GlobalOpt.cpp revision 9524ee6fbbe252887fc957b2d5612318abed5171
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumMarked    , "Number of globals marked constant");
44STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
45STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
46STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
47STATISTIC(NumDeleted   , "Number of globals deleted");
48STATISTIC(NumFnDeleted , "Number of functions deleted");
49STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
50STATISTIC(NumLocalized , "Number of globals localized");
51STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
52STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
53STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
54STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
55STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
56STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
57
58namespace {
59  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61    }
62    static char ID; // Pass identification, replacement for typeid
63    GlobalOpt() : ModulePass(&ID) {}
64
65    bool runOnModule(Module &M);
66
67  private:
68    GlobalVariable *FindGlobalCtors(Module &M);
69    bool OptimizeFunctions(Module &M);
70    bool OptimizeGlobalVars(Module &M);
71    bool OptimizeGlobalAliases(Module &M);
72    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
73    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
74  };
75}
76
77char GlobalOpt::ID = 0;
78static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
79
80ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
81
82namespace {
83
84/// GlobalStatus - As we analyze each global, keep track of some information
85/// about it.  If we find out that the address of the global is taken, none of
86/// this info will be accurate.
87struct VISIBILITY_HIDDEN GlobalStatus {
88  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
89  /// loaded it can be deleted.
90  bool isLoaded;
91
92  /// StoredType - Keep track of what stores to the global look like.
93  ///
94  enum StoredType {
95    /// NotStored - There is no store to this global.  It can thus be marked
96    /// constant.
97    NotStored,
98
99    /// isInitializerStored - This global is stored to, but the only thing
100    /// stored is the constant it was initialized with.  This is only tracked
101    /// for scalar globals.
102    isInitializerStored,
103
104    /// isStoredOnce - This global is stored to, but only its initializer and
105    /// one other value is ever stored to it.  If this global isStoredOnce, we
106    /// track the value stored to it in StoredOnceValue below.  This is only
107    /// tracked for scalar globals.
108    isStoredOnce,
109
110    /// isStored - This global is stored to by multiple values or something else
111    /// that we cannot track.
112    isStored
113  } StoredType;
114
115  /// StoredOnceValue - If only one value (besides the initializer constant) is
116  /// ever stored to this global, keep track of what value it is.
117  Value *StoredOnceValue;
118
119  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
120  /// null/false.  When the first accessing function is noticed, it is recorded.
121  /// When a second different accessing function is noticed,
122  /// HasMultipleAccessingFunctions is set to true.
123  Function *AccessingFunction;
124  bool HasMultipleAccessingFunctions;
125
126  /// HasNonInstructionUser - Set to true if this global has a user that is not
127  /// an instruction (e.g. a constant expr or GV initializer).
128  bool HasNonInstructionUser;
129
130  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
131  bool HasPHIUser;
132
133  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
134                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
135                   HasNonInstructionUser(false), HasPHIUser(false) {}
136};
137
138}
139
140// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
141// by constants itself.  Note that constants cannot be cyclic, so this test is
142// pretty easy to implement recursively.
143//
144static bool SafeToDestroyConstant(Constant *C) {
145  if (isa<GlobalValue>(C)) return false;
146
147  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
148    if (Constant *CU = dyn_cast<Constant>(*UI)) {
149      if (!SafeToDestroyConstant(CU)) return false;
150    } else
151      return false;
152  return true;
153}
154
155
156/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157/// structure.  If the global has its address taken, return true to indicate we
158/// can't do anything with it.
159///
160static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
161                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
162  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
163    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
164      GS.HasNonInstructionUser = true;
165
166      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
167
168    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
169      if (!GS.HasMultipleAccessingFunctions) {
170        Function *F = I->getParent()->getParent();
171        if (GS.AccessingFunction == 0)
172          GS.AccessingFunction = F;
173        else if (GS.AccessingFunction != F)
174          GS.HasMultipleAccessingFunctions = true;
175      }
176      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
177        GS.isLoaded = true;
178        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
179      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
180        // Don't allow a store OF the address, only stores TO the address.
181        if (SI->getOperand(0) == V) return true;
182
183        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
184
185        // If this is a direct store to the global (i.e., the global is a scalar
186        // value, not an aggregate), keep more specific information about
187        // stores.
188        if (GS.StoredType != GlobalStatus::isStored) {
189          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
190            Value *StoredVal = SI->getOperand(0);
191            if (StoredVal == GV->getInitializer()) {
192              if (GS.StoredType < GlobalStatus::isInitializerStored)
193                GS.StoredType = GlobalStatus::isInitializerStored;
194            } else if (isa<LoadInst>(StoredVal) &&
195                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
196              // G = G
197              if (GS.StoredType < GlobalStatus::isInitializerStored)
198                GS.StoredType = GlobalStatus::isInitializerStored;
199            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
200              GS.StoredType = GlobalStatus::isStoredOnce;
201              GS.StoredOnceValue = StoredVal;
202            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
203                       GS.StoredOnceValue == StoredVal) {
204              // noop.
205            } else {
206              GS.StoredType = GlobalStatus::isStored;
207            }
208          } else {
209            GS.StoredType = GlobalStatus::isStored;
210          }
211        }
212      } else if (isa<GetElementPtrInst>(I)) {
213        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
214      } else if (isa<SelectInst>(I)) {
215        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
217        // PHI nodes we can check just like select or GEP instructions, but we
218        // have to be careful about infinite recursion.
219        if (PHIUsers.insert(PN))  // Not already visited.
220          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221        GS.HasPHIUser = true;
222      } else if (isa<CmpInst>(I)) {
223      } else if (isa<MemTransferInst>(I)) {
224        if (I->getOperand(1) == V)
225          GS.StoredType = GlobalStatus::isStored;
226        if (I->getOperand(2) == V)
227          GS.isLoaded = true;
228      } else if (isa<MemSetInst>(I)) {
229        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
230        GS.StoredType = GlobalStatus::isStored;
231      } else {
232        return true;  // Any other non-load instruction might take address!
233      }
234    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
235      GS.HasNonInstructionUser = true;
236      // We might have a dead and dangling constant hanging off of here.
237      if (!SafeToDestroyConstant(C))
238        return true;
239    } else {
240      GS.HasNonInstructionUser = true;
241      // Otherwise must be some other user.
242      return true;
243    }
244
245  return false;
246}
247
248static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
249                                             LLVMContext &Context) {
250  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
251  if (!CI) return 0;
252  unsigned IdxV = CI->getZExtValue();
253
254  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
255    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
256  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
257    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
258  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
259    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
260  } else if (isa<ConstantAggregateZero>(Agg)) {
261    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
262      if (IdxV < STy->getNumElements())
263        return Constant::getNullValue(STy->getElementType(IdxV));
264    } else if (const SequentialType *STy =
265               dyn_cast<SequentialType>(Agg->getType())) {
266      return Constant::getNullValue(STy->getElementType());
267    }
268  } else if (isa<UndefValue>(Agg)) {
269    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
270      if (IdxV < STy->getNumElements())
271        return UndefValue::get(STy->getElementType(IdxV));
272    } else if (const SequentialType *STy =
273               dyn_cast<SequentialType>(Agg->getType())) {
274      return UndefValue::get(STy->getElementType());
275    }
276  }
277  return 0;
278}
279
280
281/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
282/// users of the global, cleaning up the obvious ones.  This is largely just a
283/// quick scan over the use list to clean up the easy and obvious cruft.  This
284/// returns true if it made a change.
285static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
286                                       LLVMContext &Context) {
287  bool Changed = false;
288  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
289    User *U = *UI++;
290
291    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292      if (Init) {
293        // Replace the load with the initializer.
294        LI->replaceAllUsesWith(Init);
295        LI->eraseFromParent();
296        Changed = true;
297      }
298    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299      // Store must be unreachable or storing Init into the global.
300      SI->eraseFromParent();
301      Changed = true;
302    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303      if (CE->getOpcode() == Instruction::GetElementPtr) {
304        Constant *SubInit = 0;
305        if (Init)
306          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
307        Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
308      } else if (CE->getOpcode() == Instruction::BitCast &&
309                 isa<PointerType>(CE->getType())) {
310        // Pointer cast, delete any stores and memsets to the global.
311        Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
312      }
313
314      if (CE->use_empty()) {
315        CE->destroyConstant();
316        Changed = true;
317      }
318    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321      // and will invalidate our notion of what Init is.
322      Constant *SubInit = 0;
323      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324        ConstantExpr *CE =
325          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
326        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
328      }
329      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
330
331      if (GEP->use_empty()) {
332        GEP->eraseFromParent();
333        Changed = true;
334      }
335    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
336      if (MI->getRawDest() == V) {
337        MI->eraseFromParent();
338        Changed = true;
339      }
340
341    } else if (Constant *C = dyn_cast<Constant>(U)) {
342      // If we have a chain of dead constantexprs or other things dangling from
343      // us, and if they are all dead, nuke them without remorse.
344      if (SafeToDestroyConstant(C)) {
345        C->destroyConstant();
346        // This could have invalidated UI, start over from scratch.
347        CleanupConstantGlobalUsers(V, Init, Context);
348        return true;
349      }
350    }
351  }
352  return Changed;
353}
354
355/// isSafeSROAElementUse - Return true if the specified instruction is a safe
356/// user of a derived expression from a global that we want to SROA.
