673        Changed = true;
674        CI->eraseFromParent();
675      }
676    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
677      // Should handle GEP here.
678      SmallVector<Constant*, 8> Idxs;
679      Idxs.reserve(GEPI->getNumOperands()-1);
680      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
681        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
682          Idxs.push_back(C);
683        else
684          break;
685      if (Idxs.size() == GEPI->getNumOperands()-1)
686        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
687                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
688                                                               Idxs.size()));
689      if (GEPI->use_empty()) {
690        Changed = true;
691        GEPI->eraseFromParent();
692      }
693    }
694  }
695
696  return Changed;
697}
698
699
700/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
701/// value stored into it.  If there are uses of the loaded value that would trap
702/// if the loaded value is dynamically null, then we know that they cannot be
703/// reachable with a null optimize away the load.
704static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
705  std::vector<LoadInst*> Loads;
706  bool Changed = false;
707
708  // Replace all uses of loads with uses of uses of the stored value.
709  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
710       GUI != E; ++GUI)
711    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
712      Loads.push_back(LI);
713      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
714    } else {
715      // If we get here we could have stores, selects, or phi nodes whose values
716      // are loaded.
717      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
718              isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
719             "Only expect load and stores!");
720    }
721
722  if (Changed) {
723    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
724    ++NumGlobUses;
725  }
726
727  // Delete all of the loads we can, keeping track of whether we nuked them all!
728  bool AllLoadsGone = true;
729  while (!Loads.empty()) {
730    LoadInst *L = Loads.back();
731    if (L->use_empty()) {
732      L->eraseFromParent();
733      Changed = true;
734    } else {
735      AllLoadsGone = false;
736    }
737    Loads.pop_back();
738  }
739
740  // If we nuked all of the loads, then none of the stores are needed either,
741  // nor is the global.
742  if (AllLoadsGone) {
743    DOUT << "  *** GLOBAL NOW DEAD!\n";
744    CleanupConstantGlobalUsers(GV, 0);
745    if (GV->use_empty()) {
746      GV->eraseFromParent();
747      ++NumDeleted;
748    }
749    Changed = true;
750  }
751  return Changed;
752}
753
754/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
755/// instructions that are foldable.
756static void ConstantPropUsersOf(Value *V) {
757  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
758    if (Instruction *I = dyn_cast<Instruction>(*UI++))
759      if (Constant *NewC = ConstantFoldInstruction(I)) {
760        I->replaceAllUsesWith(NewC);
761
762        // Advance UI to the next non-I use to avoid invalidating it!
763        // Instructions could multiply use V.
764        while (UI != E && *UI == I)
765          ++UI;
766        I->eraseFromParent();
767      }
768}
769
770/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
771/// variable, and transforms the program as if it always contained the result of
772/// the specified malloc.  Because it is always the result of the specified
773/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
774/// malloc into a global, and any loads of GV as uses of the new global.
775static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
776                                                     MallocInst *MI) {
777  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
778  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
779
780  if (NElements->getZExtValue() != 1) {
781    // If we have an array allocation, transform it to a single element
782    // allocation to make the code below simpler.
783    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
784                                 NElements->getZExtValue());
785    MallocInst *NewMI =
786      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
787                     MI->getAlignment(), MI->getName(), MI);
788    Value* Indices[2];
789    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
790    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
791                                          NewMI->getName()+".el0", MI);
792    MI->replaceAllUsesWith(NewGEP);
793    MI->eraseFromParent();
794    MI = NewMI;
795  }
796
797  // Create the new global variable.  The contents of the malloc'd memory is
798  // undefined, so initialize with an undef value.
799  Constant *Init = UndefValue::get(MI->getAllocatedType());
800  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
801                                             GlobalValue::InternalLinkage, Init,
802                                             GV->getName()+".body",
803                                             (Module *)NULL,
804                                             GV->isThreadLocal());
805  GV->getParent()->getGlobalList().insert(GV, NewGV);
806
807  // Anything that used the malloc now uses the global directly.
808  MI->replaceAllUsesWith(NewGV);
809
810  Constant *RepValue = NewGV;
811  if (NewGV->getType() != GV->getType()->getElementType())
812    RepValue = ConstantExpr::getBitCast(RepValue,
813                                        GV->getType()->getElementType());
814
815  // If there is a comparison against null, we will insert a global bool to
816  // keep track of whether the global was initialized yet or not.
817  GlobalVariable *InitBool =
818    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
819                       ConstantInt::getFalse(), GV->getName()+".init",
820                       (Module *)NULL, GV->isThreadLocal());
821  bool InitBoolUsed = false;
822
823  // Loop over all uses of GV, processing them in turn.
824  std::vector<StoreInst*> Stores;
825  while (!GV->use_empty())
826    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
827      while (!LI->use_empty()) {
828        Use &LoadUse = LI->use_begin().getUse();
829        if (!isa<ICmpInst>(LoadUse.getUser()))
830          LoadUse = RepValue;
831        else {
832          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
833          // Replace the cmp X, 0 with a use of the bool value.
834          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
835          InitBoolUsed = true;
836          switch (CI->getPredicate()) {
837          default: assert(0 && "Unknown ICmp Predicate!");
838          case ICmpInst::ICMP_ULT:
839          case ICmpInst::ICMP_SLT:
840            LV = ConstantInt::getFalse();   // X < null -> always false
841            break;
842          case ICmpInst::ICMP_ULE:
843          case ICmpInst::ICMP_SLE:
844          case ICmpInst::ICMP_EQ:
845            LV = BinaryOperator::createNot(LV, "notinit", CI);
846            break;
847          case ICmpInst::ICMP_NE:
848          case ICmpInst::ICMP_UGE:
849          case ICmpInst::ICMP_SGE:
850          case ICmpInst::ICMP_UGT:
851          case ICmpInst::ICMP_SGT:
852            break;  // no change.
853          }
854          CI->replaceAllUsesWith(LV);
855          CI->eraseFromParent();
856        }
857      }
858      LI->eraseFromParent();
859    } else {
860      StoreInst *SI = cast<StoreInst>(GV->use_back());
861      // The global is initialized when the store to it occurs.
