GlobalOpt.cpp revision 75a2db813395e577d844d0996b4528010ee09e1d
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <set>
36using namespace llvm;
37
38STATISTIC(NumMarked    , "Number of globals marked constant");
39STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
40STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
41STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
42STATISTIC(NumDeleted   , "Number of globals deleted");
43STATISTIC(NumFnDeleted , "Number of functions deleted");
44STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
45STATISTIC(NumLocalized , "Number of globals localized");
46STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
47STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
48STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
49
50namespace {
51  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
52    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53      AU.addRequired<TargetData>();
54    }
55    static char ID; // Pass identification, replacement for typeid
56    GlobalOpt() : ModulePass((intptr_t)&ID) {}
57
58    bool runOnModule(Module &M);
59
60  private:
61    GlobalVariable *FindGlobalCtors(Module &M);
62    bool OptimizeFunctions(Module &M);
63    bool OptimizeGlobalVars(Module &M);
64    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
65    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
66  };
67
68  char GlobalOpt::ID = 0;
69  RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
70}
71
72ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
73
74/// GlobalStatus - As we analyze each global, keep track of some information
75/// about it.  If we find out that the address of the global is taken, none of
76/// this info will be accurate.
77struct VISIBILITY_HIDDEN GlobalStatus {
78  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
79  /// loaded it can be deleted.
80  bool isLoaded;
81
82  /// StoredType - Keep track of what stores to the global look like.
83  ///
84  enum StoredType {
85    /// NotStored - There is no store to this global.  It can thus be marked
86    /// constant.
87    NotStored,
88
89    /// isInitializerStored - This global is stored to, but the only thing
90    /// stored is the constant it was initialized with.  This is only tracked
91    /// for scalar globals.
92    isInitializerStored,
93
94    /// isStoredOnce - This global is stored to, but only its initializer and
95    /// one other value is ever stored to it.  If this global isStoredOnce, we
96    /// track the value stored to it in StoredOnceValue below.  This is only
97    /// tracked for scalar globals.
98    isStoredOnce,
99
100    /// isStored - This global is stored to by multiple values or something else
101    /// that we cannot track.
102    isStored
103  } StoredType;
104
105  /// StoredOnceValue - If only one value (besides the initializer constant) is
106  /// ever stored to this global, keep track of what value it is.
107  Value *StoredOnceValue;
108
109  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
110  /// null/false.  When the first accessing function is noticed, it is recorded.
111  /// When a second different accessing function is noticed,
112  /// HasMultipleAccessingFunctions is set to true.
113  Function *AccessingFunction;
114  bool HasMultipleAccessingFunctions;
115
116  /// HasNonInstructionUser - Set to true if this global has a user that is not
117  /// an instruction (e.g. a constant expr or GV initializer).
118  bool HasNonInstructionUser;
119
120  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
121  bool HasPHIUser;
122
123  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
124                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
125                   HasNonInstructionUser(false), HasPHIUser(false) {}
126};
127
128
129
130/// ConstantIsDead - Return true if the specified constant is (transitively)
131/// dead.  The constant may be used by other constants (e.g. constant arrays and
132/// constant exprs) as long as they are dead, but it cannot be used by anything
133/// else.
134static bool ConstantIsDead(Constant *C) {
135  if (isa<GlobalValue>(C)) return false;
136
137  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
138    if (Constant *CU = dyn_cast<Constant>(*UI)) {
139      if (!ConstantIsDead(CU)) return false;
140    } else
141      return false;
142  return true;
143}
144
145
146/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
147/// structure.  If the global has its address taken, return true to indicate we
148/// can't do anything with it.
149///
150static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
151                          std::set<PHINode*> &PHIUsers) {
152  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
153    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
154      GS.HasNonInstructionUser = true;
155
156      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
157
158    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
159      if (!GS.HasMultipleAccessingFunctions) {
160        Function *F = I->getParent()->getParent();
161        if (GS.AccessingFunction == 0)
162          GS.AccessingFunction = F;
163        else if (GS.AccessingFunction != F)
164          GS.HasMultipleAccessingFunctions = true;
165      }
166      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
167        GS.isLoaded = true;
168        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
169      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
170        // Don't allow a store OF the address, only stores TO the address.
171        if (SI->getOperand(0) == V) return true;
172
173        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
174
175        // If this is a direct store to the global (i.e., the global is a scalar
176        // value, not an aggregate), keep more specific information about
177        // stores.
178        if (GS.StoredType != GlobalStatus::isStored)
179          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
180            Value *StoredVal = SI->getOperand(0);
181            if (StoredVal == GV->getInitializer()) {
182              if (GS.StoredType < GlobalStatus::isInitializerStored)
183                GS.StoredType = GlobalStatus::isInitializerStored;
184            } else if (isa<LoadInst>(StoredVal) &&
185                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
186              // G = G
187              if (GS.StoredType < GlobalStatus::isInitializerStored)
188                GS.StoredType = GlobalStatus::isInitializerStored;
189            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
190              GS.StoredType = GlobalStatus::isStoredOnce;
191              GS.StoredOnceValue = StoredVal;
192            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
193                       GS.StoredOnceValue == StoredVal) {
194              // noop.
195            } else {
196              GS.StoredType = GlobalStatus::isStored;
197            }
198          } else {
199            GS.StoredType = GlobalStatus::isStored;
200          }
201      } else if (isa<GetElementPtrInst>(I)) {
202        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
203      } else if (isa<SelectInst>(I)) {
204        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
205      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
206        // PHI nodes we can check just like select or GEP instructions, but we
207        // have to be careful about infinite recursion.
208        if (PHIUsers.insert(PN).second)  // Not already visited.
209          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
210        GS.HasPHIUser = true;
211      } else if (isa<CmpInst>(I)) {
212      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
213        if (I->getOperand(1) == V)
214          GS.StoredType = GlobalStatus::isStored;
215        if (I->getOperand(2) == V)
216          GS.isLoaded = true;
217      } else if (isa<MemSetInst>(I)) {
218        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
219        GS.StoredType = GlobalStatus::isStored;
220      } else {
221        return true;  // Any other non-load instruction might take address!
222      }
223    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
224      GS.HasNonInstructionUser = true;
225      // We might have a dead and dangling constant hanging off of here.
226      if (!ConstantIsDead(C))
227        return true;
228    } else {
229      GS.HasNonInstructionUser = true;
230      // Otherwise must be some other user.
231      return true;
232    }
233
234  return false;
235}
236
237static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
238  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
239  if (!CI) return 0;
240  unsigned IdxV = CI->getZExtValue();
241
242  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
243    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
244  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
245    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
246  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
247    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
248  } else if (isa<ConstantAggregateZero>(Agg)) {
249    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
250      if (IdxV < STy->getNumElements())
251        return Constant::getNullValue(STy->getElementType(IdxV));
252    } else if (const SequentialType *STy =
253               dyn_cast<SequentialType>(Agg->getType())) {
254      return Constant::getNullValue(STy->getElementType());
255    }
256  } else if (isa<UndefValue>(Agg)) {
257    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
258      if (IdxV < STy->getNumElements())
259        return UndefValue::get(STy->getElementType(IdxV));
260    } else if (const SequentialType *STy =
261               dyn_cast<SequentialType>(Agg->getType())) {
262      return UndefValue::get(STy->getElementType());
263    }
264  }
265  return 0;
266}
267
268
269/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
270/// users of the global, cleaning up the obvious ones.  This is largely just a
271/// quick scan over the use list to clean up the easy and obvious cruft.  This
272/// returns true if it made a change.
273static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
274  bool Changed = false;
275  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
276    User *U = *UI++;
277
278    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
279      if (Init) {
280        // Replace the load with the initializer.
281        LI->replaceAllUsesWith(Init);
282        LI->eraseFromParent();
283        Changed = true;
284      }
285    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
286      // Store must be unreachable or storing Init into the global.
287      SI->eraseFromParent();
288      Changed = true;
289    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
290      if (CE->getOpcode() == Instruction::GetElementPtr) {
291        Constant *SubInit = 0;
292        if (Init)
293          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
294        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
295      } else if (CE->getOpcode() == Instruction::BitCast &&
296                 isa<PointerType>(CE->getType())) {
297        // Pointer cast, delete any stores and memsets to the global.
298        Changed |= CleanupConstantGlobalUsers(CE, 0);
299      }
300
301      if (CE->use_empty()) {
302        CE->destroyConstant();
303        Changed = true;
304      }
305    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
306      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
307      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
308      // and will invalidate our notion of what Init is.