357static bool isSafeSROAElementUse(Value *V) {
358  // We might have a dead and dangling constant hanging off of here.
359  if (Constant *C = dyn_cast<Constant>(V))
360    return SafeToDestroyConstant(C);
361
362  Instruction *I = dyn_cast<Instruction>(V);
363  if (!I) return false;
364
365  // Loads are ok.
366  if (isa<LoadInst>(I)) return true;
367
368  // Stores *to* the pointer are ok.
369  if (StoreInst *SI = dyn_cast<StoreInst>(I))
370    return SI->getOperand(0) != V;
371
372  // Otherwise, it must be a GEP.
373  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
374  if (GEPI == 0) return false;
375
376  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
377      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
378    return false;
379
380  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
381       I != E; ++I)
382    if (!isSafeSROAElementUse(*I))
383      return false;
384  return true;
385}
386
387
388/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389/// Look at it and its uses and decide whether it is safe to SROA this global.
390///
391static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393  if (!isa<GetElementPtrInst>(U) &&
394      (!isa<ConstantExpr>(U) ||
395       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
396    return false;
397
398  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
399  // don't like < 3 operand CE's, and we don't like non-constant integer
400  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
401  // value of C.
402  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403      !cast<Constant>(U->getOperand(1))->isNullValue() ||
404      !isa<ConstantInt>(U->getOperand(2)))
405    return false;
406
407  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408  ++GEPI;  // Skip over the pointer index.
409
410  // If this is a use of an array allocation, do a bit more checking for sanity.
411  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412    uint64_t NumElements = AT->getNumElements();
413    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
414
415    // Check to make sure that index falls within the array.  If not,
416    // something funny is going on, so we won't do the optimization.
417    //
418    if (Idx->getZExtValue() >= NumElements)
419      return false;
420
421    // We cannot scalar repl this level of the array unless any array
422    // sub-indices are in-range constants.  In particular, consider:
423    // A[0][i].  We cannot know that the user isn't doing invalid things like
424    // allowing i to index an out-of-range subscript that accesses A[1].
425    //
426    // Scalar replacing *just* the outer index of the array is probably not
427    // going to be a win anyway, so just give up.
428    for (++GEPI; // Skip array index.
429         GEPI != E;
430         ++GEPI) {
431      uint64_t NumElements;
432      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433        NumElements = SubArrayTy->getNumElements();
434      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
435        NumElements = SubVectorTy->getNumElements();
436      else {
437        assert(isa<StructType>(*GEPI) &&
438               "Indexed GEP type is not array, vector, or struct!");
439        continue;
440      }
441
442      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
443      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
444        return false;
445    }
446  }
447
448  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
449    if (!isSafeSROAElementUse(*I))
450      return false;
451  return true;
452}
453
454/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
455/// is safe for us to perform this transformation.
456///
457static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
458  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
459       UI != E; ++UI) {
460    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
461      return false;
462  }
463  return true;
464}
465
466
467/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
468/// variable.  This opens the door for other optimizations by exposing the
469/// behavior of the program in a more fine-grained way.  We have determined that
470/// this transformation is safe already.  We return the first global variable we
471/// insert so that the caller can reprocess it.
472static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
473                                 LLVMContext &Context) {
474  // Make sure this global only has simple uses that we can SRA.
475  if (!GlobalUsersSafeToSRA(GV))
476    return 0;
477
478  assert(GV->hasLocalLinkage() && !GV->isConstant());
479  Constant *Init = GV->getInitializer();
480  const Type *Ty = Init->getType();
481
482  std::vector<GlobalVariable*> NewGlobals;
483  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
484
485  // Get the alignment of the global, either explicit or target-specific.
486  unsigned StartAlignment = GV->getAlignment();
487  if (StartAlignment == 0)
488    StartAlignment = TD.getABITypeAlignment(GV->getType());
489
490  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
491    NewGlobals.reserve(STy->getNumElements());
492    const StructLayout &Layout = *TD.getStructLayout(STy);
493    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
494      Constant *In = getAggregateConstantElement(Init,
495                                ConstantInt::get(Type::getInt32Ty(Context), i),
496                                    Context);
497      assert(In && "Couldn't get element of initializer?");
498      GlobalVariable *NGV = new GlobalVariable(Context,
499                                               STy->getElementType(i), false,
500                                               GlobalVariable::InternalLinkage,
501                                               In, GV->getName()+"."+Twine(i),
502                                               GV->isThreadLocal(),
503                                              GV->getType()->getAddressSpace());
504      Globals.insert(GV, NGV);
505      NewGlobals.push_back(NGV);
506
507      // Calculate the known alignment of the field.  If the original aggregate
508      // had 256 byte alignment for example, something might depend on that:
509      // propagate info to each field.
510      uint64_t FieldOffset = Layout.getElementOffset(i);
511      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
512      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
513        NGV->setAlignment(NewAlign);
514    }
515  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
516    unsigned NumElements = 0;
517    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
518      NumElements = ATy->getNumElements();
519    else
520      NumElements = cast<VectorType>(STy)->getNumElements();
521
522    if (NumElements > 16 && GV->hasNUsesOrMore(16))
523      return 0; // It's not worth it.
524    NewGlobals.reserve(NumElements);
525
526    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
527    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
528    for (unsigned i = 0, e = NumElements; i != e; ++i) {
529      Constant *In = getAggregateConstantElement(Init,
530                                ConstantInt::get(Type::getInt32Ty(Context), i),
531                                    Context);
532      assert(In && "Couldn't get element of initializer?");
533
534      GlobalVariable *NGV = new GlobalVariable(Context,
535                                               STy->getElementType(), false,
536                                               GlobalVariable::InternalLinkage,
537                                               In, GV->getName()+"."+Twine(i),
538                                               GV->isThreadLocal(),
539                                              GV->getType()->getAddressSpace());
540      Globals.insert(GV, NGV);
541      NewGlobals.push_back(NGV);
542
543      // Calculate the known alignment of the field.  If the original aggregate
544      // had 256 byte alignment for example, something might depend on that:
545      // propagate info to each field.
546      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
547      if (NewAlign > EltAlign)
548        NGV->setAlignment(NewAlign);
549    }
550  }
551
552  if (NewGlobals.empty())
553    return 0;
554
555  DEBUG(errs() << "PERFORMING GLOBAL SRA ON: " << *GV);
556
557  Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context));
558
559  // Loop over all of the uses of the global, replacing the constantexpr geps,
560  // with smaller constantexpr geps or direct references.
561  while (!GV->use_empty()) {
562    User *GEP = GV->use_back();
563    assert(((isa<ConstantExpr>(GEP) &&
564             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
565            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
566
567    // Ignore the 1th operand, which has to be zero or else the program is quite
568    // broken (undefined).  Get the 2nd operand, which is the structure or array
569    // index.
570    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
571    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
572
573    Value *NewPtr = NewGlobals[Val];
574
575    // Form a shorter GEP if needed.
576    if (GEP->getNumOperands() > 3) {
577      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
578        SmallVector<Constant*, 8> Idxs;
579        Idxs.push_back(NullInt);
580        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
581          Idxs.push_back(CE->getOperand(i));
582        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
583                                                &Idxs[0], Idxs.size());
584      } else {
585        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
586        SmallVector<Value*, 8> Idxs;
587        Idxs.push_back(NullInt);
588        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
589          Idxs.push_back(GEPI->getOperand(i));
590        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
591                                           GEPI->getName()+"."+Twine(Val),GEPI);
592      }
593    }
594    GEP->replaceAllUsesWith(NewPtr);
595
596    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
597      GEPI->eraseFromParent();
598    else
599      cast<ConstantExpr>(GEP)->destroyConstant();
600  }
601
602  // Delete the old global, now that it is dead.
603  Globals.erase(GV);
604  ++NumSRA;
605
606  // Loop over the new globals array deleting any globals that are obviously
607  // dead.  This can arise due to scalarization of a structure or an array that
608  // has elements that are dead.
609  unsigned FirstGlobal = 0;
610  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
611    if (NewGlobals[i]->use_empty()) {
612      Globals.erase(NewGlobals[i]);
613      if (FirstGlobal == i) ++FirstGlobal;
614    }
615
616  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
617}
618
619/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
620/// value will trap if the value is dynamically null.  PHIs keeps track of any
621/// phi nodes we've seen to avoid reprocessing them.
622static bool AllUsesOfValueWillTrapIfNull(Value *V,
623                                         SmallPtrSet<PHINode*, 8> &PHIs) {
624  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
625    if (isa<LoadInst>(*UI)) {
626      // Will trap.
627    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
628      if (SI->getOperand(0) == V) {
629        //cerr << "NONTRAPPING USE: " << **UI;
630        return false;  // Storing the value.
631      }
632    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
633      if (CI->getOperand(0) != V) {
634        //cerr << "NONTRAPPING USE: " << **UI;
635        return false;  // Not calling the ptr
636      }
637    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
638      if (II->getOperand(0) != V) {
639        //cerr << "NONTRAPPING USE: " << **UI;
640        return false;  // Not calling the ptr
641      }
642    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
643      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
644    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
645      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
646    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
647      // If we've already seen this phi node, ignore it, it has already been
648      // checked.