862      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
863      SI->eraseFromParent();
864    }
865
866  // If the initialization boolean was used, insert it, otherwise delete it.
867  if (!InitBoolUsed) {
868    while (!InitBool->use_empty())  // Delete initializations
869      cast<Instruction>(InitBool->use_back())->eraseFromParent();
870    delete InitBool;
871  } else
872    GV->getParent()->getGlobalList().insert(GV, InitBool);
873
874
875  // Now the GV is dead, nuke it and the malloc.
876  GV->eraseFromParent();
877  MI->eraseFromParent();
878
879  // To further other optimizations, loop over all users of NewGV and try to
880  // constant prop them.  This will promote GEP instructions with constant
881  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
882  ConstantPropUsersOf(NewGV);
883  if (RepValue != NewGV)
884    ConstantPropUsersOf(RepValue);
885
886  return NewGV;
887}
888
889/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
890/// to make sure that there are no complex uses of V.  We permit simple things
891/// like dereferencing the pointer, but not storing through the address, unless
892/// it is to the specified global.
893static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
894                                                      GlobalVariable *GV,
895                                              SmallPtrSet<PHINode*, 8> &PHIs) {
896  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
897    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
898      // Fine, ignore.
899    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
900      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
901        return false;  // Storing the pointer itself... bad.
902      // Otherwise, storing through it, or storing into GV... fine.
903    } else if (isa<GetElementPtrInst>(*UI)) {
904      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
905                                                     GV, PHIs))
906        return false;
907    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
908      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
909      // cycles.
910      if (PHIs.insert(PN))
911        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
912          return false;
913    } else {
914      return false;
915    }
916  return true;
917}
918
919/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
920/// somewhere.  Transform all uses of the allocation into loads from the
921/// global and uses of the resultant pointer.  Further, delete the store into
922/// GV.  This assumes that these value pass the
923/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
924static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
925                                          GlobalVariable *GV) {
926  while (!Alloc->use_empty()) {
927    Instruction *U = cast<Instruction>(*Alloc->use_begin());
928    Instruction *InsertPt = U;
929    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
930      // If this is the store of the allocation into the global, remove it.
931      if (SI->getOperand(1) == GV) {
932        SI->eraseFromParent();
933        continue;
934      }
935    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
936      // Insert the load in the corresponding predecessor, not right before the
937      // PHI.
938      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
939      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
940    }
941
942    // Insert a load from the global, and use it instead of the malloc.
943    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
944    U->replaceUsesOfWith(Alloc, NL);
945  }
946}
947
948/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
949/// GV are simple enough to perform HeapSRA, return true.
950static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
951                                                 MallocInst *MI) {
952  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
953       ++UI)
954    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
955      // We permit two users of the load: setcc comparing against the null
956      // pointer, and a getelementptr of a specific form.
957      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
958           ++UI) {
959        // Comparison against null is ok.
960        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
961          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
962            return false;
963          continue;
964        }
965
966        // getelementptr is also ok, but only a simple form.
967        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
968          // Must index into the array and into the struct.
969          if (GEPI->getNumOperands() < 3)
970            return false;
971
972          // Otherwise the GEP is ok.
973          continue;
974        }
975
976        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
977          // We have a phi of a load from the global.  We can only handle this
978          // if the other PHI'd values are actually the same.  In this case,
979          // the rewriter will just drop the phi entirely.
980          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
981            Value *IV = PN->getIncomingValue(i);
982            if (IV == LI) continue;  // Trivial the same.
983
984            // If the phi'd value is from the malloc that initializes the value,
985            // we can xform it.
986            if (IV == MI) continue;
987
988            // Otherwise, we don't know what it is.
989            return false;
990          }
991          return true;
992        }
993
994        // Otherwise we don't know what this is, not ok.
995        return false;
996      }
997    }
998  return true;
999}
1000
1001/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
1002/// value, lazily creating it on demand.
1003static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
1004                              const std::vector<GlobalVariable*> &FieldGlobals,
1005                              std::vector<Value *> &InsertedLoadsForPtr) {
1006  if (InsertedLoadsForPtr.size() <= FieldNo)
1007    InsertedLoadsForPtr.resize(FieldNo+1);
1008  if (InsertedLoadsForPtr[FieldNo] == 0)
1009    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1010                                                Load->getName()+".f" +
1011                                                utostr(FieldNo), Load);
1012  return InsertedLoadsForPtr[FieldNo];
1013}
1014
1015/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1016/// the load, rewrite the derived value to use the HeapSRoA'd load.
1017static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1018                               const std::vector<GlobalVariable*> &FieldGlobals,
1019                                    std::vector<Value *> &InsertedLoadsForPtr) {
1020  // If this is a comparison against null, handle it.
1021  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1022    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1023    // If we have a setcc of the loaded pointer, we can use a setcc of any
1024    // field.
1025    Value *NPtr;
1026    if (InsertedLoadsForPtr.empty()) {
1027      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
1028    } else {
1029      NPtr = InsertedLoadsForPtr.back();
1030    }
1031
1032    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1033                              Constant::getNullValue(NPtr->getType()),
1034                              SCI->getName(), SCI);
1035    SCI->replaceAllUsesWith(New);
1036    SCI->eraseFromParent();
1037    return;
1038  }
1039
1040  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1041  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1042    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1043           && "Unexpected GEPI!");
1044
1045    // Load the pointer for this field.
1046    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1047    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1048                                    FieldGlobals, InsertedLoadsForPtr);
1049
1050    // Create the new GEP idx vector.
1051    SmallVector<Value*, 8> GEPIdx;
1052    GEPIdx.push_back(GEPI->getOperand(1));
1053    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1054
1055    Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
1056                                         GEPI->getName(), GEPI);
1057    GEPI->replaceAllUsesWith(NGEPI);
1058    GEPI->eraseFromParent();
1059    return;
1060  }
1061
1062  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
1063  // potentially the original malloc.  Insert phi nodes for each field, then
1064  // process uses of the PHI.