309      Constant *SubInit = 0;
310      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
311        ConstantExpr *CE =
312          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
313        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
314          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
315      }
316      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
317
318      if (GEP->use_empty()) {
319        GEP->eraseFromParent();
320        Changed = true;
321      }
322    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
323      if (MI->getRawDest() == V) {
324        MI->eraseFromParent();
325        Changed = true;
326      }
327
328    } else if (Constant *C = dyn_cast<Constant>(U)) {
329      // If we have a chain of dead constantexprs or other things dangling from
330      // us, and if they are all dead, nuke them without remorse.
331      if (ConstantIsDead(C)) {
332        C->destroyConstant();
333        // This could have invalidated UI, start over from scratch.
334        CleanupConstantGlobalUsers(V, Init);
335        return true;
336      }
337    }
338  }
339  return Changed;
340}
341
342/// isSafeSROAElementUse - Return true if the specified instruction is a safe
343/// user of a derived expression from a global that we want to SROA.
344static bool isSafeSROAElementUse(Value *V) {
345  // We might have a dead and dangling constant hanging off of here.
346  if (Constant *C = dyn_cast<Constant>(V))
347    return ConstantIsDead(C);
348
349  Instruction *I = dyn_cast<Instruction>(V);
350  if (!I) return false;
351
352  // Loads are ok.
353  if (isa<LoadInst>(I)) return true;
354
355  // Stores *to* the pointer are ok.
356  if (StoreInst *SI = dyn_cast<StoreInst>(I))
357    return SI->getOperand(0) != V;
358
359  // Otherwise, it must be a GEP.
360  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
361  if (GEPI == 0) return false;
362
363  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
364      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
365    return false;
366
367  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
368       I != E; ++I)
369    if (!isSafeSROAElementUse(*I))
370      return false;
371  return true;
372}
373
374
375/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
376/// Look at it and its uses and decide whether it is safe to SROA this global.
377///
378static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
379  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
380  if (!isa<GetElementPtrInst>(U) &&
381      (!isa<ConstantExpr>(U) ||
382       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
383    return false;
384
385  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
386  // don't like < 3 operand CE's, and we don't like non-constant integer
387  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
388  // value of C.
389  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
390      !cast<Constant>(U->getOperand(1))->isNullValue() ||
391      !isa<ConstantInt>(U->getOperand(2)))
392    return false;
393
394  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
395  ++GEPI;  // Skip over the pointer index.
396
397  // If this is a use of an array allocation, do a bit more checking for sanity.
398  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
399    uint64_t NumElements = AT->getNumElements();
400    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
401
402    // Check to make sure that index falls within the array.  If not,
403    // something funny is going on, so we won't do the optimization.
404    //
405    if (Idx->getZExtValue() >= NumElements)
406      return false;
407
408    // We cannot scalar repl this level of the array unless any array
409    // sub-indices are in-range constants.  In particular, consider:
410    // A[0][i].  We cannot know that the user isn't doing invalid things like
411    // allowing i to index an out-of-range subscript that accesses A[1].
412    //
413    // Scalar replacing *just* the outer index of the array is probably not
414    // going to be a win anyway, so just give up.
415    for (++GEPI; // Skip array index.
416         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
417         ++GEPI) {
418      uint64_t NumElements;
419      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
420        NumElements = SubArrayTy->getNumElements();
421      else
422        NumElements = cast<VectorType>(*GEPI)->getNumElements();
423
424      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
425      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
426        return false;
427    }
428  }
429
430  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
431    if (!isSafeSROAElementUse(*I))
432      return false;
433  return true;
434}
435
436/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
437/// is safe for us to perform this transformation.
438///
439static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
440  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
441       UI != E; ++UI) {
442    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
443      return false;
444  }
445  return true;
446}
447
448
449/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
450/// variable.  This opens the door for other optimizations by exposing the
451/// behavior of the program in a more fine-grained way.  We have determined that
452/// this transformation is safe already.  We return the first global variable we
453/// insert so that the caller can reprocess it.
454static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
455  // Make sure this global only has simple uses that we can SRA.
456  if (!GlobalUsersSafeToSRA(GV))
457    return 0;
458
459  assert(GV->hasInternalLinkage() && !GV->isConstant());
460  Constant *Init = GV->getInitializer();
461  const Type *Ty = Init->getType();
462
463  std::vector<GlobalVariable*> NewGlobals;
464  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
465
466  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
467    NewGlobals.reserve(STy->getNumElements());
468    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
469      Constant *In = getAggregateConstantElement(Init,
470                                            ConstantInt::get(Type::Int32Ty, i));
471      assert(In && "Couldn't get element of initializer?");
472      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
473                                               GlobalVariable::InternalLinkage,
474                                               In, GV->getName()+"."+utostr(i),
475                                               (Module *)NULL,
476                                               GV->isThreadLocal());
477      Globals.insert(GV, NGV);
478      NewGlobals.push_back(NGV);
479    }
480  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
481    unsigned NumElements = 0;
482    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
483      NumElements = ATy->getNumElements();
484    else if (const VectorType *PTy = dyn_cast<VectorType>(STy))
485      NumElements = PTy->getNumElements();
486    else
487      assert(0 && "Unknown aggregate sequential type!");
488
489    if (NumElements > 16 && GV->hasNUsesOrMore(16))
490      return 0; // It's not worth it.
491    NewGlobals.reserve(NumElements);
492    for (unsigned i = 0, e = NumElements; i != e; ++i) {
493      Constant *In = getAggregateConstantElement(Init,
494                                            ConstantInt::get(Type::Int32Ty, i));
495      assert(In && "Couldn't get element of initializer?");
496
497      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
498                                               GlobalVariable::InternalLinkage,
499                                               In, GV->getName()+"."+utostr(i),
500                                               (Module *)NULL,
501                                               GV->isThreadLocal());
502      Globals.insert(GV, NGV);
503      NewGlobals.push_back(NGV);
504    }
505  }
506
507  if (NewGlobals.empty())
508    return 0;
509
510  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
511
512  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
513
514  // Loop over all of the uses of the global, replacing the constantexpr geps,
515  // with smaller constantexpr geps or direct references.
516  while (!GV->use_empty()) {
517    User *GEP = GV->use_back();
518    assert(((isa<ConstantExpr>(GEP) &&
519             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
520            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
521
522    // Ignore the 1th operand, which has to be zero or else the program is quite
523    // broken (undefined).  Get the 2nd operand, which is the structure or array
524    // index.
525    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
526    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
527
528    Value *NewPtr = NewGlobals[Val];
529
530    // Form a shorter GEP if needed.
531    if (GEP->getNumOperands() > 3)
532      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
533        SmallVector<Constant*, 8> Idxs;
534        Idxs.push_back(NullInt);
535        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
536          Idxs.push_back(CE->getOperand(i));
537        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
538                                                &Idxs[0], Idxs.size());
539      } else {
540        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
541        SmallVector<Value*, 8> Idxs;
542        Idxs.push_back(NullInt);
543        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
544          Idxs.push_back(GEPI->getOperand(i));
545        NewPtr = new GetElementPtrInst(NewPtr, Idxs.begin(), Idxs.end(),
546                                       GEPI->getName()+"."+utostr(Val), GEPI);
547      }
548    GEP->replaceAllUsesWith(NewPtr);
549
550    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
551      GEPI->eraseFromParent();
552    else
553      cast<ConstantExpr>(GEP)->destroyConstant();
554  }
555
556  // Delete the old global, now that it is dead.
557  Globals.erase(GV);
558  ++NumSRA;
559
560  // Loop over the new globals array deleting any globals that are obviously
561  // dead.  This can arise due to scalarization of a structure or an array that
562  // has elements that are dead.
563  unsigned FirstGlobal = 0;
564  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
565    if (NewGlobals[i]->use_empty()) {
566      Globals.erase(NewGlobals[i]);
567      if (FirstGlobal == i) ++FirstGlobal;
568    }
569
570  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
571}
572
573/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
574/// value will trap if the value is dynamically null.  PHIs keeps track of any
575/// phi nodes we've seen to avoid reprocessing them.
576static bool AllUsesOfValueWillTrapIfNull(Value *V,
577                                         SmallPtrSet<PHINode*, 8> &PHIs) {
578  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
579    if (isa<LoadInst>(*UI)) {
580      // Will trap.