649      if (PHIs.insert(PN))
650        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
651    } else if (isa<ICmpInst>(*UI) &&
652               isa<ConstantPointerNull>(UI->getOperand(1))) {
653      // Ignore setcc X, null
654    } else {
655      //cerr << "NONTRAPPING USE: " << **UI;
656      return false;
657    }
658  return true;
659}
660
661/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
662/// from GV will trap if the loaded value is null.  Note that this also permits
663/// comparisons of the loaded value against null, as a special case.
664static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
665  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
666    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
667      SmallPtrSet<PHINode*, 8> PHIs;
668      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
669        return false;
670    } else if (isa<StoreInst>(*UI)) {
671      // Ignore stores to the global.
672    } else {
673      // We don't know or understand this user, bail out.
674      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
675      return false;
676    }
677
678  return true;
679}
680
681static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
682                                           LLVMContext &Context) {
683  bool Changed = false;
684  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
685    Instruction *I = cast<Instruction>(*UI++);
686    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
687      LI->setOperand(0, NewV);
688      Changed = true;
689    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
690      if (SI->getOperand(1) == V) {
691        SI->setOperand(1, NewV);
692        Changed = true;
693      }
694    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
695      if (I->getOperand(0) == V) {
696        // Calling through the pointer!  Turn into a direct call, but be careful
697        // that the pointer is not also being passed as an argument.
698        I->setOperand(0, NewV);
699        Changed = true;
700        bool PassedAsArg = false;
701        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
702          if (I->getOperand(i) == V) {
703            PassedAsArg = true;
704            I->setOperand(i, NewV);
705          }
706
707        if (PassedAsArg) {
708          // Being passed as an argument also.  Be careful to not invalidate UI!
709          UI = V->use_begin();
710        }
711      }
712    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
713      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
714                                ConstantExpr::getCast(CI->getOpcode(),
715                                                NewV, CI->getType()), Context);
716      if (CI->use_empty()) {
717        Changed = true;
718        CI->eraseFromParent();
719      }
720    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
721      // Should handle GEP here.
722      SmallVector<Constant*, 8> Idxs;
723      Idxs.reserve(GEPI->getNumOperands()-1);
724      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
725           i != e; ++i)
726        if (Constant *C = dyn_cast<Constant>(*i))
727          Idxs.push_back(C);
728        else
729          break;
730      if (Idxs.size() == GEPI->getNumOperands()-1)
731        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
732                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
733                                                        Idxs.size()), Context);
734      if (GEPI->use_empty()) {
735        Changed = true;
736        GEPI->eraseFromParent();
737      }
738    }
739  }
740
741  return Changed;
742}
743
744
745/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
746/// value stored into it.  If there are uses of the loaded value that would trap
747/// if the loaded value is dynamically null, then we know that they cannot be
748/// reachable with a null optimize away the load.
749static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
750                                            LLVMContext &Context) {
751  bool Changed = false;
752
753  // Keep track of whether we are able to remove all the uses of the global
754  // other than the store that defines it.
755  bool AllNonStoreUsesGone = true;
756
757  // Replace all uses of loads with uses of uses of the stored value.
758  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
759    User *GlobalUser = *GUI++;
760    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
762      // If we were able to delete all uses of the loads
763      if (LI->use_empty()) {
764        LI->eraseFromParent();
765        Changed = true;
766      } else {
767        AllNonStoreUsesGone = false;
768      }
769    } else if (isa<StoreInst>(GlobalUser)) {
770      // Ignore the store that stores "LV" to the global.
771      assert(GlobalUser->getOperand(1) == GV &&
772             "Must be storing *to* the global");
773    } else {
774      AllNonStoreUsesGone = false;
775
776      // If we get here we could have other crazy uses that are transitively
777      // loaded.
778      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
780    }
781  }
782
783  if (Changed) {
784    DEBUG(errs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
785    ++NumGlobUses;
786  }
787
788  // If we nuked all of the loads, then none of the stores are needed either,
789  // nor is the global.
790  if (AllNonStoreUsesGone) {
791    DEBUG(errs() << "  *** GLOBAL NOW DEAD!\n");
792    CleanupConstantGlobalUsers(GV, 0, Context);
793    if (GV->use_empty()) {
794      GV->eraseFromParent();
795      ++NumDeleted;
796    }
797    Changed = true;
798  }
799  return Changed;
800}
801
802/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
803/// instructions that are foldable.
804static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
805  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
806    if (Instruction *I = dyn_cast<Instruction>(*UI++))
807      if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
808        I->replaceAllUsesWith(NewC);
809
810        // Advance UI to the next non-I use to avoid invalidating it!
811        // Instructions could multiply use V.
812        while (UI != E && *UI == I)
813          ++UI;
814        I->eraseFromParent();
815      }
816}
817
818/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
819/// variable, and transforms the program as if it always contained the result of
820/// the specified malloc.  Because it is always the result of the specified
821/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
822/// malloc into a global, and any loads of GV as uses of the new global.
823static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
824                                                     MallocInst *MI,
825                                                     LLVMContext &Context) {
826  DEBUG(errs() << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI);
827  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
828
829  if (NElements->getZExtValue() != 1) {
830    // If we have an array allocation, transform it to a single element
831    // allocation to make the code below simpler.
832    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
833                                 NElements->getZExtValue());
834    MallocInst *NewMI =
835      new MallocInst(NewTy, Constant::getNullValue(Type::getInt32Ty(Context)),
836                     MI->getAlignment(), MI->getName(), MI);
837    Value* Indices[2];
838    Indices[0] = Indices[1] = Constant::getNullValue(Type::getInt32Ty(Context));
839    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
840                                              NewMI->getName()+".el0", MI);
841    MI->replaceAllUsesWith(NewGEP);
842    MI->eraseFromParent();
843    MI = NewMI;
844  }
845
846  // Create the new global variable.  The contents of the malloc'd memory is
847  // undefined, so initialize with an undef value.
848  // FIXME: This new global should have the alignment returned by malloc.  Code
849  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
850  // this would only guarantee some lower alignment.
851  Constant *Init = UndefValue::get(MI->getAllocatedType());
852  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
853                                             MI->getAllocatedType(), false,
854                                             GlobalValue::InternalLinkage, Init,
855                                             GV->getName()+".body",
856                                             GV,
857                                             GV->isThreadLocal());
858
859  // Anything that used the malloc now uses the global directly.
860  MI->replaceAllUsesWith(NewGV);
861
862  Constant *RepValue = NewGV;
863  if (NewGV->getType() != GV->getType()->getElementType())
864    RepValue = ConstantExpr::getBitCast(RepValue,
865                                        GV->getType()->getElementType());
866
867  // If there is a comparison against null, we will insert a global bool to
868  // keep track of whether the global was initialized yet or not.
869  GlobalVariable *InitBool =
870    new GlobalVariable(Context, Type::getInt1Ty(Context), false,
871                       GlobalValue::InternalLinkage,
872                       ConstantInt::getFalse(Context), GV->getName()+".init",
873                       GV->isThreadLocal());
874  bool InitBoolUsed = false;
875
876  // Loop over all uses of GV, processing them in turn.
877  std::vector<StoreInst*> Stores;
878  while (!GV->use_empty())
879    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
880      while (!LI->use_empty()) {
881        Use &LoadUse = LI->use_begin().getUse();
882        if (!isa<ICmpInst>(LoadUse.getUser()))
883          LoadUse = RepValue;
884        else {
885          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
886          // Replace the cmp X, 0 with a use of the bool value.
887          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
888          InitBoolUsed = true;
889          switch (CI->getPredicate()) {
890          default: llvm_unreachable("Unknown ICmp Predicate!");
891          case ICmpInst::ICMP_ULT:
892          case ICmpInst::ICMP_SLT:
893            LV = ConstantInt::getFalse(Context);   // X < null -> always false
894            break;
895          case ICmpInst::ICMP_ULE:
896          case ICmpInst::ICMP_SLE:
897          case ICmpInst::ICMP_EQ:
898            LV = BinaryOperator::CreateNot(LV, "notinit", CI);
899            break;
900          case ICmpInst::ICMP_NE:
901          case ICmpInst::ICMP_UGE:
902          case ICmpInst::ICMP_SGE:
903          case ICmpInst::ICMP_UGT:
904          case ICmpInst::ICMP_SGT:
905            break;  // no change.
906          }
907          CI->replaceAllUsesWith(LV);
908          CI->eraseFromParent();
909        }
910      }
911      LI->eraseFromParent();
912    } else {
913      StoreInst *SI = cast<StoreInst>(GV->use_back());
914      // The global is initialized when the store to it occurs.
915      new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
916      SI->eraseFromParent();
917    }
918
919  // If the initialization boolean was used, insert it, otherwise delete it.
920  if (!InitBoolUsed) {
921    while (!InitBool->use_empty())  // Delete initializations
922      cast<Instruction>(InitBool->use_back())->eraseFromParent();
923    delete InitBool;
924  } else
925    GV->getParent()->getGlobalList().insert(GV, InitBool);
926
927
928  // Now the GV is dead, nuke it and the malloc.
929  GV->eraseFromParent();
930  MI->eraseFromParent();
931
932  // To further other optimizations, loop over all users of NewGV and try to
933  // constant prop them.  This will promote GEP instructions with constant
934  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
935  ConstantPropUsersOf(NewGV, Context);
936  if (RepValue != NewGV)
937    ConstantPropUsersOf(RepValue, Context);
938
939  return NewGV;
940}
941
942/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
943/// to make sure that there are no complex uses of V.  We permit simple things
944/// like dereferencing the pointer, but not storing through the address, unless
945/// it is to the specified global.