1065  PHINode *PN = cast<PHINode>(LoadUser);
1066  std::vector<Value *> PHIsForField;
1067  PHIsForField.resize(FieldGlobals.size());
1068  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1069    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1070
1071    PHINode *FieldPN = new PHINode(LoadV->getType(),
1072                                   PN->getName()+"."+utostr(i), PN);
1073    // Fill in the predecessor values.
1074    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1075      // Each predecessor either uses the load or the original malloc.
1076      Value *InVal = PN->getIncomingValue(pred);
1077      BasicBlock *BB = PN->getIncomingBlock(pred);
1078      Value *NewVal;
1079      if (isa<MallocInst>(InVal)) {
1080        // Insert a reload from the global in the predecessor.
1081        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1082                                 PHIsForField);
1083      } else {
1084        NewVal = InsertedLoadsForPtr[i];
1085      }
1086      FieldPN->addIncoming(NewVal, BB);
1087    }
1088    PHIsForField[i] = FieldPN;
1089  }
1090
1091  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1092  // will never insert a load.
1093  while (!PN->use_empty())
1094    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1095  PN->eraseFromParent();
1096}
1097
1098/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1099/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1100/// use FieldGlobals instead.  All uses of loaded values satisfy
1101/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1102static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1103                             const std::vector<GlobalVariable*> &FieldGlobals) {
1104  std::vector<Value *> InsertedLoadsForPtr;
1105  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1106  while (!Load->use_empty())
1107    RewriteHeapSROALoadUser(Load, Load->use_back(),
1108                            FieldGlobals, InsertedLoadsForPtr);
1109}
1110
1111/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1112/// it up into multiple allocations of arrays of the fields.
1113static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1114  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1115  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1116
1117  // There is guaranteed to be at least one use of the malloc (storing
1118  // it into GV).  If there are other uses, change them to be uses of
1119  // the global to simplify later code.  This also deletes the store
1120  // into GV.
1121  ReplaceUsesOfMallocWithGlobal(MI, GV);
1122
1123  // Okay, at this point, there are no users of the malloc.  Insert N
1124  // new mallocs at the same place as MI, and N globals.
1125  std::vector<GlobalVariable*> FieldGlobals;
1126  std::vector<MallocInst*> FieldMallocs;
1127
1128  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1129    const Type *FieldTy = STy->getElementType(FieldNo);
1130    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1131
1132    GlobalVariable *NGV =
1133      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1134                         Constant::getNullValue(PFieldTy),
1135                         GV->getName() + ".f" + utostr(FieldNo), GV,
1136                         GV->isThreadLocal());
1137    FieldGlobals.push_back(NGV);
1138
1139    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1140                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1141    FieldMallocs.push_back(NMI);
1142    new StoreInst(NMI, NGV, MI);
1143  }
1144
1145  // The tricky aspect of this transformation is handling the case when malloc
1146  // fails.  In the original code, malloc failing would set the result pointer
1147  // of malloc to null.  In this case, some mallocs could succeed and others
1148  // could fail.  As such, we emit code that looks like this:
1149  //    F0 = malloc(field0)
1150  //    F1 = malloc(field1)
1151  //    F2 = malloc(field2)
1152  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1153  //      if (F0) { free(F0); F0 = 0; }
1154  //      if (F1) { free(F1); F1 = 0; }
1155  //      if (F2) { free(F2); F2 = 0; }
1156  //    }
1157  Value *RunningOr = 0;
1158  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1159    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1160                             Constant::getNullValue(FieldMallocs[i]->getType()),
1161                                  "isnull", MI);
1162    if (!RunningOr)
1163      RunningOr = Cond;   // First seteq
1164    else
1165      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1166  }
1167
1168  // Split the basic block at the old malloc.
1169  BasicBlock *OrigBB = MI->getParent();
1170  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1171
1172  // Create the block to check the first condition.  Put all these blocks at the
1173  // end of the function as they are unlikely to be executed.
1174  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
1175                                            OrigBB->getParent());
1176
1177  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1178  // branch on RunningOr.
1179  OrigBB->getTerminator()->eraseFromParent();
1180  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
1181
1182  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1183  // pointer, because some may be null while others are not.
1184  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1185    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1186    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1187                              Constant::getNullValue(GVVal->getType()),
1188                              "tmp", NullPtrBlock);
1189    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
1190    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
1191    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1192
1193    // Fill in FreeBlock.
1194    new FreeInst(GVVal, FreeBlock);
1195    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1196                  FreeBlock);
1197    new BranchInst(NextBlock, FreeBlock);
1198
1199    NullPtrBlock = NextBlock;
1200  }
1201
1202  new BranchInst(ContBB, NullPtrBlock);
1203
1204
1205  // MI is no longer needed, remove it.
1206  MI->eraseFromParent();
1207
1208
1209  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1210  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1211  // of the per-field globals instead.
1212  while (!GV->use_empty()) {
1213    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1214      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1215      LI->eraseFromParent();
1216    } else {
1217      // Must be a store of null.
1218      StoreInst *SI = cast<StoreInst>(GV->use_back());
1219      assert(isa<Constant>(SI->getOperand(0)) &&
1220             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1221             "Unexpected heap-sra user!");
1222
1223      // Insert a store of null into each global.
1224      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1225        Constant *Null =
1226          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1227        new StoreInst(Null, FieldGlobals[i], SI);
1228      }
1229      // Erase the original store.
1230      SI->eraseFromParent();
1231    }
1232  }
1233
1234  // The old global is now dead, remove it.
1235  GV->eraseFromParent();
1236
1237  ++NumHeapSRA;
1238  return FieldGlobals[0];
1239}
1240
1241
1242// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1243// that only one value (besides its initializer) is ever stored to the global.
1244static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1245                                     Module::global_iterator &GVI,
1246                                     TargetData &TD) {
1247  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1248    StoredOnceVal = CI->getOperand(0);
1249  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1250    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1251    bool IsJustACast = true;
1252    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1253      if (!isa<Constant>(GEPI->getOperand(i)) ||
1254          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1255        IsJustACast = false;
1256        break;
1257      }
1258    if (IsJustACast)
1259      StoredOnceVal = GEPI->getOperand(0);
1260  }
1261
1262  // If we are dealing with a pointer global that is initialized to null and
1263  // only has one (non-null) value stored into it, then we can optimize any
1264  // users of the loaded value (often calls and loads) that would trap if the
1265  // value was null.