581    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
582      if (SI->getOperand(0) == V) {
583        //cerr << "NONTRAPPING USE: " << **UI;
584        return false;  // Storing the value.
585      }
586    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
587      if (CI->getOperand(0) != V) {
588        //cerr << "NONTRAPPING USE: " << **UI;
589        return false;  // Not calling the ptr
590      }
591    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
592      if (II->getOperand(0) != V) {
593        //cerr << "NONTRAPPING USE: " << **UI;
594        return false;  // Not calling the ptr
595      }
596    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
597      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
598    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
599      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
600    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
601      // If we've already seen this phi node, ignore it, it has already been
602      // checked.
603      if (PHIs.insert(PN))
604        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
605    } else if (isa<ICmpInst>(*UI) &&
606               isa<ConstantPointerNull>(UI->getOperand(1))) {
607      // Ignore setcc X, null
608    } else {
609      //cerr << "NONTRAPPING USE: " << **UI;
610      return false;
611    }
612  return true;
613}
614
615/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
616/// from GV will trap if the loaded value is null.  Note that this also permits
617/// comparisons of the loaded value against null, as a special case.
618static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
619  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
620    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
621      SmallPtrSet<PHINode*, 8> PHIs;
622      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
623        return false;
624    } else if (isa<StoreInst>(*UI)) {
625      // Ignore stores to the global.
626    } else {
627      // We don't know or understand this user, bail out.
628      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
629      return false;
630    }
631
632  return true;
633}
634
635static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
636  bool Changed = false;
637  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
638    Instruction *I = cast<Instruction>(*UI++);
639    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
640      LI->setOperand(0, NewV);
641      Changed = true;
642    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
643      if (SI->getOperand(1) == V) {
644        SI->setOperand(1, NewV);
645        Changed = true;
646      }
647    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
648      if (I->getOperand(0) == V) {
649        // Calling through the pointer!  Turn into a direct call, but be careful
650        // that the pointer is not also being passed as an argument.
651        I->setOperand(0, NewV);
652        Changed = true;
653        bool PassedAsArg = false;
654        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
655          if (I->getOperand(i) == V) {
656            PassedAsArg = true;
657            I->setOperand(i, NewV);
658          }
659
660        if (PassedAsArg) {
661          // Being passed as an argument also.  Be careful to not invalidate UI!
662          UI = V->use_begin();
663        }
664      }
665    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
666      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
667                                ConstantExpr::getCast(CI->getOpcode(),
668                                                      NewV, CI->getType()));
669      if (CI->use_empty()) {
670        Changed = true;
671        CI->eraseFromParent();
672      }
673    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
674      // Should handle GEP here.
675      SmallVector<Constant*, 8> Idxs;
676      Idxs.reserve(GEPI->getNumOperands()-1);
677      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
678        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
679          Idxs.push_back(C);
680        else
681          break;
682      if (Idxs.size() == GEPI->getNumOperands()-1)
683        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
684                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
685                                                               Idxs.size()));
686      if (GEPI->use_empty()) {
687        Changed = true;
688        GEPI->eraseFromParent();
689      }
690    }
691  }
692
693  return Changed;
694}
695
696
697/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
698/// value stored into it.  If there are uses of the loaded value that would trap
699/// if the loaded value is dynamically null, then we know that they cannot be
700/// reachable with a null optimize away the load.
701static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
702  std::vector<LoadInst*> Loads;
703  bool Changed = false;
704
705  // Replace all uses of loads with uses of uses of the stored value.
706  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
707       GUI != E; ++GUI)
708    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
709      Loads.push_back(LI);
710      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
711    } else {
712      // If we get here we could have stores, selects, or phi nodes whose values
713      // are loaded.
714      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
715              isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
716             "Only expect load and stores!");
717    }
718
719  if (Changed) {
720    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
721    ++NumGlobUses;
722  }
723
724  // Delete all of the loads we can, keeping track of whether we nuked them all!
725  bool AllLoadsGone = true;
726  while (!Loads.empty()) {
727    LoadInst *L = Loads.back();
728    if (L->use_empty()) {
729      L->eraseFromParent();
730      Changed = true;
731    } else {
732      AllLoadsGone = false;
733    }
734    Loads.pop_back();
735  }
736
737  // If we nuked all of the loads, then none of the stores are needed either,
738  // nor is the global.
739  if (AllLoadsGone) {
740    DOUT << "  *** GLOBAL NOW DEAD!\n";
741    CleanupConstantGlobalUsers(GV, 0);
742    if (GV->use_empty()) {
743      GV->eraseFromParent();
744      ++NumDeleted;
745    }
746    Changed = true;
747  }
748  return Changed;
749}
750
751/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
752/// instructions that are foldable.
753static void ConstantPropUsersOf(Value *V) {
754  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
755    if (Instruction *I = dyn_cast<Instruction>(*UI++))
756      if (Constant *NewC = ConstantFoldInstruction(I)) {
757        I->replaceAllUsesWith(NewC);
758
759        // Advance UI to the next non-I use to avoid invalidating it!
760        // Instructions could multiply use V.
761        while (UI != E && *UI == I)
762          ++UI;
763        I->eraseFromParent();
764      }
765}
766
767/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
768/// variable, and transforms the program as if it always contained the result of
769/// the specified malloc.  Because it is always the result of the specified
770/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
771/// malloc into a global, and any loads of GV as uses of the new global.
772static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
773                                                     MallocInst *MI) {
774  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
775  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
776
777  if (NElements->getZExtValue() != 1) {
778    // If we have an array allocation, transform it to a single element
779    // allocation to make the code below simpler.
780    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
781                                 NElements->getZExtValue());
782    MallocInst *NewMI =
783      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
784                     MI->getAlignment(), MI->getName(), MI);
785    Value* Indices[2];
786    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
787    Value *NewGEP = new GetElementPtrInst(NewMI, Indices, Indices + 2,
788                                          NewMI->getName()+".el0", MI);
789    MI->replaceAllUsesWith(NewGEP);
790    MI->eraseFromParent();
791    MI = NewMI;
792  }
793
794  // Create the new global variable.  The contents of the malloc'd memory is
795  // undefined, so initialize with an undef value.
796  Constant *Init = UndefValue::get(MI->getAllocatedType());
797  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
798                                             GlobalValue::InternalLinkage, Init,
799                                             GV->getName()+".body",
800                                             (Module *)NULL,
801                                             GV->isThreadLocal());
802  GV->getParent()->getGlobalList().insert(GV, NewGV);
803
804  // Anything that used the malloc now uses the global directly.
805  MI->replaceAllUsesWith(NewGV);
806
807  Constant *RepValue = NewGV;
808  if (NewGV->getType() != GV->getType()->getElementType())
809    RepValue = ConstantExpr::getBitCast(RepValue,
810                                        GV->getType()->getElementType());
811
812  // If there is a comparison against null, we will insert a global bool to
813  // keep track of whether the global was initialized yet or not.
814  GlobalVariable *InitBool =
815    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
816                       ConstantInt::getFalse(), GV->getName()+".init",
817                       (Module *)NULL, GV->isThreadLocal());
818  bool InitBoolUsed = false;
819
820  // Loop over all uses of GV, processing them in turn.
821  std::vector<StoreInst*> Stores;
822  while (!GV->use_empty())
823    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
824      while (!LI->use_empty()) {
825        Use &LoadUse = LI->use_begin().getUse();
826        if (!isa<ICmpInst>(LoadUse.getUser()))
827          LoadUse = RepValue;
828        else {
829          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
830          // Replace the cmp X, 0 with a use of the bool value.
831          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
832          InitBoolUsed = true;
833          switch (CI->getPredicate()) {
834          default: assert(0 && "Unknown ICmp Predicate!");
835          case ICmpInst::ICMP_ULT:
836          case ICmpInst::ICMP_SLT:
837            LV = ConstantInt::getFalse();   // X < null -> always false
838            break;
839          case ICmpInst::ICMP_ULE:
840          case ICmpInst::ICMP_SLE:
841          case ICmpInst::ICMP_EQ:
842            LV = BinaryOperator::createNot(LV, "notinit", CI);
843            break;
844          case ICmpInst::ICMP_NE:
845          case ICmpInst::ICMP_UGE:
846          case ICmpInst::ICMP_SGE:
847          case ICmpInst::ICMP_UGT:
848          case ICmpInst::ICMP_SGT:
849            break;  // no change.