946static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
947                                                      GlobalVariable *GV,
948                                              SmallPtrSet<PHINode*, 8> &PHIs) {
949  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
950    Instruction *Inst = cast<Instruction>(*UI);
951
952    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
953      continue; // Fine, ignore.
954    }
955
956    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
957      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
958        return false;  // Storing the pointer itself... bad.
959      continue; // Otherwise, storing through it, or storing into GV... fine.
960    }
961
962    if (isa<GetElementPtrInst>(Inst)) {
963      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
964        return false;
965      continue;
966    }
967
968    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
969      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
970      // cycles.
971      if (PHIs.insert(PN))
972        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
973          return false;
974      continue;
975    }
976
977    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
978      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
979        return false;
980      continue;
981    }
982
983    return false;
984  }
985  return true;
986}
987
988/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
989/// somewhere.  Transform all uses of the allocation into loads from the
990/// global and uses of the resultant pointer.  Further, delete the store into
991/// GV.  This assumes that these value pass the
992/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
993static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
994                                          GlobalVariable *GV) {
995  while (!Alloc->use_empty()) {
996    Instruction *U = cast<Instruction>(*Alloc->use_begin());
997    Instruction *InsertPt = U;
998    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
999      // If this is the store of the allocation into the global, remove it.
1000      if (SI->getOperand(1) == GV) {
1001        SI->eraseFromParent();
1002        continue;
1003      }
1004    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1005      // Insert the load in the corresponding predecessor, not right before the
1006      // PHI.
1007      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1008    } else if (isa<BitCastInst>(U)) {
1009      // Must be bitcast between the malloc and store to initialize the global.
1010      ReplaceUsesOfMallocWithGlobal(U, GV);
1011      U->eraseFromParent();
1012      continue;
1013    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1014      // If this is a "GEP bitcast" and the user is a store to the global, then
1015      // just process it as a bitcast.
1016      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1017        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1018          if (SI->getOperand(1) == GV) {
1019            // Must be bitcast GEP between the malloc and store to initialize
1020            // the global.
1021            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1022            GEPI->eraseFromParent();
1023            continue;
1024          }
1025    }
1026
1027    // Insert a load from the global, and use it instead of the malloc.
1028    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1029    U->replaceUsesOfWith(Alloc, NL);
1030  }
1031}
1032
1033/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1034/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1035/// that index through the array and struct field, icmps of null, and PHIs.
1036static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1037                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1038                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1039  // We permit two users of the load: setcc comparing against the null
1040  // pointer, and a getelementptr of a specific form.
1041  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1042    Instruction *User = cast<Instruction>(*UI);
1043
1044    // Comparison against null is ok.
1045    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1046      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1047        return false;
1048      continue;
1049    }
1050
1051    // getelementptr is also ok, but only a simple form.
1052    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1053      // Must index into the array and into the struct.
1054      if (GEPI->getNumOperands() < 3)
1055        return false;
1056
1057      // Otherwise the GEP is ok.
1058      continue;
1059    }
1060
1061    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1062      if (!LoadUsingPHIsPerLoad.insert(PN))
1063        // This means some phi nodes are dependent on each other.
1064        // Avoid infinite looping!
1065        return false;
1066      if (!LoadUsingPHIs.insert(PN))
1067        // If we have already analyzed this PHI, then it is safe.
1068        continue;
1069
1070      // Make sure all uses of the PHI are simple enough to transform.
1071      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1072                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1073        return false;
1074
1075      continue;
1076    }
1077
1078    // Otherwise we don't know what this is, not ok.
1079    return false;
1080  }
1081
1082  return true;
1083}
1084
1085
1086/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1087/// GV are simple enough to perform HeapSRA, return true.
1088static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1089                                                    MallocInst *MI) {
1090  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1091  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1092  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1093       ++UI)
1094    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1095      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1096                                          LoadUsingPHIsPerLoad))
1097        return false;
1098      LoadUsingPHIsPerLoad.clear();
1099    }
1100
1101  // If we reach here, we know that all uses of the loads and transitive uses
1102  // (through PHI nodes) are simple enough to transform.  However, we don't know
1103  // that all inputs the to the PHI nodes are in the same equivalence sets.
1104  // Check to verify that all operands of the PHIs are either PHIS that can be
1105  // transformed, loads from GV, or MI itself.
1106  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1107       E = LoadUsingPHIs.end(); I != E; ++I) {
1108    PHINode *PN = *I;
1109    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1110      Value *InVal = PN->getIncomingValue(op);
1111
1112      // PHI of the stored value itself is ok.
1113      if (InVal == MI) continue;
1114
1115      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1116        // One of the PHIs in our set is (optimistically) ok.
1117        if (LoadUsingPHIs.count(InPN))
1118          continue;
1119        return false;
1120      }
1121
1122      // Load from GV is ok.
1123      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1124        if (LI->getOperand(0) == GV)
1125          continue;
1126
1127      // UNDEF? NULL?
1128
1129      // Anything else is rejected.
1130      return false;
1131    }
1132  }
1133
1134  return true;
1135}
1136
1137static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1138               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1139                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1140                   LLVMContext &Context) {
1141  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1142
1143  if (FieldNo >= FieldVals.size())
1144    FieldVals.resize(FieldNo+1);
1145
1146  // If we already have this value, just reuse the previously scalarized
1147  // version.
1148  if (Value *FieldVal = FieldVals[FieldNo])
1149    return FieldVal;
1150
1151  // Depending on what instruction this is, we have several cases.
1152  Value *Result;
1153  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1154    // This is a scalarized version of the load from the global.  Just create
1155    // a new Load of the scalarized global.
1156    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1157                                           InsertedScalarizedValues,
1158                                           PHIsToRewrite, Context),
1159                          LI->getName()+".f"+Twine(FieldNo), LI);
1160  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1161    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1162    // field.
1163    const StructType *ST =
1164      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1165
1166    Result =
1167     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1168                     PN->getName()+".f"+Twine(FieldNo), PN);
1169    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1170  } else {
1171    llvm_unreachable("Unknown usable value");
1172    Result = 0;
1173  }
1174
1175  return FieldVals[FieldNo] = Result;
1176}
1177
1178/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1179/// the load, rewrite the derived value to use the HeapSRoA'd load.
1180static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1181             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1182                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1183                   LLVMContext &Context) {
1184  // If this is a comparison against null, handle it.
1185  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1186    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1187    // If we have a setcc of the loaded pointer, we can use a setcc of any
1188    // field.
1189    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1190                                   InsertedScalarizedValues, PHIsToRewrite,
1191                                   Context);
1192
1193    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1194                              Constant::getNullValue(NPtr->getType()),
1195                              SCI->getName());
1196    SCI->replaceAllUsesWith(New);
1197    SCI->eraseFromParent();
1198    return;
1199  }
1200
1201  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1202  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1203    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1204           && "Unexpected GEPI!");
1205
1206    // Load the pointer for this field.
1207    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1208    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1209                                     InsertedScalarizedValues, PHIsToRewrite,
1210                                     Context);
1211
1212    // Create the new GEP idx vector.
1213    SmallVector<Value*, 8> GEPIdx;
1214    GEPIdx.push_back(GEPI->getOperand(1));
1215    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1216
1217    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1218                                             GEPIdx.begin(), GEPIdx.end(),
1219                                             GEPI->getName(), GEPI);
1220    GEPI->replaceAllUsesWith(NGEPI);
1221    GEPI->eraseFromParent();
1222    return;
1223  }
1224
1225  // Recursively transform the users of PHI nodes.  This will lazily create the
1226  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1227  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1228  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1229  // already been seen first by another load, so its uses have already been
1230  // processed.
1231  PHINode *PN = cast<PHINode>(LoadUser);
1232  bool Inserted;
1233  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1234  tie(InsertPos, Inserted) =
1235    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1236  if (!Inserted) return;
1237
1238  // If this is the first time we've seen this PHI, recursively process all
1239  // users.
1240  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1241    Instruction *User = cast<Instruction>(*UI++);
1242    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1243                            Context);
1244  }
1245}
1246
1247/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1248/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1249/// use FieldGlobals instead.  All uses of loaded values satisfy
1250/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1251static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1252               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1253                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1254                   LLVMContext &Context) {
1255  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1256       UI != E; ) {
1257    Instruction *User = cast<Instruction>(*UI++);
1258    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1259                            Context);
1260  }
1261
1262  if (Load->use_empty()) {
1263    Load->eraseFromParent();
1264    InsertedScalarizedValues.erase(Load);
1265  }
1266}
1267
1268/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1269/// it up into multiple allocations of arrays of the fields.
1270static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
1271                                            LLVMContext &Context){
1272  DEBUG(errs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI);
1273  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1274
1275  // There is guaranteed to be at least one use of the malloc (storing
1276  // it into GV).  If there are other uses, change them to be uses of
1277  // the global to simplify later code.  This also deletes the store
1278  // into GV.
1279  ReplaceUsesOfMallocWithGlobal(MI, GV);
1280
1281  // Okay, at this point, there are no users of the malloc.  Insert N
1282  // new mallocs at the same place as MI, and N globals.