1266  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1267      GV->getInitializer()->isNullValue()) {
1268    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1269      if (GV->getInitializer()->getType() != SOVC->getType())
1270        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1271
1272      // Optimize away any trapping uses of the loaded value.
1273      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1274        return true;
1275    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1276      // If this is a malloc of an abstract type, don't touch it.
1277      if (!MI->getAllocatedType()->isSized())
1278        return false;
1279
1280      // We can't optimize this global unless all uses of it are *known* to be
1281      // of the malloc value, not of the null initializer value (consider a use
1282      // that compares the global's value against zero to see if the malloc has
1283      // been reached).  To do this, we check to see if all uses of the global
1284      // would trap if the global were null: this proves that they must all
1285      // happen after the malloc.
1286      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1287        return false;
1288
1289      // We can't optimize this if the malloc itself is used in a complex way,
1290      // for example, being stored into multiple globals.  This allows the
1291      // malloc to be stored into the specified global, loaded setcc'd, and
1292      // GEP'd.  These are all things we could transform to using the global
1293      // for.
1294      {
1295        SmallPtrSet<PHINode*, 8> PHIs;
1296        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1297          return false;
1298      }
1299
1300
1301      // If we have a global that is only initialized with a fixed size malloc,
1302      // transform the program to use global memory instead of malloc'd memory.
1303      // This eliminates dynamic allocation, avoids an indirection accessing the
1304      // data, and exposes the resultant global to further GlobalOpt.
1305      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1306        // Restrict this transformation to only working on small allocations
1307        // (2048 bytes currently), as we don't want to introduce a 16M global or
1308        // something.
1309        if (NElements->getZExtValue()*
1310                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
1311          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1312          return true;
1313        }
1314      }
1315
1316      // If the allocation is an array of structures, consider transforming this
1317      // into multiple malloc'd arrays, one for each field.  This is basically
1318      // SRoA for malloc'd memory.
1319      if (const StructType *AllocTy =
1320                  dyn_cast<StructType>(MI->getAllocatedType())) {
1321        // This the structure has an unreasonable number of fields, leave it
1322        // alone.
1323        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1324            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1325          GVI = PerformHeapAllocSRoA(GV, MI);
1326          return true;
1327        }
1328      }
1329    }
1330  }
1331
1332  return false;
1333}
1334
1335/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1336/// two values ever stored into GV are its initializer and OtherVal.  See if we
1337/// can shrink the global into a boolean and select between the two values
1338/// whenever it is used.  This exposes the values to other scalar optimizations.
1339static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1340  const Type *GVElType = GV->getType()->getElementType();
1341
1342  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1343  // an FP value or vector, don't do this optimization because a select between
1344  // them is very expensive and unlikely to lead to later simplification.
1345  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1346      isa<VectorType>(GVElType))
1347    return false;
1348
1349  // Walk the use list of the global seeing if all the uses are load or store.
1350  // If there is anything else, bail out.
1351  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1352    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1353      return false;
1354
1355  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1356
1357  // Create the new global, initializing it to false.
1358  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1359         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1360                                             GV->getName()+".b",
1361                                             (Module *)NULL,
1362                                             GV->isThreadLocal());
1363  GV->getParent()->getGlobalList().insert(GV, NewGV);
1364
1365  Constant *InitVal = GV->getInitializer();
1366  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1367
1368  // If initialized to zero and storing one into the global, we can use a cast
1369  // instead of a select to synthesize the desired value.
1370  bool IsOneZero = false;
1371  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1372    IsOneZero = InitVal->isNullValue() && CI->isOne();
1373
1374  while (!GV->use_empty()) {
1375    Instruction *UI = cast<Instruction>(GV->use_back());
1376    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1377      // Change the store into a boolean store.
1378      bool StoringOther = SI->getOperand(0) == OtherVal;
1379      // Only do this if we weren't storing a loaded value.
1380      Value *StoreVal;
1381      if (StoringOther || SI->getOperand(0) == InitVal)
1382        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1383      else {
1384        // Otherwise, we are storing a previously loaded copy.  To do this,
1385        // change the copy from copying the original value to just copying the
1386        // bool.
1387        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1388
1389        // If we're already replaced the input, StoredVal will be a cast or
1390        // select instruction.  If not, it will be a load of the original
1391        // global.
1392        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1393          assert(LI->getOperand(0) == GV && "Not a copy!");
1394          // Insert a new load, to preserve the saved value.
1395          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1396        } else {
1397          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1398                 "This is not a form that we understand!");
1399          StoreVal = StoredVal->getOperand(0);
1400          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1401        }
1402      }
1403      new StoreInst(StoreVal, NewGV, SI);
1404    } else {
1405      // Change the load into a load of bool then a select.
1406      LoadInst *LI = cast<LoadInst>(UI);
1407      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1408      Value *NSI;
1409      if (IsOneZero)
1410        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1411      else
1412        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
1413      NSI->takeName(LI);
1414      LI->replaceAllUsesWith(NSI);
1415    }
1416    UI->eraseFromParent();
1417  }
1418
1419  GV->eraseFromParent();
1420  return true;
1421}
1422
1423
1424/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1425/// it if possible.  If we make a change, return true.
1426bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1427                                      Module::global_iterator &GVI) {
1428  std::set<PHINode*> PHIUsers;
1429  GlobalStatus GS;
1430  GV->removeDeadConstantUsers();
1431
1432  if (GV->use_empty()) {
1433    DOUT << "GLOBAL DEAD: " << *GV;
1434    GV->eraseFromParent();
1435    ++NumDeleted;
1436    return true;
1437  }
1438
1439  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1440#if 0
1441    cerr << "Global: " << *GV;
1442    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1443    cerr << "  StoredType = ";
1444    switch (GS.StoredType) {
1445    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1446    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1447    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1448    case GlobalStatus::isStored: cerr << "stored\n"; break;
1449    }
1450    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1451      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1452    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1453      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1454                << "\n";
1455    cerr << "  HasMultipleAccessingFunctions =  "
1456              << GS.HasMultipleAccessingFunctions << "\n";
1457    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1458    cerr << "\n";
1459#endif
1460
1461    // If this is a first class global and has only one accessing function
1462    // and this function is main (which we know is not recursive we can make
1463    // this global a local variable) we replace the global with a local alloca
1464    // in this function.