850          }
851          CI->replaceAllUsesWith(LV);
852          CI->eraseFromParent();
853        }
854      }
855      LI->eraseFromParent();
856    } else {
857      StoreInst *SI = cast<StoreInst>(GV->use_back());
858      // The global is initialized when the store to it occurs.
859      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
860      SI->eraseFromParent();
861    }
862
863  // If the initialization boolean was used, insert it, otherwise delete it.
864  if (!InitBoolUsed) {
865    while (!InitBool->use_empty())  // Delete initializations
866      cast<Instruction>(InitBool->use_back())->eraseFromParent();
867    delete InitBool;
868  } else
869    GV->getParent()->getGlobalList().insert(GV, InitBool);
870
871
872  // Now the GV is dead, nuke it and the malloc.
873  GV->eraseFromParent();
874  MI->eraseFromParent();
875
876  // To further other optimizations, loop over all users of NewGV and try to
877  // constant prop them.  This will promote GEP instructions with constant
878  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
879  ConstantPropUsersOf(NewGV);
880  if (RepValue != NewGV)
881    ConstantPropUsersOf(RepValue);
882
883  return NewGV;
884}
885
886/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
887/// to make sure that there are no complex uses of V.  We permit simple things
888/// like dereferencing the pointer, but not storing through the address, unless
889/// it is to the specified global.
890static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
891                                                      GlobalVariable *GV,
892                                              SmallPtrSet<PHINode*, 8> &PHIs) {
893  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
894    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
895      // Fine, ignore.
896    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
897      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
898        return false;  // Storing the pointer itself... bad.
899      // Otherwise, storing through it, or storing into GV... fine.
900    } else if (isa<GetElementPtrInst>(*UI)) {
901      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
902                                                     GV, PHIs))
903        return false;
904    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
905      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
906      // cycles.
907      if (PHIs.insert(PN))
908        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
909          return false;
910    } else {
911      return false;
912    }
913  return true;
914}
915
916/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
917/// somewhere.  Transform all uses of the allocation into loads from the
918/// global and uses of the resultant pointer.  Further, delete the store into
919/// GV.  This assumes that these value pass the
920/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
921static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
922                                          GlobalVariable *GV) {
923  while (!Alloc->use_empty()) {
924    Instruction *U = cast<Instruction>(*Alloc->use_begin());
925    Instruction *InsertPt = U;
926    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
927      // If this is the store of the allocation into the global, remove it.
928      if (SI->getOperand(1) == GV) {
929        SI->eraseFromParent();
930        continue;
931      }
932    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
933      // Insert the load in the corresponding predecessor, not right before the
934      // PHI.
935      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
936      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
937    }
938
939    // Insert a load from the global, and use it instead of the malloc.
940    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
941    U->replaceUsesOfWith(Alloc, NL);
942  }
943}
944
945/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
946/// GV are simple enough to perform HeapSRA, return true.
947static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
948                                                 MallocInst *MI) {
949  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
950       ++UI)
951    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
952      // We permit two users of the load: setcc comparing against the null
953      // pointer, and a getelementptr of a specific form.
954      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
955           ++UI) {
956        // Comparison against null is ok.
957        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
958          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
959            return false;
960          continue;
961        }
962
963        // getelementptr is also ok, but only a simple form.
964        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
965          // Must index into the array and into the struct.
966          if (GEPI->getNumOperands() < 3)
967            return false;
968
969          // Otherwise the GEP is ok.
970          continue;
971        }
972
973        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
974          // We have a phi of a load from the global.  We can only handle this
975          // if the other PHI'd values are actually the same.  In this case,
976          // the rewriter will just drop the phi entirely.
977          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
978            Value *IV = PN->getIncomingValue(i);
979            if (IV == LI) continue;  // Trivial the same.
980
981            // If the phi'd value is from the malloc that initializes the value,
982            // we can xform it.
983            if (IV == MI) continue;
984
985            // Otherwise, we don't know what it is.
986            return false;
987          }
988          return true;
989        }
990
991        // Otherwise we don't know what this is, not ok.
992        return false;
993      }
994    }
995  return true;
996}
997
998/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
999/// value, lazily creating it on demand.
1000static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
1001                              const std::vector<GlobalVariable*> &FieldGlobals,
1002                              std::vector<Value *> &InsertedLoadsForPtr) {
1003  if (InsertedLoadsForPtr.size() <= FieldNo)
1004    InsertedLoadsForPtr.resize(FieldNo+1);
1005  if (InsertedLoadsForPtr[FieldNo] == 0)
1006    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1007                                                Load->getName()+".f" +
1008                                                utostr(FieldNo), Load);
1009  return InsertedLoadsForPtr[FieldNo];
1010}
1011
1012/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1013/// the load, rewrite the derived value to use the HeapSRoA'd load.
1014static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1015                               const std::vector<GlobalVariable*> &FieldGlobals,
1016                                    std::vector<Value *> &InsertedLoadsForPtr) {
1017  // If this is a comparison against null, handle it.
1018  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1019    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1020    // If we have a setcc of the loaded pointer, we can use a setcc of any
1021    // field.
1022    Value *NPtr;
1023    if (InsertedLoadsForPtr.empty()) {
1024      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
1025    } else {
1026      NPtr = InsertedLoadsForPtr.back();
1027    }
1028
1029    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1030                              Constant::getNullValue(NPtr->getType()),
1031                              SCI->getName(), SCI);
1032    SCI->replaceAllUsesWith(New);
1033    SCI->eraseFromParent();
1034    return;
1035  }
1036
1037  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1038  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1039    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1040           && "Unexpected GEPI!");
1041
1042    // Load the pointer for this field.
1043    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1044    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1045                                    FieldGlobals, InsertedLoadsForPtr);
1046
1047    // Create the new GEP idx vector.
1048    SmallVector<Value*, 8> GEPIdx;
1049    GEPIdx.push_back(GEPI->getOperand(1));
1050    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1051
1052    Value *NGEPI = new GetElementPtrInst(NewPtr, GEPIdx.begin(), GEPIdx.end(),
1053                                         GEPI->getName(), GEPI);
1054    GEPI->replaceAllUsesWith(NGEPI);
1055    GEPI->eraseFromParent();
1056    return;
1057  }
1058
1059  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
1060  // potentially the original malloc.  Insert phi nodes for each field, then
1061  // process uses of the PHI.
1062  PHINode *PN = cast<PHINode>(LoadUser);
1063  std::vector<Value *> PHIsForField;
1064  PHIsForField.resize(FieldGlobals.size());
1065  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1066    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1067
1068    PHINode *FieldPN = new PHINode(LoadV->getType(),
1069                                   PN->getName()+"."+utostr(i), PN);
1070    // Fill in the predecessor values.
1071    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1072      // Each predecessor either uses the load or the original malloc.
1073      Value *InVal = PN->getIncomingValue(pred);
1074      BasicBlock *BB = PN->getIncomingBlock(pred);
1075      Value *NewVal;
1076      if (isa<MallocInst>(InVal)) {
1077        // Insert a reload from the global in the predecessor.
1078        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1079                                 PHIsForField);
1080      } else {
1081        NewVal = InsertedLoadsForPtr[i];
1082      }
1083      FieldPN->addIncoming(NewVal, BB);
1084    }
1085    PHIsForField[i] = FieldPN;
1086  }
1087
1088  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1089  // will never insert a load.
1090  while (!PN->use_empty())
1091    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1092  PN->eraseFromParent();
1093}
1094
1095/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1096/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1097/// use FieldGlobals instead.  All uses of loaded values satisfy
1098/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1099static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1100                             const std::vector<GlobalVariable*> &FieldGlobals) {
1101  std::vector<Value *> InsertedLoadsForPtr;
1102  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1103  while (!Load->use_empty())
1104    RewriteHeapSROALoadUser(Load, Load->use_back(),
1105                            FieldGlobals, InsertedLoadsForPtr);
1106}
1107
1108/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1109/// it up into multiple allocations of arrays of the fields.
1110static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1111  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1112  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1113
1114  // There is guaranteed to be at least one use of the malloc (storing
1115  // it into GV).  If there are other uses, change them to be uses of
1116  // the global to simplify later code.  This also deletes the store
1117  // into GV.
1118  ReplaceUsesOfMallocWithGlobal(MI, GV);
1119
1120  // Okay, at this point, there are no users of the malloc.  Insert N
1121  // new mallocs at the same place as MI, and N globals.