1283  std::vector<Value*> FieldGlobals;
1284  std::vector<MallocInst*> FieldMallocs;
1285
1286  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1287    const Type *FieldTy = STy->getElementType(FieldNo);
1288    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1289
1290    GlobalVariable *NGV =
1291      new GlobalVariable(*GV->getParent(),
1292                         PFieldTy, false, GlobalValue::InternalLinkage,
1293                         Constant::getNullValue(PFieldTy),
1294                         GV->getName() + ".f" + Twine(FieldNo), GV,
1295                         GV->isThreadLocal());
1296    FieldGlobals.push_back(NGV);
1297
1298    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1299                                     MI->getName() + ".f" + Twine(FieldNo), MI);
1300    FieldMallocs.push_back(NMI);
1301    new StoreInst(NMI, NGV, MI);
1302  }
1303
1304  // The tricky aspect of this transformation is handling the case when malloc
1305  // fails.  In the original code, malloc failing would set the result pointer
1306  // of malloc to null.  In this case, some mallocs could succeed and others
1307  // could fail.  As such, we emit code that looks like this:
1308  //    F0 = malloc(field0)
1309  //    F1 = malloc(field1)
1310  //    F2 = malloc(field2)
1311  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1312  //      if (F0) { free(F0); F0 = 0; }
1313  //      if (F1) { free(F1); F1 = 0; }
1314  //      if (F2) { free(F2); F2 = 0; }
1315  //    }
1316  Value *RunningOr = 0;
1317  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1318    Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1319                              Constant::getNullValue(FieldMallocs[i]->getType()),
1320                                  "isnull");
1321    if (!RunningOr)
1322      RunningOr = Cond;   // First seteq
1323    else
1324      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1325  }
1326
1327  // Split the basic block at the old malloc.
1328  BasicBlock *OrigBB = MI->getParent();
1329  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1330
1331  // Create the block to check the first condition.  Put all these blocks at the
1332  // end of the function as they are unlikely to be executed.
1333  BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
1334                                                OrigBB->getParent());
1335
1336  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1337  // branch on RunningOr.
1338  OrigBB->getTerminator()->eraseFromParent();
1339  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1340
1341  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1342  // pointer, because some may be null while others are not.
1343  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1344    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1345    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1346                              Constant::getNullValue(GVVal->getType()),
1347                              "tmp");
1348    BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
1349                                               OrigBB->getParent());
1350    BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
1351                                               OrigBB->getParent());
1352    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1353
1354    // Fill in FreeBlock.
1355    new FreeInst(GVVal, FreeBlock);
1356    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1357                  FreeBlock);
1358    BranchInst::Create(NextBlock, FreeBlock);
1359
1360    NullPtrBlock = NextBlock;
1361  }
1362
1363  BranchInst::Create(ContBB, NullPtrBlock);
1364
1365  // MI is no longer needed, remove it.
1366  MI->eraseFromParent();
1367
1368  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1369  /// update all uses of the load, keep track of what scalarized loads are
1370  /// inserted for a given load.
1371  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1372  InsertedScalarizedValues[GV] = FieldGlobals;
1373
1374  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1375
1376  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1377  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1378  // of the per-field globals instead.
1379  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1380    Instruction *User = cast<Instruction>(*UI++);
1381
1382    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1383      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
1384                                   Context);
1385      continue;
1386    }
1387
1388    // Must be a store of null.
1389    StoreInst *SI = cast<StoreInst>(User);
1390    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1391           "Unexpected heap-sra user!");
1392
1393    // Insert a store of null into each global.
1394    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1395      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1396      Constant *Null = Constant::getNullValue(PT->getElementType());
1397      new StoreInst(Null, FieldGlobals[i], SI);
1398    }
1399    // Erase the original store.
1400    SI->eraseFromParent();
1401  }
1402
1403  // While we have PHIs that are interesting to rewrite, do it.
1404  while (!PHIsToRewrite.empty()) {
1405    PHINode *PN = PHIsToRewrite.back().first;
1406    unsigned FieldNo = PHIsToRewrite.back().second;
1407    PHIsToRewrite.pop_back();
1408    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1409    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1410
1411    // Add all the incoming values.  This can materialize more phis.
1412    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1413      Value *InVal = PN->getIncomingValue(i);
1414      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1415                               PHIsToRewrite, Context);
1416      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1417    }
1418  }
1419
1420  // Drop all inter-phi links and any loads that made it this far.
1421  for (DenseMap<Value*, std::vector<Value*> >::iterator
1422       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1423       I != E; ++I) {
1424    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1425      PN->dropAllReferences();
1426    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1427      LI->dropAllReferences();
1428  }
1429
1430  // Delete all the phis and loads now that inter-references are dead.
1431  for (DenseMap<Value*, std::vector<Value*> >::iterator
1432       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1433       I != E; ++I) {
1434    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1435      PN->eraseFromParent();
1436    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1437      LI->eraseFromParent();
1438  }
1439
1440  // The old global is now dead, remove it.
1441  GV->eraseFromParent();
1442
1443  ++NumHeapSRA;
1444  return cast<GlobalVariable>(FieldGlobals[0]);
1445}
1446
1447/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1448/// pointer global variable with a single value stored it that is a malloc or
1449/// cast of malloc.
1450static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1451                                               MallocInst *MI,
1452                                               Module::global_iterator &GVI,
1453                                               TargetData *TD,
1454                                               LLVMContext &Context) {
1455  // If this is a malloc of an abstract type, don't touch it.
1456  if (!MI->getAllocatedType()->isSized())
1457    return false;
1458
1459  // We can't optimize this global unless all uses of it are *known* to be
1460  // of the malloc value, not of the null initializer value (consider a use
1461  // that compares the global's value against zero to see if the malloc has
1462  // been reached).  To do this, we check to see if all uses of the global
1463  // would trap if the global were null: this proves that they must all
1464  // happen after the malloc.
1465  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1466    return false;
1467
1468  // We can't optimize this if the malloc itself is used in a complex way,
1469  // for example, being stored into multiple globals.  This allows the
1470  // malloc to be stored into the specified global, loaded setcc'd, and
1471  // GEP'd.  These are all things we could transform to using the global
1472  // for.
1473  {
1474    SmallPtrSet<PHINode*, 8> PHIs;
1475    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1476      return false;
1477  }
1478
1479
1480  // If we have a global that is only initialized with a fixed size malloc,
1481  // transform the program to use global memory instead of malloc'd memory.
1482  // This eliminates dynamic allocation, avoids an indirection accessing the
1483  // data, and exposes the resultant global to further GlobalOpt.
1484  if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1485    // Restrict this transformation to only working on small allocations
1486    // (2048 bytes currently), as we don't want to introduce a 16M global or
1487    // something.
1488    if (TD &&
1489        NElements->getZExtValue()*
1490        TD->getTypeAllocSize(MI->getAllocatedType()) < 2048) {
1491      GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context);
1492      return true;
1493    }
1494  }
1495
1496  // If the allocation is an array of structures, consider transforming this
1497  // into multiple malloc'd arrays, one for each field.  This is basically
1498  // SRoA for malloc'd memory.
1499  const Type *AllocTy = MI->getAllocatedType();
1500
1501  // If this is an allocation of a fixed size array of structs, analyze as a
1502  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1503  if (!MI->isArrayAllocation())
1504    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1505      AllocTy = AT->getElementType();
1506
1507  if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1508    // This the structure has an unreasonable number of fields, leave it
1509    // alone.
1510    if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1511        AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1512
1513      // If this is a fixed size array, transform the Malloc to be an alloc of
1514      // structs.  malloc [100 x struct],1 -> malloc struct, 100
1515      if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
1516        MallocInst *NewMI =
1517          new MallocInst(AllocSTy,
1518                  ConstantInt::get(Type::getInt32Ty(Context),
1519                  AT->getNumElements()),
1520                         "", MI);
1521        NewMI->takeName(MI);
1522        Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
1523        MI->replaceAllUsesWith(Cast);
1524        MI->eraseFromParent();
1525        MI = NewMI;
1526      }
1527
1528      GVI = PerformHeapAllocSRoA(GV, MI, Context);
1529      return true;
1530    }
1531  }
1532
1533  return false;
1534}
1535
1536// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1537// that only one value (besides its initializer) is ever stored to the global.
1538static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1539                                     Module::global_iterator &GVI,
1540                                     TargetData *TD, LLVMContext &Context) {
1541  // Ignore no-op GEPs and bitcasts.
1542  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1543
1544  // If we are dealing with a pointer global that is initialized to null and
1545  // only has one (non-null) value stored into it, then we can optimize any
1546  // users of the loaded value (often calls and loads) that would trap if the
1547  // value was null.
1548  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1549      GV->getInitializer()->isNullValue()) {
1550    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1551      if (GV->getInitializer()->getType() != SOVC->getType())
1552        SOVC =
1553         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1554
1555      // Optimize away any trapping uses of the loaded value.
1556      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
1557        return true;
1558    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1559      if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context))
1560        return true;
1561    }
1562  }
1563
1564  return false;
1565}
1566
1567/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1568/// two values ever stored into GV are its initializer and OtherVal.  See if we
1569/// can shrink the global into a boolean and select between the two values
1570/// whenever it is used.  This exposes the values to other scalar optimizations.