1465    //
1466    // NOTE: It doesn't make sense to promote non first class types since we
1467    // are just replacing static memory to stack memory.
1468    if (!GS.HasMultipleAccessingFunctions &&
1469        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1470        GV->getType()->getElementType()->isFirstClassType() &&
1471        GS.AccessingFunction->getName() == "main" &&
1472        GS.AccessingFunction->hasExternalLinkage()) {
1473      DOUT << "LOCALIZING GLOBAL: " << *GV;
1474      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1475      const Type* ElemTy = GV->getType()->getElementType();
1476      // FIXME: Pass Global's alignment when globals have alignment
1477      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1478      if (!isa<UndefValue>(GV->getInitializer()))
1479        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1480
1481      GV->replaceAllUsesWith(Alloca);
1482      GV->eraseFromParent();
1483      ++NumLocalized;
1484      return true;
1485    }
1486
1487    // If the global is never loaded (but may be stored to), it is dead.
1488    // Delete it now.
1489    if (!GS.isLoaded) {
1490      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1491
1492      // Delete any stores we can find to the global.  We may not be able to
1493      // make it completely dead though.
1494      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1495
1496      // If the global is dead now, delete it.
1497      if (GV->use_empty()) {
1498        GV->eraseFromParent();
1499        ++NumDeleted;
1500        Changed = true;
1501      }
1502      return Changed;
1503
1504    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1505      DOUT << "MARKING CONSTANT: " << *GV;
1506      GV->setConstant(true);
1507
1508      // Clean up any obviously simplifiable users now.
1509      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1510
1511      // If the global is dead now, just nuke it.
1512      if (GV->use_empty()) {
1513        DOUT << "   *** Marking constant allowed us to simplify "
1514             << "all users and delete global!\n";
1515        GV->eraseFromParent();
1516        ++NumDeleted;
1517      }
1518
1519      ++NumMarked;
1520      return true;
1521    } else if (!GV->getInitializer()->getType()->isFirstClassType()) {
1522      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
1523        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1524        return true;
1525      }
1526    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1527      // If the initial value for the global was an undef value, and if only
1528      // one other value was stored into it, we can just change the
1529      // initializer to be an undef value, then delete all stores to the
1530      // global.  This allows us to mark it constant.
1531      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1532        if (isa<UndefValue>(GV->getInitializer())) {
1533          // Change the initial value here.
1534          GV->setInitializer(SOVConstant);
1535
1536          // Clean up any obviously simplifiable users now.
1537          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1538
1539          if (GV->use_empty()) {
1540            DOUT << "   *** Substituting initializer allowed us to "
1541                 << "simplify all users and delete global!\n";
1542            GV->eraseFromParent();
1543            ++NumDeleted;
1544          } else {
1545            GVI = GV;
1546          }
1547          ++NumSubstitute;
1548          return true;
1549        }
1550
1551      // Try to optimize globals based on the knowledge that only one value
1552      // (besides its initializer) is ever stored to the global.
1553      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1554                                   getAnalysis<TargetData>()))
1555        return true;
1556
1557      // Otherwise, if the global was not a boolean, we can shrink it to be a
1558      // boolean.
1559      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1560        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1561          ++NumShrunkToBool;
1562          return true;
1563        }
1564    }
1565  }
1566  return false;
1567}
1568
1569/// OnlyCalledDirectly - Return true if the specified function is only called
1570/// directly.  In other words, its address is never taken.
1571static bool OnlyCalledDirectly(Function *F) {
1572  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1573    Instruction *User = dyn_cast<Instruction>(*UI);
1574    if (!User) return false;
1575    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1576
1577    // See if the function address is passed as an argument.
1578    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1579      if (User->getOperand(i) == F) return false;
1580  }
1581  return true;
1582}
1583
1584/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1585/// function, changing them to FastCC.
1586static void ChangeCalleesToFastCall(Function *F) {
1587  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1588    CallSite User(cast<Instruction>(*UI));
1589    User.setCallingConv(CallingConv::Fast);
1590  }
1591}
1592
1593static const ParamAttrsList *StripNest(const ParamAttrsList *Attrs) {
1594  if (!Attrs)
1595    return NULL;
1596
1597  for (unsigned i = 0, e = Attrs->size(); i != e; ++i) {
1598    if ((Attrs->getParamAttrsAtIndex(i) & ParamAttr::Nest) == 0)
1599      continue;
1600
1601    Attrs = ParamAttrsList::excludeAttrs(Attrs, Attrs->getParamIndex(i),
1602                                         ParamAttr::Nest);
1603    // There can be only one.
1604    break;
1605  }
1606
1607  return Attrs;
1608}
1609
1610static void RemoveNestAttribute(Function *F) {
1611  F->setParamAttrs(StripNest(F->getParamAttrs()));
1612  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1613    CallSite User(cast<Instruction>(*UI));
1614    User.setParamAttrs(StripNest(User.getParamAttrs()));
1615  }
1616}
1617
1618bool GlobalOpt::OptimizeFunctions(Module &M) {
1619  bool Changed = false;
1620  // Optimize functions.
1621  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1622    Function *F = FI++;
1623    F->removeDeadConstantUsers();
1624    if (F->use_empty() && (F->hasInternalLinkage() ||
1625                           F->hasLinkOnceLinkage())) {
1626      M.getFunctionList().erase(F);
1627      Changed = true;
1628      ++NumFnDeleted;
1629    } else if (F->hasInternalLinkage()) {
1630      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1631          OnlyCalledDirectly(F)) {
1632        // If this function has C calling conventions, is not a varargs
1633        // function, and is only called directly, promote it to use the Fast
1634        // calling convention.