1122  std::vector<GlobalVariable*> FieldGlobals;
1123  std::vector<MallocInst*> FieldMallocs;
1124
1125  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1126    const Type *FieldTy = STy->getElementType(FieldNo);
1127    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1128
1129    GlobalVariable *NGV =
1130      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1131                         Constant::getNullValue(PFieldTy),
1132                         GV->getName() + ".f" + utostr(FieldNo), GV,
1133                         GV->isThreadLocal());
1134    FieldGlobals.push_back(NGV);
1135
1136    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1137                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1138    FieldMallocs.push_back(NMI);
1139    new StoreInst(NMI, NGV, MI);
1140  }
1141
1142  // The tricky aspect of this transformation is handling the case when malloc
1143  // fails.  In the original code, malloc failing would set the result pointer
1144  // of malloc to null.  In this case, some mallocs could succeed and others
1145  // could fail.  As such, we emit code that looks like this:
1146  //    F0 = malloc(field0)
1147  //    F1 = malloc(field1)
1148  //    F2 = malloc(field2)
1149  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1150  //      if (F0) { free(F0); F0 = 0; }
1151  //      if (F1) { free(F1); F1 = 0; }
1152  //      if (F2) { free(F2); F2 = 0; }
1153  //    }
1154  Value *RunningOr = 0;
1155  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1156    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1157                             Constant::getNullValue(FieldMallocs[i]->getType()),
1158                                  "isnull", MI);
1159    if (!RunningOr)
1160      RunningOr = Cond;   // First seteq
1161    else
1162      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1163  }
1164
1165  // Split the basic block at the old malloc.
1166  BasicBlock *OrigBB = MI->getParent();
1167  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1168
1169  // Create the block to check the first condition.  Put all these blocks at the
1170  // end of the function as they are unlikely to be executed.
1171  BasicBlock *NullPtrBlock = new BasicBlock("malloc_ret_null",
1172                                            OrigBB->getParent());
1173
1174  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1175  // branch on RunningOr.
1176  OrigBB->getTerminator()->eraseFromParent();
1177  new BranchInst(NullPtrBlock, ContBB, RunningOr, OrigBB);
1178
1179  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1180  // pointer, because some may be null while others are not.
1181  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1182    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1183    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1184                              Constant::getNullValue(GVVal->getType()),
1185                              "tmp", NullPtrBlock);
1186    BasicBlock *FreeBlock = new BasicBlock("free_it", OrigBB->getParent());
1187    BasicBlock *NextBlock = new BasicBlock("next", OrigBB->getParent());
1188    new BranchInst(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1189
1190    // Fill in FreeBlock.
1191    new FreeInst(GVVal, FreeBlock);
1192    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1193                  FreeBlock);
1194    new BranchInst(NextBlock, FreeBlock);
1195
1196    NullPtrBlock = NextBlock;
1197  }
1198
1199  new BranchInst(ContBB, NullPtrBlock);
1200
1201
1202  // MI is no longer needed, remove it.
1203  MI->eraseFromParent();
1204
1205
1206  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1207  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1208  // of the per-field globals instead.
1209  while (!GV->use_empty()) {
1210    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1211      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1212      LI->eraseFromParent();
1213    } else {
1214      // Must be a store of null.
1215      StoreInst *SI = cast<StoreInst>(GV->use_back());
1216      assert(isa<Constant>(SI->getOperand(0)) &&
1217             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1218             "Unexpected heap-sra user!");
1219
1220      // Insert a store of null into each global.
1221      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1222        Constant *Null =
1223          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1224        new StoreInst(Null, FieldGlobals[i], SI);
1225      }
1226      // Erase the original store.
1227      SI->eraseFromParent();
1228    }
1229  }
1230
1231  // The old global is now dead, remove it.
1232  GV->eraseFromParent();
1233
1234  ++NumHeapSRA;
1235  return FieldGlobals[0];
1236}
1237
1238
1239// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1240// that only one value (besides its initializer) is ever stored to the global.
1241static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1242                                     Module::global_iterator &GVI,
1243                                     TargetData &TD) {
1244  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1245    StoredOnceVal = CI->getOperand(0);
1246  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1247    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1248    bool IsJustACast = true;
1249    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1250      if (!isa<Constant>(GEPI->getOperand(i)) ||
1251          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1252        IsJustACast = false;
1253        break;
1254      }
1255    if (IsJustACast)
1256      StoredOnceVal = GEPI->getOperand(0);
1257  }
1258
1259  // If we are dealing with a pointer global that is initialized to null and
1260  // only has one (non-null) value stored into it, then we can optimize any
1261  // users of the loaded value (often calls and loads) that would trap if the
1262  // value was null.
1263  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1264      GV->getInitializer()->isNullValue()) {
1265    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1266      if (GV->getInitializer()->getType() != SOVC->getType())
1267        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1268
1269      // Optimize away any trapping uses of the loaded value.
1270      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1271        return true;
1272    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1273      // If this is a malloc of an abstract type, don't touch it.
1274      if (!MI->getAllocatedType()->isSized())
1275        return false;
1276
1277      // We can't optimize this global unless all uses of it are *known* to be
1278      // of the malloc value, not of the null initializer value (consider a use
1279      // that compares the global's value against zero to see if the malloc has
1280      // been reached).  To do this, we check to see if all uses of the global
1281      // would trap if the global were null: this proves that they must all
1282      // happen after the malloc.
1283      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1284        return false;
1285
1286      // We can't optimize this if the malloc itself is used in a complex way,
1287      // for example, being stored into multiple globals.  This allows the
1288      // malloc to be stored into the specified global, loaded setcc'd, and
1289      // GEP'd.  These are all things we could transform to using the global
1290      // for.
1291      {
1292        SmallPtrSet<PHINode*, 8> PHIs;
1293        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1294          return false;
1295      }
1296
1297
1298      // If we have a global that is only initialized with a fixed size malloc,
1299      // transform the program to use global memory instead of malloc'd memory.
1300      // This eliminates dynamic allocation, avoids an indirection accessing the
1301      // data, and exposes the resultant global to further GlobalOpt.
1302      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1303        // Restrict this transformation to only working on small allocations
1304        // (2048 bytes currently), as we don't want to introduce a 16M global or
1305        // something.
1306        if (NElements->getZExtValue()*
1307                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
1308          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1309          return true;
1310        }
1311      }
1312
1313      // If the allocation is an array of structures, consider transforming this
1314      // into multiple malloc'd arrays, one for each field.  This is basically
1315      // SRoA for malloc'd memory.
1316      if (const StructType *AllocTy =
1317                  dyn_cast<StructType>(MI->getAllocatedType())) {
1318        // This the structure has an unreasonable number of fields, leave it
1319        // alone.
1320        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1321            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1322          GVI = PerformHeapAllocSRoA(GV, MI);
1323          return true;
1324        }
1325      }
1326    }
1327  }
1328
1329  return false;
1330}
1331
1332/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1333/// two values ever stored into GV are its initializer and OtherVal.  See if we
1334/// can shrink the global into a boolean and select between the two values
1335/// whenever it is used.  This exposes the values to other scalar optimizations.
1336static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1337  const Type *GVElType = GV->getType()->getElementType();
1338
1339  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1340  // an FP value or vector, don't do this optimization because a select between
1341  // them is very expensive and unlikely to lead to later simplification.
1342  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1343      isa<VectorType>(GVElType))
1344    return false;
1345
1346  // Walk the use list of the global seeing if all the uses are load or store.
1347  // If there is anything else, bail out.
1348  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1349    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1350      return false;
1351
1352  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1353
1354  // Create the new global, initializing it to false.
1355  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1356         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1357                                             GV->getName()+".b",
1358                                             (Module *)NULL,
1359                                             GV->isThreadLocal());
1360  GV->getParent()->getGlobalList().insert(GV, NewGV);
1361
1362  Constant *InitVal = GV->getInitializer();
1363  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1364
1365  // If initialized to zero and storing one into the global, we can use a cast
1366  // instead of a select to synthesize the desired value.
1367  bool IsOneZero = false;
1368  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1369    IsOneZero = InitVal->isNullValue() && CI->isOne();
1370
1371  while (!GV->use_empty()) {
1372    Instruction *UI = cast<Instruction>(GV->use_back());
1373    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1374      // Change the store into a boolean store.
1375      bool StoringOther = SI->getOperand(0) == OtherVal;
1376      // Only do this if we weren't storing a loaded value.