1571static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
1572                                       LLVMContext &Context) {
1573  const Type *GVElType = GV->getType()->getElementType();
1574
1575  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1576  // an FP value, pointer or vector, don't do this optimization because a select
1577  // between them is very expensive and unlikely to lead to later
1578  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1579  // where v1 and v2 both require constant pool loads, a big loss.
1580  if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() ||
1581      isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1582    return false;
1583
1584  // Walk the use list of the global seeing if all the uses are load or store.
1585  // If there is anything else, bail out.
1586  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1587    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1588      return false;
1589
1590  DEBUG(errs() << "   *** SHRINKING TO BOOL: " << *GV);
1591
1592  // Create the new global, initializing it to false.
1593  GlobalVariable *NewGV = new GlobalVariable(Context,
1594                                             Type::getInt1Ty(Context), false,
1595         GlobalValue::InternalLinkage, ConstantInt::getFalse(Context),
1596                                             GV->getName()+".b",
1597                                             GV->isThreadLocal());
1598  GV->getParent()->getGlobalList().insert(GV, NewGV);
1599
1600  Constant *InitVal = GV->getInitializer();
1601  assert(InitVal->getType() != Type::getInt1Ty(Context) &&
1602         "No reason to shrink to bool!");
1603
1604  // If initialized to zero and storing one into the global, we can use a cast
1605  // instead of a select to synthesize the desired value.
1606  bool IsOneZero = false;
1607  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1608    IsOneZero = InitVal->isNullValue() && CI->isOne();
1609
1610  while (!GV->use_empty()) {
1611    Instruction *UI = cast<Instruction>(GV->use_back());
1612    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1613      // Change the store into a boolean store.
1614      bool StoringOther = SI->getOperand(0) == OtherVal;
1615      // Only do this if we weren't storing a loaded value.
1616      Value *StoreVal;
1617      if (StoringOther || SI->getOperand(0) == InitVal)
1618        StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther);
1619      else {
1620        // Otherwise, we are storing a previously loaded copy.  To do this,
1621        // change the copy from copying the original value to just copying the
1622        // bool.
1623        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1624
1625        // If we're already replaced the input, StoredVal will be a cast or
1626        // select instruction.  If not, it will be a load of the original
1627        // global.
1628        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1629          assert(LI->getOperand(0) == GV && "Not a copy!");
1630          // Insert a new load, to preserve the saved value.
1631          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1632        } else {
1633          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1634                 "This is not a form that we understand!");
1635          StoreVal = StoredVal->getOperand(0);
1636          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1637        }
1638      }
1639      new StoreInst(StoreVal, NewGV, SI);
1640    } else {
1641      // Change the load into a load of bool then a select.
1642      LoadInst *LI = cast<LoadInst>(UI);
1643      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1644      Value *NSI;
1645      if (IsOneZero)
1646        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1647      else
1648        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1649      NSI->takeName(LI);
1650      LI->replaceAllUsesWith(NSI);
1651    }
1652    UI->eraseFromParent();
1653  }
1654
1655  GV->eraseFromParent();
1656  return true;
1657}
1658
1659
1660/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1661/// it if possible.  If we make a change, return true.
1662bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1663                                      Module::global_iterator &GVI) {
1664  SmallPtrSet<PHINode*, 16> PHIUsers;
1665  GlobalStatus GS;
1666  GV->removeDeadConstantUsers();
1667
1668  if (GV->use_empty()) {
1669    DEBUG(errs() << "GLOBAL DEAD: " << *GV);
1670    GV->eraseFromParent();
1671    ++NumDeleted;
1672    return true;
1673  }
1674
1675  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1676#if 0
1677    cerr << "Global: " << *GV;
1678    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1679    cerr << "  StoredType = ";
1680    switch (GS.StoredType) {
1681    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1682    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1683    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1684    case GlobalStatus::isStored: cerr << "stored\n"; break;
1685    }
1686    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1687      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1688    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1689      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1690                << "\n";
1691    cerr << "  HasMultipleAccessingFunctions =  "
1692              << GS.HasMultipleAccessingFunctions << "\n";
1693    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1694    cerr << "\n";
1695#endif
1696
1697    // If this is a first class global and has only one accessing function
1698    // and this function is main (which we know is not recursive we can make
1699    // this global a local variable) we replace the global with a local alloca
1700    // in this function.
1701    //
1702    // NOTE: It doesn't make sense to promote non single-value types since we
1703    // are just replacing static memory to stack memory.
1704    //
1705    // If the global is in different address space, don't bring it to stack.
1706    if (!GS.HasMultipleAccessingFunctions &&
1707        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1708        GV->getType()->getElementType()->isSingleValueType() &&
1709        GS.AccessingFunction->getName() == "main" &&
1710        GS.AccessingFunction->hasExternalLinkage() &&
1711        GV->getType()->getAddressSpace() == 0) {
1712      DEBUG(errs() << "LOCALIZING GLOBAL: " << *GV);
1713      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1714      const Type* ElemTy = GV->getType()->getElementType();
1715      // FIXME: Pass Global's alignment when globals have alignment
1716      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1717      if (!isa<UndefValue>(GV->getInitializer()))
1718        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1719
1720      GV->replaceAllUsesWith(Alloca);
1721      GV->eraseFromParent();
1722      ++NumLocalized;
1723      return true;
1724    }
1725
1726    // If the global is never loaded (but may be stored to), it is dead.
1727    // Delete it now.
1728    if (!GS.isLoaded) {
1729      DEBUG(errs() << "GLOBAL NEVER LOADED: " << *GV);
1730
1731      // Delete any stores we can find to the global.  We may not be able to
1732      // make it completely dead though.
1733      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1734                                                GV->getContext());
1735
1736      // If the global is dead now, delete it.
1737      if (GV->use_empty()) {
1738        GV->eraseFromParent();
1739        ++NumDeleted;
1740        Changed = true;
1741      }
1742      return Changed;
1743
1744    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1745      DEBUG(errs() << "MARKING CONSTANT: " << *GV);
1746      GV->setConstant(true);
1747
1748      // Clean up any obviously simplifiable users now.
1749      CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
1750
1751      // If the global is dead now, just nuke it.
1752      if (GV->use_empty()) {
1753        DEBUG(errs() << "   *** Marking constant allowed us to simplify "
1754                     << "all users and delete global!\n");
1755        GV->eraseFromParent();
1756        ++NumDeleted;
1757      }
1758
1759      ++NumMarked;
1760      return true;
1761    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1762      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1763        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD,
1764                                                   GV->getContext())) {
1765          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1766          return true;
1767        }
1768    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1769      // If the initial value for the global was an undef value, and if only
1770      // one other value was stored into it, we can just change the
1771      // initializer to be the stored value, then delete all stores to the
1772      // global.  This allows us to mark it constant.
1773      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1774        if (isa<UndefValue>(GV->getInitializer())) {
1775          // Change the initial value here.
1776          GV->setInitializer(SOVConstant);
1777
1778          // Clean up any obviously simplifiable users now.
1779          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1780                                     GV->getContext());
1781
1782          if (GV->use_empty()) {
1783            DEBUG(errs() << "   *** Substituting initializer allowed us to "
1784                         << "simplify all users and delete global!\n");
1785            GV->eraseFromParent();
1786            ++NumDeleted;
1787          } else {
1788            GVI = GV;
1789          }
1790          ++NumSubstitute;
1791          return true;
1792        }
1793
1794      // Try to optimize globals based on the knowledge that only one value
1795      // (besides its initializer) is ever stored to the global.
1796      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1797                                   getAnalysisIfAvailable<TargetData>(),
1798                                   GV->getContext()))
1799        return true;
1800
1801      // Otherwise, if the global was not a boolean, we can shrink it to be a
1802      // boolean.
1803      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1804        if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
1805          ++NumShrunkToBool;
1806          return true;
1807        }
1808    }
1809  }
1810  return false;
1811}
1812
1813/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1814/// function, changing them to FastCC.
1815static void ChangeCalleesToFastCall(Function *F) {
1816  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1817    CallSite User(cast<Instruction>(*UI));
1818    User.setCallingConv(CallingConv::Fast);
1819  }
1820}
1821
1822static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1823  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1824    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1825      continue;
1826
1827    // There can be only one.
1828    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1829  }
1830
1831  return Attrs;
1832}
1833
1834static void RemoveNestAttribute(Function *F) {
1835  F->setAttributes(StripNest(F->getAttributes()));
1836  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1837    CallSite User(cast<Instruction>(*UI));
1838    User.setAttributes(StripNest(User.getAttributes()));
1839  }
1840}
1841
1842bool GlobalOpt::OptimizeFunctions(Module &M) {
1843  bool Changed = false;
1844  // Optimize functions.
1845  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1846    Function *F = FI++;
1847    // Functions without names cannot be referenced outside this module.
1848    if (!F->hasName() && !F->isDeclaration())
1849      F->setLinkage(GlobalValue::InternalLinkage);
1850    F->removeDeadConstantUsers();
1851    if (F->use_empty() && (F->hasLocalLinkage() ||
1852                           F->hasLinkOnceLinkage())) {
1853      M.getFunctionList().erase(F);
1854      Changed = true;
1855      ++NumFnDeleted;
1856    } else if (F->hasLocalLinkage()) {
1857      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1858          !F->hasAddressTaken()) {
1859        // If this function has C calling conventions, is not a varargs
1860        // function, and is only called directly, promote it to use the Fast
1861        // calling convention.