1635        F->setCallingConv(CallingConv::Fast);
1636        ChangeCalleesToFastCall(F);
1637        ++NumFastCallFns;
1638        Changed = true;
1639      }
1640
1641      if (F->getParamAttrs() &&
1642          F->getParamAttrs()->hasAttrSomewhere(ParamAttr::Nest) &&
1643          OnlyCalledDirectly(F)) {
1644        // The function is not used by a trampoline intrinsic, so it is safe
1645        // to remove the 'nest' attribute.
1646        RemoveNestAttribute(F);
1647        ++NumNestRemoved;
1648        Changed = true;
1649      }
1650    }
1651  }
1652  return Changed;
1653}
1654
1655bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1656  bool Changed = false;
1657  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1658       GVI != E; ) {
1659    GlobalVariable *GV = GVI++;
1660    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1661        GV->hasInitializer())
1662      Changed |= ProcessInternalGlobal(GV, GVI);
1663  }
1664  return Changed;
1665}
1666
1667/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1668/// initializers have an init priority of 65535.
1669GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1670  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1671       I != E; ++I)
1672    if (I->getName() == "llvm.global_ctors") {
1673      // Found it, verify it's an array of { int, void()* }.
1674      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1675      if (!ATy) return 0;
1676      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1677      if (!STy || STy->getNumElements() != 2 ||
1678          STy->getElementType(0) != Type::Int32Ty) return 0;
1679      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1680      if (!PFTy) return 0;
1681      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1682      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1683          FTy->getNumParams() != 0)
1684        return 0;
1685
1686      // Verify that the initializer is simple enough for us to handle.
1687      if (!I->hasInitializer()) return 0;
1688      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1689      if (!CA) return 0;
1690      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1691        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1692          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1693            continue;
1694
1695          // Must have a function or null ptr.
1696          if (!isa<Function>(CS->getOperand(1)))
1697            return 0;
1698
1699          // Init priority must be standard.
1700          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1701          if (!CI || CI->getZExtValue() != 65535)
1702            return 0;
1703        } else {
1704          return 0;
1705        }
1706
1707      return I;
1708    }
1709  return 0;
1710}
1711
1712/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1713/// return a list of the functions and null terminator as a vector.
1714static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1715  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1716  std::vector<Function*> Result;
1717  Result.reserve(CA->getNumOperands());
1718  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1719    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1720    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1721  }
1722  return Result;
1723}
1724
1725/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1726/// specified array, returning the new global to use.
1727static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1728                                          const std::vector<Function*> &Ctors) {
1729  // If we made a change, reassemble the initializer list.
1730  std::vector<Constant*> CSVals;
1731  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1732  CSVals.push_back(0);
1733
1734  // Create the new init list.
1735  std::vector<Constant*> CAList;
1736  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1737    if (Ctors[i]) {
1738      CSVals[1] = Ctors[i];
1739    } else {
1740      const Type *FTy = FunctionType::get(Type::VoidTy,
1741                                          std::vector<const Type*>(), false);
1742      const PointerType *PFTy = PointerType::getUnqual(FTy);
1743      CSVals[1] = Constant::getNullValue(PFTy);
1744      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1745    }
1746    CAList.push_back(ConstantStruct::get(CSVals));
1747  }
1748
1749  // Create the array initializer.
1750  const Type *StructTy =
1751    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1752  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1753                                    CAList);
1754
1755  // If we didn't change the number of elements, don't create a new GV.
1756  if (CA->getType() == GCL->getInitializer()->getType()) {
1757    GCL->setInitializer(CA);
1758    return GCL;
1759  }
1760
1761  // Create the new global and insert it next to the existing list.
1762  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1763                                           GCL->getLinkage(), CA, "",
1764                                           (Module *)NULL,
1765                                           GCL->isThreadLocal());
1766  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1767  NGV->takeName(GCL);
1768
1769  // Nuke the old list, replacing any uses with the new one.
1770  if (!GCL->use_empty()) {
1771    Constant *V = NGV;
1772    if (V->getType() != GCL->getType())
1773      V = ConstantExpr::getBitCast(V, GCL->getType());
1774    GCL->replaceAllUsesWith(V);
1775  }
1776  GCL->eraseFromParent();
1777
1778  if (Ctors.size())
1779    return NGV;
1780  else
1781    return 0;
1782}
1783
1784
1785static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1786                        Value *V) {
1787  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1788  Constant *R = ComputedValues[V];
1789  assert(R && "Reference to an uncomputed value!");
1790  return R;
1791}
1792
1793/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1794/// enough for us to understand.  In particular, if it is a cast of something,
1795/// we punt.  We basically just support direct accesses to globals and GEP's of
1796/// globals.  This should be kept up to date with CommitValueTo.
1797static bool isSimpleEnoughPointerToCommit(Constant *C) {
1798  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1799    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1800      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1801    return !GV->isDeclaration();  // reject external globals.
1802  }
1803  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1804    // Handle a constantexpr gep.
1805    if (CE->getOpcode() == Instruction::GetElementPtr &&
1806        isa<GlobalVariable>(CE->getOperand(0))) {
1807      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1808      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1809        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1810      return GV->hasInitializer() &&
1811             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1812    }
1813  return false;
1814}
1815
1816/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1817/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1818/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1819static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1820                                   ConstantExpr *Addr, unsigned OpNo) {
1821  // Base case of the recursion.
1822  if (OpNo == Addr->getNumOperands()) {
1823    assert(Val->getType() == Init->getType() && "Type mismatch!");
1824    return Val;
1825  }
1826
1827  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1828    std::vector<Constant*> Elts;
1829
1830    // Break up the constant into its elements.
1831    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1832      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1833        Elts.push_back(CS->getOperand(i));
1834    } else if (isa<ConstantAggregateZero>(Init)) {
1835      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1836        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1837    } else if (isa<UndefValue>(Init)) {
1838      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1839        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1840    } else {
1841      assert(0 && "This code is out of sync with "
1842             " ConstantFoldLoadThroughGEPConstantExpr");
1843    }
1844
1845    // Replace the element that we are supposed to.