1377      Value *StoreVal;
1378      if (StoringOther || SI->getOperand(0) == InitVal)
1379        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1380      else {
1381        // Otherwise, we are storing a previously loaded copy.  To do this,
1382        // change the copy from copying the original value to just copying the
1383        // bool.
1384        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1385
1386        // If we're already replaced the input, StoredVal will be a cast or
1387        // select instruction.  If not, it will be a load of the original
1388        // global.
1389        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1390          assert(LI->getOperand(0) == GV && "Not a copy!");
1391          // Insert a new load, to preserve the saved value.
1392          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1393        } else {
1394          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1395                 "This is not a form that we understand!");
1396          StoreVal = StoredVal->getOperand(0);
1397          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1398        }
1399      }
1400      new StoreInst(StoreVal, NewGV, SI);
1401    } else {
1402      // Change the load into a load of bool then a select.
1403      LoadInst *LI = cast<LoadInst>(UI);
1404      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1405      Value *NSI;
1406      if (IsOneZero)
1407        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1408      else
1409        NSI = new SelectInst(NLI, OtherVal, InitVal, "", LI);
1410      NSI->takeName(LI);
1411      LI->replaceAllUsesWith(NSI);
1412    }
1413    UI->eraseFromParent();
1414  }
1415
1416  GV->eraseFromParent();
1417  return true;
1418}
1419
1420
1421/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1422/// it if possible.  If we make a change, return true.
1423bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1424                                      Module::global_iterator &GVI) {
1425  std::set<PHINode*> PHIUsers;
1426  GlobalStatus GS;
1427  GV->removeDeadConstantUsers();
1428
1429  if (GV->use_empty()) {
1430    DOUT << "GLOBAL DEAD: " << *GV;
1431    GV->eraseFromParent();
1432    ++NumDeleted;
1433    return true;
1434  }
1435
1436  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1437#if 0
1438    cerr << "Global: " << *GV;
1439    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1440    cerr << "  StoredType = ";
1441    switch (GS.StoredType) {
1442    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1443    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1444    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1445    case GlobalStatus::isStored: cerr << "stored\n"; break;
1446    }
1447    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1448      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1449    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1450      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1451                << "\n";
1452    cerr << "  HasMultipleAccessingFunctions =  "
1453              << GS.HasMultipleAccessingFunctions << "\n";
1454    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1455    cerr << "\n";
1456#endif
1457
1458    // If this is a first class global and has only one accessing function
1459    // and this function is main (which we know is not recursive we can make
1460    // this global a local variable) we replace the global with a local alloca
1461    // in this function.
1462    //
1463    // NOTE: It doesn't make sense to promote non first class types since we
1464    // are just replacing static memory to stack memory.
1465    if (!GS.HasMultipleAccessingFunctions &&
1466        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1467        GV->getType()->getElementType()->isFirstClassType() &&
1468        GS.AccessingFunction->getName() == "main" &&
1469        GS.AccessingFunction->hasExternalLinkage()) {
1470      DOUT << "LOCALIZING GLOBAL: " << *GV;
1471      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1472      const Type* ElemTy = GV->getType()->getElementType();
1473      // FIXME: Pass Global's alignment when globals have alignment
1474      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1475      if (!isa<UndefValue>(GV->getInitializer()))
1476        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1477
1478      GV->replaceAllUsesWith(Alloca);
1479      GV->eraseFromParent();
1480      ++NumLocalized;
1481      return true;
1482    }
1483
1484    // If the global is never loaded (but may be stored to), it is dead.
1485    // Delete it now.
1486    if (!GS.isLoaded) {
1487      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1488
1489      // Delete any stores we can find to the global.  We may not be able to
1490      // make it completely dead though.
1491      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1492
1493      // If the global is dead now, delete it.
1494      if (GV->use_empty()) {
1495        GV->eraseFromParent();
1496        ++NumDeleted;
1497        Changed = true;
1498      }
1499      return Changed;
1500
1501    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1502      DOUT << "MARKING CONSTANT: " << *GV;
1503      GV->setConstant(true);
1504
1505      // Clean up any obviously simplifiable users now.
1506      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1507
1508      // If the global is dead now, just nuke it.
1509      if (GV->use_empty()) {
1510        DOUT << "   *** Marking constant allowed us to simplify "
1511             << "all users and delete global!\n";
1512        GV->eraseFromParent();
1513        ++NumDeleted;
1514      }
1515
1516      ++NumMarked;
1517      return true;
1518    } else if (!GV->getInitializer()->getType()->isFirstClassType()) {
1519      if (GlobalVariable *FirstNewGV = SRAGlobal(GV)) {
1520        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1521        return true;
1522      }
1523    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1524      // If the initial value for the global was an undef value, and if only
1525      // one other value was stored into it, we can just change the
1526      // initializer to be an undef value, then delete all stores to the
1527      // global.  This allows us to mark it constant.
1528      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1529        if (isa<UndefValue>(GV->getInitializer())) {
1530          // Change the initial value here.
1531          GV->setInitializer(SOVConstant);
1532
1533          // Clean up any obviously simplifiable users now.
1534          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1535
1536          if (GV->use_empty()) {
1537            DOUT << "   *** Substituting initializer allowed us to "
1538                 << "simplify all users and delete global!\n";
1539            GV->eraseFromParent();
1540            ++NumDeleted;
1541          } else {
1542            GVI = GV;
1543          }
1544          ++NumSubstitute;
1545          return true;
1546        }
1547
1548      // Try to optimize globals based on the knowledge that only one value
1549      // (besides its initializer) is ever stored to the global.
1550      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1551                                   getAnalysis<TargetData>()))
1552        return true;
1553
1554      // Otherwise, if the global was not a boolean, we can shrink it to be a
1555      // boolean.
1556      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1557        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1558          ++NumShrunkToBool;
1559          return true;
1560        }
1561    }
1562  }
1563  return false;
1564}
1565
1566/// OnlyCalledDirectly - Return true if the specified function is only called
1567/// directly.  In other words, its address is never taken.
1568static bool OnlyCalledDirectly(Function *F) {
1569  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1570    Instruction *User = dyn_cast<Instruction>(*UI);
1571    if (!User) return false;
1572    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1573
1574    // See if the function address is passed as an argument.
1575    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1576      if (User->getOperand(i) == F) return false;
1577  }
1578  return true;
1579}
1580
1581/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1582/// function, changing them to FastCC.
1583static void ChangeCalleesToFastCall(Function *F) {
1584  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1585    Instruction *User = cast<Instruction>(*UI);
1586    if (CallInst *CI = dyn_cast<CallInst>(User))
1587      CI->setCallingConv(CallingConv::Fast);
1588    else
1589      cast<InvokeInst>(User)->setCallingConv(CallingConv::Fast);
1590  }
1591}
1592
1593bool GlobalOpt::OptimizeFunctions(Module &M) {
1594  bool Changed = false;
1595  // Optimize functions.
1596  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1597    Function *F = FI++;
1598    F->removeDeadConstantUsers();
1599    if (F->use_empty() && (F->hasInternalLinkage() ||
1600                           F->hasLinkOnceLinkage())) {
1601      M.getFunctionList().erase(F);
1602      Changed = true;
1603      ++NumFnDeleted;
1604    } else if (F->hasInternalLinkage() &&
1605               F->getCallingConv() == CallingConv::C &&  !F->isVarArg() &&
1606               OnlyCalledDirectly(F)) {
1607      // If this function has C calling conventions, is not a varargs
1608      // function, and is only called directly, promote it to use the Fast
1609      // calling convention.
1610      F->setCallingConv(CallingConv::Fast);
1611      ChangeCalleesToFastCall(F);
1612      ++NumFastCallFns;
1613      Changed = true;
1614    }
1615  }
1616  return Changed;
1617}
1618
1619bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1620  bool Changed = false;
1621  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1622       GVI != E; ) {
1623    GlobalVariable *GV = GVI++;
1624    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1625        GV->hasInitializer())
1626      Changed |= ProcessInternalGlobal(GV, GVI);
1627  }
1628  return Changed;
1629}
1630
1631/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1632/// initializers have an init priority of 65535.
1633GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1634  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1635       I != E; ++I)
1636    if (I->getName() == "llvm.global_ctors") {
1637      // Found it, verify it's an array of { int, void()* }.
1638      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1639      if (!ATy) return 0;
1640      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1641      if (!STy || STy->getNumElements() != 2 ||
1642          STy->getElementType(0) != Type::Int32Ty) return 0;
1643      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1644      if (!PFTy) return 0;
1645      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1646      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1647          FTy->getNumParams() != 0)
1648        return 0;
1649
1650      // Verify that the initializer is simple enough for us to handle.