1862        F->setCallingConv(CallingConv::Fast);
1863        ChangeCalleesToFastCall(F);
1864        ++NumFastCallFns;
1865        Changed = true;
1866      }
1867
1868      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1869          !F->hasAddressTaken()) {
1870        // The function is not used by a trampoline intrinsic, so it is safe
1871        // to remove the 'nest' attribute.
1872        RemoveNestAttribute(F);
1873        ++NumNestRemoved;
1874        Changed = true;
1875      }
1876    }
1877  }
1878  return Changed;
1879}
1880
1881bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1882  bool Changed = false;
1883  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1884       GVI != E; ) {
1885    GlobalVariable *GV = GVI++;
1886    // Global variables without names cannot be referenced outside this module.
1887    if (!GV->hasName() && !GV->isDeclaration())
1888      GV->setLinkage(GlobalValue::InternalLinkage);
1889    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1890        GV->hasInitializer())
1891      Changed |= ProcessInternalGlobal(GV, GVI);
1892  }
1893  return Changed;
1894}
1895
1896/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1897/// initializers have an init priority of 65535.
1898GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1899  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1900       I != E; ++I)
1901    if (I->getName() == "llvm.global_ctors") {
1902      // Found it, verify it's an array of { int, void()* }.
1903      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1904      if (!ATy) return 0;
1905      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1906      if (!STy || STy->getNumElements() != 2 ||
1907          STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
1908      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1909      if (!PFTy) return 0;
1910      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1911      if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
1912          FTy->isVarArg() || FTy->getNumParams() != 0)
1913        return 0;
1914
1915      // Verify that the initializer is simple enough for us to handle.
1916      if (!I->hasDefinitiveInitializer()) return 0;
1917      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1918      if (!CA) return 0;
1919      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1920        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1921          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1922            continue;
1923
1924          // Must have a function or null ptr.
1925          if (!isa<Function>(CS->getOperand(1)))
1926            return 0;
1927
1928          // Init priority must be standard.
1929          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1930          if (!CI || CI->getZExtValue() != 65535)
1931            return 0;
1932        } else {
1933          return 0;
1934        }
1935
1936      return I;
1937    }
1938  return 0;
1939}
1940
1941/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1942/// return a list of the functions and null terminator as a vector.
1943static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1944  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1945  std::vector<Function*> Result;
1946  Result.reserve(CA->getNumOperands());
1947  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1948    ConstantStruct *CS = cast<ConstantStruct>(*i);
1949    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1950  }
1951  return Result;
1952}
1953
1954/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1955/// specified array, returning the new global to use.
1956static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1957                                          const std::vector<Function*> &Ctors,
1958                                          LLVMContext &Context) {
1959  // If we made a change, reassemble the initializer list.
1960  std::vector<Constant*> CSVals;
1961  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535));
1962  CSVals.push_back(0);
1963
1964  // Create the new init list.
1965  std::vector<Constant*> CAList;
1966  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1967    if (Ctors[i]) {
1968      CSVals[1] = Ctors[i];
1969    } else {
1970      const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false);
1971      const PointerType *PFTy = PointerType::getUnqual(FTy);
1972      CSVals[1] = Constant::getNullValue(PFTy);
1973      CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647);
1974    }
1975    CAList.push_back(ConstantStruct::get(Context, CSVals));
1976  }
1977
1978  // Create the array initializer.
1979  const Type *StructTy =
1980    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1981  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
1982                                           CAList.size()), CAList);
1983
1984  // If we didn't change the number of elements, don't create a new GV.
1985  if (CA->getType() == GCL->getInitializer()->getType()) {
1986    GCL->setInitializer(CA);
1987    return GCL;
1988  }
1989
1990  // Create the new global and insert it next to the existing list.
1991  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
1992                                           GCL->isConstant(),
1993                                           GCL->getLinkage(), CA, "",
1994                                           GCL->isThreadLocal());
1995  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1996  NGV->takeName(GCL);
1997
1998  // Nuke the old list, replacing any uses with the new one.
1999  if (!GCL->use_empty()) {
2000    Constant *V = NGV;
2001    if (V->getType() != GCL->getType())
2002      V = ConstantExpr::getBitCast(V, GCL->getType());
2003    GCL->replaceAllUsesWith(V);
2004  }
2005  GCL->eraseFromParent();
2006
2007  if (Ctors.size())
2008    return NGV;
2009  else
2010    return 0;
2011}
2012
2013
2014static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2015                        Value *V) {
2016  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2017  Constant *R = ComputedValues[V];
2018  assert(R && "Reference to an uncomputed value!");
2019  return R;
2020}
2021
2022/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2023/// enough for us to understand.  In particular, if it is a cast of something,
2024/// we punt.  We basically just support direct accesses to globals and GEP's of
2025/// globals.  This should be kept up to date with CommitValueTo.
2026static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
2027  // Conservatively, avoid aggregate types. This is because we don't
2028  // want to worry about them partially overlapping other stores.
2029  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2030    return false;
2031
2032  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2033    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2034    // external globals.
2035    return GV->hasDefinitiveInitializer();
2036
2037  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2038    // Handle a constantexpr gep.
2039    if (CE->getOpcode() == Instruction::GetElementPtr &&
2040        isa<GlobalVariable>(CE->getOperand(0)) &&
2041        cast<GEPOperator>(CE)->isInBounds()) {
2042      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2043      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2044      // external globals.
2045      if (!GV->hasDefinitiveInitializer())
2046        return false;
2047      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2048                                                    Context);
2049    }
2050  return false;
2051}
2052
2053/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2054/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2055/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2056static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2057                                   ConstantExpr *Addr, unsigned OpNo,
2058                                   LLVMContext &Context) {
2059  // Base case of the recursion.
2060  if (OpNo == Addr->getNumOperands()) {
2061    assert(Val->getType() == Init->getType() && "Type mismatch!");
2062    return Val;
2063  }
2064
2065  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2066    std::vector<Constant*> Elts;
2067
2068    // Break up the constant into its elements.
2069    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2070      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2071        Elts.push_back(cast<Constant>(*i));
2072    } else if (isa<ConstantAggregateZero>(Init)) {
2073      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2074        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2075    } else if (isa<UndefValue>(Init)) {
2076      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2077        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2078    } else {
2079      llvm_unreachable("This code is out of sync with "
2080             " ConstantFoldLoadThroughGEPConstantExpr");
2081    }
2082
2083    // Replace the element that we are supposed to.
2084    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2085    unsigned Idx = CU->getZExtValue();
2086    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2087    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
2088
2089    // Return the modified struct.
2090    return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked());
2091  } else {
2092    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2093    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2094
2095    // Break up the array into elements.
2096    std::vector<Constant*> Elts;
2097    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2098      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2099        Elts.push_back(cast<Constant>(*i));
2100    } else if (isa<ConstantAggregateZero>(Init)) {
2101      Constant *Elt = Constant::getNullValue(ATy->getElementType());
2102      Elts.assign(ATy->getNumElements(), Elt);
2103    } else if (isa<UndefValue>(Init)) {
2104      Constant *Elt = UndefValue::get(ATy->getElementType());
2105      Elts.assign(ATy->getNumElements(), Elt);
2106    } else {
2107      llvm_unreachable("This code is out of sync with "
2108             " ConstantFoldLoadThroughGEPConstantExpr");
2109    }
2110
2111    assert(CI->getZExtValue() < ATy->getNumElements());
2112    Elts[CI->getZExtValue()] =
2113      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
2114    return ConstantArray::get(ATy, Elts);
2115  }
2116}
2117
2118/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2119/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2120static void CommitValueTo(Constant *Val, Constant *Addr,
2121                          LLVMContext &Context) {
2122  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2123    assert(GV->hasInitializer());
2124    GV->setInitializer(Val);
2125    return;
2126  }
2127
2128  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2129  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2130
2131  Constant *Init = GV->getInitializer();
2132  Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
2133  GV->setInitializer(Init);
2134}
2135
2136/// ComputeLoadResult - Return the value that would be computed by a load from
2137/// P after the stores reflected by 'memory' have been performed.  If we can't
2138/// decide, return null.
2139static Constant *ComputeLoadResult(Constant *P,
2140                                const DenseMap<Constant*, Constant*> &Memory,
2141                                LLVMContext &Context) {
2142  // If this memory location has been recently stored, use the stored value: it
2143  // is the most up-to-date.
2144  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2145  if (I != Memory.end()) return I->second;
2146
2147  // Access it.
2148  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2149    if (GV->hasDefinitiveInitializer())
2150      return GV->getInitializer();
2151    return 0;
2152  }
2153
2154  // Handle a constantexpr getelementptr.
2155  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2156    if (CE->getOpcode() == Instruction::GetElementPtr &&
2157        isa<GlobalVariable>(CE->getOperand(0))) {
2158      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2159      if (GV->hasDefinitiveInitializer())
2160        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2161                                                      Context);
2162    }
2163
2164  return 0;  // don't know how to evaluate.
2165}
2166
2167/// EvaluateFunction - Evaluate a call to function F, returning true if
2168/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2169/// arguments for the function.