1846    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1847    unsigned Idx = CU->getZExtValue();
1848    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1849    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1850
1851    // Return the modified struct.
1852    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1853  } else {
1854    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1855    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1856
1857    // Break up the array into elements.
1858    std::vector<Constant*> Elts;
1859    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1860      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1861        Elts.push_back(CA->getOperand(i));
1862    } else if (isa<ConstantAggregateZero>(Init)) {
1863      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1864      Elts.assign(ATy->getNumElements(), Elt);
1865    } else if (isa<UndefValue>(Init)) {
1866      Constant *Elt = UndefValue::get(ATy->getElementType());
1867      Elts.assign(ATy->getNumElements(), Elt);
1868    } else {
1869      assert(0 && "This code is out of sync with "
1870             " ConstantFoldLoadThroughGEPConstantExpr");
1871    }
1872
1873    assert(CI->getZExtValue() < ATy->getNumElements());
1874    Elts[CI->getZExtValue()] =
1875      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1876    return ConstantArray::get(ATy, Elts);
1877  }
1878}
1879
1880/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1881/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1882static void CommitValueTo(Constant *Val, Constant *Addr) {
1883  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1884    assert(GV->hasInitializer());
1885    GV->setInitializer(Val);
1886    return;
1887  }
1888
1889  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1890  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1891
1892  Constant *Init = GV->getInitializer();
1893  Init = EvaluateStoreInto(Init, Val, CE, 2);
1894  GV->setInitializer(Init);
1895}
1896
1897/// ComputeLoadResult - Return the value that would be computed by a load from
1898/// P after the stores reflected by 'memory' have been performed.  If we can't
1899/// decide, return null.
1900static Constant *ComputeLoadResult(Constant *P,
1901                                const std::map<Constant*, Constant*> &Memory) {
1902  // If this memory location has been recently stored, use the stored value: it
1903  // is the most up-to-date.
1904  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1905  if (I != Memory.end()) return I->second;
1906
1907  // Access it.
1908  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1909    if (GV->hasInitializer())
1910      return GV->getInitializer();
1911    return 0;
1912  }
1913
1914  // Handle a constantexpr getelementptr.
1915  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1916    if (CE->getOpcode() == Instruction::GetElementPtr &&
1917        isa<GlobalVariable>(CE->getOperand(0))) {
1918      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1919      if (GV->hasInitializer())
1920        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1921    }
1922
1923  return 0;  // don't know how to evaluate.
1924}
1925
1926/// EvaluateFunction - Evaluate a call to function F, returning true if
1927/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1928/// arguments for the function.
1929static bool EvaluateFunction(Function *F, Constant *&RetVal,
1930                             const std::vector<Constant*> &ActualArgs,
1931                             std::vector<Function*> &CallStack,
1932                             std::map<Constant*, Constant*> &MutatedMemory,
1933                             std::vector<GlobalVariable*> &AllocaTmps) {
1934  // Check to see if this function is already executing (recursion).  If so,
1935  // bail out.  TODO: we might want to accept limited recursion.
1936  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1937    return false;
1938
1939  CallStack.push_back(F);
1940
1941  /// Values - As we compute SSA register values, we store their contents here.
1942  std::map<Value*, Constant*> Values;
1943
1944  // Initialize arguments to the incoming values specified.
1945  unsigned ArgNo = 0;
1946  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1947       ++AI, ++ArgNo)
1948    Values[AI] = ActualArgs[ArgNo];
1949
1950  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1951  /// we can only evaluate any one basic block at most once.  This set keeps
1952  /// track of what we have executed so we can detect recursive cases etc.
1953  std::set<BasicBlock*> ExecutedBlocks;
1954
1955  // CurInst - The current instruction we're evaluating.
1956  BasicBlock::iterator CurInst = F->begin()->begin();
1957
1958  // This is the main evaluation loop.
1959  while (1) {
1960    Constant *InstResult = 0;
1961
1962    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1963      if (SI->isVolatile()) return false;  // no volatile accesses.
1964      Constant *Ptr = getVal(Values, SI->getOperand(1));
1965      if (!isSimpleEnoughPointerToCommit(Ptr))
1966        // If this is too complex for us to commit, reject it.
1967        return false;
1968      Constant *Val = getVal(Values, SI->getOperand(0));
1969      MutatedMemory[Ptr] = Val;
1970    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1971      InstResult = ConstantExpr::get(BO->getOpcode(),
1972                                     getVal(Values, BO->getOperand(0)),
1973                                     getVal(Values, BO->getOperand(1)));
1974    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1975      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1976                                            getVal(Values, CI->getOperand(0)),
1977                                            getVal(Values, CI->getOperand(1)));
1978    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
1979      InstResult = ConstantExpr::getCast(CI->getOpcode(),
1980                                         getVal(Values, CI->getOperand(0)),
1981                                         CI->getType());
1982    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
1983      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
1984                                           getVal(Values, SI->getOperand(1)),
1985                                           getVal(Values, SI->getOperand(2)));
1986    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
1987      Constant *P = getVal(Values, GEP->getOperand(0));
1988      SmallVector<Constant*, 8> GEPOps;
1989      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1990        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
1991      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
1992    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
1993      if (LI->isVolatile()) return false;  // no volatile accesses.
1994      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
1995                                     MutatedMemory);
1996      if (InstResult == 0) return false; // Could not evaluate load.
1997    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
1998      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
1999      const Type *Ty = AI->getType()->getElementType();
2000      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2001                                              GlobalValue::InternalLinkage,
2002                                              UndefValue::get(Ty),
2003                                              AI->getName()));
2004      InstResult = AllocaTmps.back();
2005    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2006      // Cannot handle inline asm.
2007      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2008
2009      // Resolve function pointers.
2010      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2011      if (!Callee) return false;  // Cannot resolve.
2012
2013      std::vector<Constant*> Formals;
2014      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
2015        Formals.push_back(getVal(Values, CI->getOperand(i)));
2016
2017      if (Callee->isDeclaration()) {
2018        // If this is a function we can constant fold, do it.