1651      if (!I->hasInitializer()) return 0;
1652      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1653      if (!CA) return 0;
1654      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1655        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1656          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1657            continue;
1658
1659          // Must have a function or null ptr.
1660          if (!isa<Function>(CS->getOperand(1)))
1661            return 0;
1662
1663          // Init priority must be standard.
1664          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1665          if (!CI || CI->getZExtValue() != 65535)
1666            return 0;
1667        } else {
1668          return 0;
1669        }
1670
1671      return I;
1672    }
1673  return 0;
1674}
1675
1676/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1677/// return a list of the functions and null terminator as a vector.
1678static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1679  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1680  std::vector<Function*> Result;
1681  Result.reserve(CA->getNumOperands());
1682  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1683    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1684    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1685  }
1686  return Result;
1687}
1688
1689/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1690/// specified array, returning the new global to use.
1691static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1692                                          const std::vector<Function*> &Ctors) {
1693  // If we made a change, reassemble the initializer list.
1694  std::vector<Constant*> CSVals;
1695  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1696  CSVals.push_back(0);
1697
1698  // Create the new init list.
1699  std::vector<Constant*> CAList;
1700  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1701    if (Ctors[i]) {
1702      CSVals[1] = Ctors[i];
1703    } else {
1704      const Type *FTy = FunctionType::get(Type::VoidTy,
1705                                          std::vector<const Type*>(), false);
1706      const PointerType *PFTy = PointerType::getUnqual(FTy);
1707      CSVals[1] = Constant::getNullValue(PFTy);
1708      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1709    }
1710    CAList.push_back(ConstantStruct::get(CSVals));
1711  }
1712
1713  // Create the array initializer.
1714  const Type *StructTy =
1715    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1716  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1717                                    CAList);
1718
1719  // If we didn't change the number of elements, don't create a new GV.
1720  if (CA->getType() == GCL->getInitializer()->getType()) {
1721    GCL->setInitializer(CA);
1722    return GCL;
1723  }
1724
1725  // Create the new global and insert it next to the existing list.
1726  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1727                                           GCL->getLinkage(), CA, "",
1728                                           (Module *)NULL,
1729                                           GCL->isThreadLocal());
1730  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1731  NGV->takeName(GCL);
1732
1733  // Nuke the old list, replacing any uses with the new one.
1734  if (!GCL->use_empty()) {
1735    Constant *V = NGV;
1736    if (V->getType() != GCL->getType())
1737      V = ConstantExpr::getBitCast(V, GCL->getType());
1738    GCL->replaceAllUsesWith(V);
1739  }
1740  GCL->eraseFromParent();
1741
1742  if (Ctors.size())
1743    return NGV;
1744  else
1745    return 0;
1746}
1747
1748
1749static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1750                        Value *V) {
1751  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1752  Constant *R = ComputedValues[V];
1753  assert(R && "Reference to an uncomputed value!");
1754  return R;
1755}
1756
1757/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1758/// enough for us to understand.  In particular, if it is a cast of something,
1759/// we punt.  We basically just support direct accesses to globals and GEP's of
1760/// globals.  This should be kept up to date with CommitValueTo.
1761static bool isSimpleEnoughPointerToCommit(Constant *C) {
1762  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1763    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1764      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1765    return !GV->isDeclaration();  // reject external globals.
1766  }
1767  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1768    // Handle a constantexpr gep.
1769    if (CE->getOpcode() == Instruction::GetElementPtr &&
1770        isa<GlobalVariable>(CE->getOperand(0))) {
1771      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1772      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1773        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1774      return GV->hasInitializer() &&
1775             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1776    }
1777  return false;
1778}
1779
1780/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1781/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1782/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1783static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1784                                   ConstantExpr *Addr, unsigned OpNo) {
1785  // Base case of the recursion.
1786  if (OpNo == Addr->getNumOperands()) {
1787    assert(Val->getType() == Init->getType() && "Type mismatch!");
1788    return Val;
1789  }
1790
1791  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1792    std::vector<Constant*> Elts;
1793
1794    // Break up the constant into its elements.
1795    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1796      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1797        Elts.push_back(CS->getOperand(i));
1798    } else if (isa<ConstantAggregateZero>(Init)) {
1799      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1800        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1801    } else if (isa<UndefValue>(Init)) {
1802      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1803        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1804    } else {
1805      assert(0 && "This code is out of sync with "
1806             " ConstantFoldLoadThroughGEPConstantExpr");
1807    }
1808
1809    // Replace the element that we are supposed to.
1810    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1811    unsigned Idx = CU->getZExtValue();
1812    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1813    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1814
1815    // Return the modified struct.
1816    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1817  } else {
1818    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1819    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1820
1821    // Break up the array into elements.
1822    std::vector<Constant*> Elts;
1823    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1824      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1825        Elts.push_back(CA->getOperand(i));
1826    } else if (isa<ConstantAggregateZero>(Init)) {
1827      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1828      Elts.assign(ATy->getNumElements(), Elt);
1829    } else if (isa<UndefValue>(Init)) {
1830      Constant *Elt = UndefValue::get(ATy->getElementType());
1831      Elts.assign(ATy->getNumElements(), Elt);
1832    } else {
1833      assert(0 && "This code is out of sync with "
1834             " ConstantFoldLoadThroughGEPConstantExpr");
1835    }
1836
1837    assert(CI->getZExtValue() < ATy->getNumElements());
1838    Elts[CI->getZExtValue()] =
1839      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1840    return ConstantArray::get(ATy, Elts);
1841  }
1842}
1843
1844/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1845/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1846static void CommitValueTo(Constant *Val, Constant *Addr) {
1847  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1848    assert(GV->hasInitializer());
1849    GV->setInitializer(Val);
1850    return;
1851  }
1852
1853  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1854  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1855
1856  Constant *Init = GV->getInitializer();
1857  Init = EvaluateStoreInto(Init, Val, CE, 2);
1858  GV->setInitializer(Init);
1859}
1860
1861/// ComputeLoadResult - Return the value that would be computed by a load from
1862/// P after the stores reflected by 'memory' have been performed.  If we can't
1863/// decide, return null.
1864static Constant *ComputeLoadResult(Constant *P,
1865                                const std::map<Constant*, Constant*> &Memory) {
1866  // If this memory location has been recently stored, use the stored value: it
1867  // is the most up-to-date.
1868  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1869  if (I != Memory.end()) return I->second;
1870
1871  // Access it.
1872  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1873    if (GV->hasInitializer())
1874      return GV->getInitializer();
1875    return 0;
1876  }
1877
1878  // Handle a constantexpr getelementptr.
1879  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1880    if (CE->getOpcode() == Instruction::GetElementPtr &&
1881        isa<GlobalVariable>(CE->getOperand(0))) {
1882      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1883      if (GV->hasInitializer())
1884        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1885    }
1886
1887  return 0;  // don't know how to evaluate.
1888}
1889
1890/// EvaluateFunction - Evaluate a call to function F, returning true if
1891/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1892/// arguments for the function.
1893static bool EvaluateFunction(Function *F, Constant *&RetVal,
1894                             const std::vector<Constant*> &ActualArgs,
1895                             std::vector<Function*> &CallStack,
1896                             std::map<Constant*, Constant*> &MutatedMemory,
1897                             std::vector<GlobalVariable*> &AllocaTmps) {
1898  // Check to see if this function is already executing (recursion).  If so,
1899  // bail out.  TODO: we might want to accept limited recursion.
1900  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1901    return false;
1902
1903  CallStack.push_back(F);
1904
1905  /// Values - As we compute SSA register values, we store their contents here.
1906  std::map<Value*, Constant*> Values;
1907
1908  // Initialize arguments to the incoming values specified.
1909  unsigned ArgNo = 0;
1910  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1911       ++AI, ++ArgNo)
1912    Values[AI] = ActualArgs[ArgNo];
1913
1914  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1915  /// we can only evaluate any one basic block at most once.  This set keeps
1916  /// track of what we have executed so we can detect recursive cases etc.
1917  std::set<BasicBlock*> ExecutedBlocks;
1918
1919  // CurInst - The current instruction we're evaluating.
1920  BasicBlock::iterator CurInst = F->begin()->begin();
1921
1922  // This is the main evaluation loop.