2019        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2020                                           Formals.size())) {
2021          InstResult = C;
2022        } else {
2023          return false;
2024        }
2025      } else {
2026        if (Callee->getFunctionType()->isVarArg())
2027          return false;
2028
2029        Constant *RetVal;
2030
2031        // Execute the call, if successful, use the return value.
2032        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2033                              MutatedMemory, AllocaTmps))
2034          return false;
2035        InstResult = RetVal;
2036      }
2037    } else if (isa<TerminatorInst>(CurInst)) {
2038      BasicBlock *NewBB = 0;
2039      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2040        if (BI->isUnconditional()) {
2041          NewBB = BI->getSuccessor(0);
2042        } else {
2043          ConstantInt *Cond =
2044            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2045          if (!Cond) return false;  // Cannot determine.
2046
2047          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2048        }
2049      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2050        ConstantInt *Val =
2051          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2052        if (!Val) return false;  // Cannot determine.
2053        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2054      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2055        if (RI->getNumOperands())
2056          RetVal = getVal(Values, RI->getOperand(0));
2057
2058        CallStack.pop_back();  // return from fn.
2059        return true;  // We succeeded at evaluating this ctor!
2060      } else {
2061        // invoke, unwind, unreachable.
2062        return false;  // Cannot handle this terminator.
2063      }
2064
2065      // Okay, we succeeded in evaluating this control flow.  See if we have
2066      // executed the new block before.  If so, we have a looping function,
2067      // which we cannot evaluate in reasonable time.
2068      if (!ExecutedBlocks.insert(NewBB).second)
2069        return false;  // looped!
2070
2071      // Okay, we have never been in this block before.  Check to see if there
2072      // are any PHI nodes.  If so, evaluate them with information about where
2073      // we came from.
2074      BasicBlock *OldBB = CurInst->getParent();
2075      CurInst = NewBB->begin();
2076      PHINode *PN;
2077      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2078        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2079
2080      // Do NOT increment CurInst.  We know that the terminator had no value.
2081      continue;
2082    } else {
2083      // Did not know how to evaluate this!
2084      return false;
2085    }
2086
2087    if (!CurInst->use_empty())
2088      Values[CurInst] = InstResult;
2089
2090    // Advance program counter.
2091    ++CurInst;
2092  }
2093}
2094
2095/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2096/// we can.  Return true if we can, false otherwise.
2097static bool EvaluateStaticConstructor(Function *F) {
2098  /// MutatedMemory - For each store we execute, we update this map.  Loads
2099  /// check this to get the most up-to-date value.  If evaluation is successful,
2100  /// this state is committed to the process.
2101  std::map<Constant*, Constant*> MutatedMemory;
2102
2103  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2104  /// to represent its body.  This vector is needed so we can delete the
2105  /// temporary globals when we are done.
2106  std::vector<GlobalVariable*> AllocaTmps;
2107
2108  /// CallStack - This is used to detect recursion.  In pathological situations
2109  /// we could hit exponential behavior, but at least there is nothing
2110  /// unbounded.
2111  std::vector<Function*> CallStack;
2112
2113  // Call the function.
2114  Constant *RetValDummy;
2115  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2116                                       CallStack, MutatedMemory, AllocaTmps);
2117  if (EvalSuccess) {
2118    // We succeeded at evaluation: commit the result.
2119    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2120         << F->getName() << "' to " << MutatedMemory.size()
2121         << " stores.\n";
2122    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2123         E = MutatedMemory.end(); I != E; ++I)
2124      CommitValueTo(I->second, I->first);
2125  }
2126
2127  // At this point, we are done interpreting.  If we created any 'alloca'
2128  // temporaries, release them now.
2129  while (!AllocaTmps.empty()) {
2130    GlobalVariable *Tmp = AllocaTmps.back();
2131    AllocaTmps.pop_back();
2132
2133    // If there are still users of the alloca, the program is doing something
2134    // silly, e.g. storing the address of the alloca somewhere and using it
2135    // later.  Since this is undefined, we'll just make it be null.
2136    if (!Tmp->use_empty())
2137      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2138    delete Tmp;
2139  }
2140
2141  return EvalSuccess;
2142}
2143
2144
2145
2146/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2147/// Return true if anything changed.
2148bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2149  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2150  bool MadeChange = false;
2151  if (Ctors.empty()) return false;
2152
2153  // Loop over global ctors, optimizing them when we can.
2154  for (unsigned i = 0; i != Ctors.size(); ++i) {
2155    Function *F = Ctors[i];
2156    // Found a null terminator in the middle of the list, prune off the rest of
2157    // the list.
2158    if (F == 0) {
2159      if (i != Ctors.size()-1) {
2160        Ctors.resize(i+1);
2161        MadeChange = true;
2162      }
2163      break;
2164    }
2165
2166    // We cannot simplify external ctor functions.
2167    if (F->empty()) continue;
2168
2169    // If we can evaluate the ctor at compile time, do.
2170    if (EvaluateStaticConstructor(F)) {
2171      Ctors.erase(Ctors.begin()+i);
2172      MadeChange = true;
2173      --i;
2174      ++NumCtorsEvaluated;
2175      continue;
2176    }
2177  }
2178
2179  if (!MadeChange) return false;
2180
2181  GCL = InstallGlobalCtors(GCL, Ctors);
2182  return true;
2183}
2184
2185
2186bool GlobalOpt::runOnModule(Module &M) {
2187  bool Changed = false;
2188
2189  // Try to find the llvm.globalctors list.
2190  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2191
2192  bool LocalChange = true;
2193  while (LocalChange) {
2194    LocalChange = false;
2195
2196    // Delete functions that are trivially dead, ccc -> fastcc
2197    LocalChange |= OptimizeFunctions(M);
2198
2199    // Optimize global_ctors list.
2200    if (GlobalCtors)
2201      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2202
2203    // Optimize non-address-taken globals.
2204    LocalChange |= OptimizeGlobalVars(M);
2205    Changed |= LocalChange;
2206  }
2207
2208  // TODO: Move all global ctors functions to the end of the module for code
2209  // layout.
2210
2211  return Changed;
2212}
2213