1923  while (1) {
1924    Constant *InstResult = 0;
1925
1926    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1927      if (SI->isVolatile()) return false;  // no volatile accesses.
1928      Constant *Ptr = getVal(Values, SI->getOperand(1));
1929      if (!isSimpleEnoughPointerToCommit(Ptr))
1930        // If this is too complex for us to commit, reject it.
1931        return false;
1932      Constant *Val = getVal(Values, SI->getOperand(0));
1933      MutatedMemory[Ptr] = Val;
1934    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1935      InstResult = ConstantExpr::get(BO->getOpcode(),
1936                                     getVal(Values, BO->getOperand(0)),
1937                                     getVal(Values, BO->getOperand(1)));
1938    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
1939      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
1940                                            getVal(Values, CI->getOperand(0)),
1941                                            getVal(Values, CI->getOperand(1)));
1942    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
1943      InstResult = ConstantExpr::getCast(CI->getOpcode(),
1944                                         getVal(Values, CI->getOperand(0)),
1945                                         CI->getType());
1946    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
1947      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
1948                                           getVal(Values, SI->getOperand(1)),
1949                                           getVal(Values, SI->getOperand(2)));
1950    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
1951      Constant *P = getVal(Values, GEP->getOperand(0));
1952      SmallVector<Constant*, 8> GEPOps;
1953      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
1954        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
1955      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
1956    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
1957      if (LI->isVolatile()) return false;  // no volatile accesses.
1958      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
1959                                     MutatedMemory);
1960      if (InstResult == 0) return false; // Could not evaluate load.
1961    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
1962      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
1963      const Type *Ty = AI->getType()->getElementType();
1964      AllocaTmps.push_back(new GlobalVariable(Ty, false,
1965                                              GlobalValue::InternalLinkage,
1966                                              UndefValue::get(Ty),
1967                                              AI->getName()));
1968      InstResult = AllocaTmps.back();
1969    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
1970      // Cannot handle inline asm.
1971      if (isa<InlineAsm>(CI->getOperand(0))) return false;
1972
1973      // Resolve function pointers.
1974      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
1975      if (!Callee) return false;  // Cannot resolve.
1976
1977      std::vector<Constant*> Formals;
1978      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
1979        Formals.push_back(getVal(Values, CI->getOperand(i)));
1980
1981      if (Callee->isDeclaration()) {
1982        // If this is a function we can constant fold, do it.
1983        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
1984                                           Formals.size())) {
1985          InstResult = C;
1986        } else {
1987          return false;
1988        }
1989      } else {
1990        if (Callee->getFunctionType()->isVarArg())
1991          return false;
1992
1993        Constant *RetVal;
1994
1995        // Execute the call, if successful, use the return value.
1996        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
1997                              MutatedMemory, AllocaTmps))
1998          return false;
1999        InstResult = RetVal;
2000      }
2001    } else if (isa<TerminatorInst>(CurInst)) {
2002      BasicBlock *NewBB = 0;
2003      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2004        if (BI->isUnconditional()) {
2005          NewBB = BI->getSuccessor(0);
2006        } else {
2007          ConstantInt *Cond =
2008            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2009          if (!Cond) return false;  // Cannot determine.
2010
2011          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2012        }
2013      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2014        ConstantInt *Val =
2015          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2016        if (!Val) return false;  // Cannot determine.
2017        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2018      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2019        if (RI->getNumOperands())
2020          RetVal = getVal(Values, RI->getOperand(0));
2021
2022        CallStack.pop_back();  // return from fn.
2023        return true;  // We succeeded at evaluating this ctor!
2024      } else {
2025        // invoke, unwind, unreachable.
2026        return false;  // Cannot handle this terminator.
2027      }
2028
2029      // Okay, we succeeded in evaluating this control flow.  See if we have
2030      // executed the new block before.  If so, we have a looping function,
2031      // which we cannot evaluate in reasonable time.
2032      if (!ExecutedBlocks.insert(NewBB).second)
2033        return false;  // looped!
2034
2035      // Okay, we have never been in this block before.  Check to see if there
2036      // are any PHI nodes.  If so, evaluate them with information about where
2037      // we came from.
2038      BasicBlock *OldBB = CurInst->getParent();
2039      CurInst = NewBB->begin();
2040      PHINode *PN;
2041      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2042        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2043
2044      // Do NOT increment CurInst.  We know that the terminator had no value.
2045      continue;
2046    } else {
2047      // Did not know how to evaluate this!
2048      return false;
2049    }
2050
2051    if (!CurInst->use_empty())
2052      Values[CurInst] = InstResult;
2053
2054    // Advance program counter.
2055    ++CurInst;
2056  }
2057}
2058
2059/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2060/// we can.  Return true if we can, false otherwise.
2061static bool EvaluateStaticConstructor(Function *F) {
2062  /// MutatedMemory - For each store we execute, we update this map.  Loads
2063  /// check this to get the most up-to-date value.  If evaluation is successful,
2064  /// this state is committed to the process.
2065  std::map<Constant*, Constant*> MutatedMemory;
2066
2067  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2068  /// to represent its body.  This vector is needed so we can delete the
2069  /// temporary globals when we are done.
2070  std::vector<GlobalVariable*> AllocaTmps;
2071
2072  /// CallStack - This is used to detect recursion.  In pathological situations
2073  /// we could hit exponential behavior, but at least there is nothing
2074  /// unbounded.
2075  std::vector<Function*> CallStack;
2076
2077  // Call the function.
2078  Constant *RetValDummy;
2079  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2080                                       CallStack, MutatedMemory, AllocaTmps);
2081  if (EvalSuccess) {
2082    // We succeeded at evaluation: commit the result.
2083    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2084         << F->getName() << "' to " << MutatedMemory.size()
2085         << " stores.\n";
2086    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2087         E = MutatedMemory.end(); I != E; ++I)
2088      CommitValueTo(I->second, I->first);
2089  }
2090
2091  // At this point, we are done interpreting.  If we created any 'alloca'
2092  // temporaries, release them now.
2093  while (!AllocaTmps.empty()) {
2094    GlobalVariable *Tmp = AllocaTmps.back();
2095    AllocaTmps.pop_back();
2096
2097    // If there are still users of the alloca, the program is doing something
2098    // silly, e.g. storing the address of the alloca somewhere and using it
2099    // later.  Since this is undefined, we'll just make it be null.
2100    if (!Tmp->use_empty())
2101      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2102    delete Tmp;
2103  }
2104
2105  return EvalSuccess;
2106}
2107
2108
2109
2110/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2111/// Return true if anything changed.
2112bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2113  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2114  bool MadeChange = false;
2115  if (Ctors.empty()) return false;
2116
2117  // Loop over global ctors, optimizing them when we can.
2118  for (unsigned i = 0; i != Ctors.size(); ++i) {
2119    Function *F = Ctors[i];
2120    // Found a null terminator in the middle of the list, prune off the rest of
2121    // the list.
2122    if (F == 0) {
2123      if (i != Ctors.size()-1) {
2124        Ctors.resize(i+1);
2125        MadeChange = true;
2126      }
2127      break;
2128    }
2129
2130    // We cannot simplify external ctor functions.
2131    if (F->empty()) continue;
2132
2133    // If we can evaluate the ctor at compile time, do.
2134    if (EvaluateStaticConstructor(F)) {
2135      Ctors.erase(Ctors.begin()+i);
2136      MadeChange = true;
2137      --i;
2138      ++NumCtorsEvaluated;
2139      continue;
2140    }
2141  }
2142
2143  if (!MadeChange) return false;
2144
2145  GCL = InstallGlobalCtors(GCL, Ctors);
2146  return true;
2147}
2148
2149
2150bool GlobalOpt::runOnModule(Module &M) {
2151  bool Changed = false;
2152
2153  // Try to find the llvm.globalctors list.
2154  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2155
2156  bool LocalChange = true;
2157  while (LocalChange) {
2158    LocalChange = false;
2159
2160    // Delete functions that are trivially dead, ccc -> fastcc
2161    LocalChange |= OptimizeFunctions(M);
2162
2163    // Optimize global_ctors list.
2164    if (GlobalCtors)
2165      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2166
2167    // Optimize non-address-taken globals.
2168    LocalChange |= OptimizeGlobalVars(M);
2169    Changed |= LocalChange;
2170  }
2171
2172  // TODO: Move all global ctors functions to the end of the module for code
2173  // layout.
2174
2175  return Changed;
2176}
2177