2170static bool EvaluateFunction(Function *F, Constant *&RetVal,
2171                             const SmallVectorImpl<Constant*> &ActualArgs,
2172                             std::vector<Function*> &CallStack,
2173                             DenseMap<Constant*, Constant*> &MutatedMemory,
2174                             std::vector<GlobalVariable*> &AllocaTmps) {
2175  // Check to see if this function is already executing (recursion).  If so,
2176  // bail out.  TODO: we might want to accept limited recursion.
2177  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2178    return false;
2179
2180  LLVMContext &Context = F->getContext();
2181
2182  CallStack.push_back(F);
2183
2184  /// Values - As we compute SSA register values, we store their contents here.
2185  DenseMap<Value*, Constant*> Values;
2186
2187  // Initialize arguments to the incoming values specified.
2188  unsigned ArgNo = 0;
2189  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2190       ++AI, ++ArgNo)
2191    Values[AI] = ActualArgs[ArgNo];
2192
2193  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2194  /// we can only evaluate any one basic block at most once.  This set keeps
2195  /// track of what we have executed so we can detect recursive cases etc.
2196  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2197
2198  // CurInst - The current instruction we're evaluating.
2199  BasicBlock::iterator CurInst = F->begin()->begin();
2200
2201  // This is the main evaluation loop.
2202  while (1) {
2203    Constant *InstResult = 0;
2204
2205    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2206      if (SI->isVolatile()) return false;  // no volatile accesses.
2207      Constant *Ptr = getVal(Values, SI->getOperand(1));
2208      if (!isSimpleEnoughPointerToCommit(Ptr, Context))
2209        // If this is too complex for us to commit, reject it.
2210        return false;
2211      Constant *Val = getVal(Values, SI->getOperand(0));
2212      MutatedMemory[Ptr] = Val;
2213    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2214      InstResult = ConstantExpr::get(BO->getOpcode(),
2215                                     getVal(Values, BO->getOperand(0)),
2216                                     getVal(Values, BO->getOperand(1)));
2217    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2218      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2219                                            getVal(Values, CI->getOperand(0)),
2220                                            getVal(Values, CI->getOperand(1)));
2221    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2222      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2223                                         getVal(Values, CI->getOperand(0)),
2224                                         CI->getType());
2225    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2226      InstResult =
2227            ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2228                                           getVal(Values, SI->getOperand(1)),
2229                                           getVal(Values, SI->getOperand(2)));
2230    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2231      Constant *P = getVal(Values, GEP->getOperand(0));
2232      SmallVector<Constant*, 8> GEPOps;
2233      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2234           i != e; ++i)
2235        GEPOps.push_back(getVal(Values, *i));
2236      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2237          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2238          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2239    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2240      if (LI->isVolatile()) return false;  // no volatile accesses.
2241      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2242                                     MutatedMemory, Context);
2243      if (InstResult == 0) return false; // Could not evaluate load.
2244    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2245      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2246      const Type *Ty = AI->getType()->getElementType();
2247      AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
2248                                              GlobalValue::InternalLinkage,
2249                                              UndefValue::get(Ty),
2250                                              AI->getName()));
2251      InstResult = AllocaTmps.back();
2252    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2253
2254      // Debug info can safely be ignored here.
2255      if (isa<DbgInfoIntrinsic>(CI)) {
2256        ++CurInst;
2257        continue;
2258      }
2259
2260      // Cannot handle inline asm.
2261      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2262
2263      // Resolve function pointers.
2264      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2265      if (!Callee) return false;  // Cannot resolve.
2266
2267      SmallVector<Constant*, 8> Formals;
2268      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2269           i != e; ++i)
2270        Formals.push_back(getVal(Values, *i));
2271
2272      if (Callee->isDeclaration()) {
2273        // If this is a function we can constant fold, do it.
2274        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2275                                           Formals.size())) {
2276          InstResult = C;
2277        } else {
2278          return false;
2279        }
2280      } else {
2281        if (Callee->getFunctionType()->isVarArg())
2282          return false;
2283
2284        Constant *RetVal;
2285        // Execute the call, if successful, use the return value.
2286        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2287                              MutatedMemory, AllocaTmps))
2288          return false;
2289        InstResult = RetVal;
2290      }
2291    } else if (isa<TerminatorInst>(CurInst)) {
2292      BasicBlock *NewBB = 0;
2293      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2294        if (BI->isUnconditional()) {
2295          NewBB = BI->getSuccessor(0);
2296        } else {
2297          ConstantInt *Cond =
2298            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2299          if (!Cond) return false;  // Cannot determine.
2300
2301          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2302        }
2303      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2304        ConstantInt *Val =
2305          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2306        if (!Val) return false;  // Cannot determine.
2307        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2308      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2309        if (RI->getNumOperands())
2310          RetVal = getVal(Values, RI->getOperand(0));
2311
2312        CallStack.pop_back();  // return from fn.
2313        return true;  // We succeeded at evaluating this ctor!
2314      } else {
2315        // invoke, unwind, unreachable.
2316        return false;  // Cannot handle this terminator.
2317      }
2318
2319      // Okay, we succeeded in evaluating this control flow.  See if we have
2320      // executed the new block before.  If so, we have a looping function,
2321      // which we cannot evaluate in reasonable time.
2322      if (!ExecutedBlocks.insert(NewBB))
2323        return false;  // looped!
2324
2325      // Okay, we have never been in this block before.  Check to see if there
2326      // are any PHI nodes.  If so, evaluate them with information about where
2327      // we came from.
2328      BasicBlock *OldBB = CurInst->getParent();
2329      CurInst = NewBB->begin();
2330      PHINode *PN;
2331      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2332        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2333
2334      // Do NOT increment CurInst.  We know that the terminator had no value.
2335      continue;
2336    } else {
2337      // Did not know how to evaluate this!
2338      return false;
2339    }
2340
2341    if (!CurInst->use_empty())
2342      Values[CurInst] = InstResult;
2343
2344    // Advance program counter.
2345    ++CurInst;
2346  }
2347}
2348
2349/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2350/// we can.  Return true if we can, false otherwise.
2351static bool EvaluateStaticConstructor(Function *F) {
2352  /// MutatedMemory - For each store we execute, we update this map.  Loads
2353  /// check this to get the most up-to-date value.  If evaluation is successful,
2354  /// this state is committed to the process.
2355  DenseMap<Constant*, Constant*> MutatedMemory;
2356
2357  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2358  /// to represent its body.  This vector is needed so we can delete the
2359  /// temporary globals when we are done.
2360  std::vector<GlobalVariable*> AllocaTmps;
2361
2362  /// CallStack - This is used to detect recursion.  In pathological situations
2363  /// we could hit exponential behavior, but at least there is nothing
2364  /// unbounded.
2365  std::vector<Function*> CallStack;
2366
2367  // Call the function.
2368  Constant *RetValDummy;
2369  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2370                                      SmallVector<Constant*, 0>(), CallStack,
2371                                      MutatedMemory, AllocaTmps);
2372  if (EvalSuccess) {
2373    // We succeeded at evaluation: commit the result.
2374    DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2375          << F->getName() << "' to " << MutatedMemory.size()
2376          << " stores.\n");
2377    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2378         E = MutatedMemory.end(); I != E; ++I)
2379      CommitValueTo(I->second, I->first, F->getContext());
2380  }
2381
2382  // At this point, we are done interpreting.  If we created any 'alloca'
2383  // temporaries, release them now.
2384  while (!AllocaTmps.empty()) {
2385    GlobalVariable *Tmp = AllocaTmps.back();
2386    AllocaTmps.pop_back();
2387
2388    // If there are still users of the alloca, the program is doing something
2389    // silly, e.g. storing the address of the alloca somewhere and using it
2390    // later.  Since this is undefined, we'll just make it be null.
2391    if (!Tmp->use_empty())
2392      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2393    delete Tmp;
2394  }
2395
2396  return EvalSuccess;
2397}
2398
2399
2400
2401/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2402/// Return true if anything changed.
2403bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2404  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2405  bool MadeChange = false;
2406  if (Ctors.empty()) return false;
2407
2408  // Loop over global ctors, optimizing them when we can.
2409  for (unsigned i = 0; i != Ctors.size(); ++i) {
2410    Function *F = Ctors[i];
2411    // Found a null terminator in the middle of the list, prune off the rest of
2412    // the list.
2413    if (F == 0) {
2414      if (i != Ctors.size()-1) {
2415        Ctors.resize(i+1);
2416        MadeChange = true;
2417      }
2418      break;
2419    }
2420
2421    // We cannot simplify external ctor functions.
2422    if (F->empty()) continue;
2423
2424    // If we can evaluate the ctor at compile time, do.
2425    if (EvaluateStaticConstructor(F)) {
2426      Ctors.erase(Ctors.begin()+i);
2427      MadeChange = true;
2428      --i;
2429      ++NumCtorsEvaluated;
2430      continue;
2431    }
2432  }
2433
2434  if (!MadeChange) return false;
2435
2436  GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
2437  return true;
2438}
2439
2440bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2441  bool Changed = false;
2442
2443  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2444       I != E;) {
2445    Module::alias_iterator J = I++;
2446    // Aliases without names cannot be referenced outside this module.
2447    if (!J->hasName() && !J->isDeclaration())
2448      J->setLinkage(GlobalValue::InternalLinkage);
2449    // If the aliasee may change at link time, nothing can be done - bail out.
2450    if (J->mayBeOverridden())
2451      continue;
2452
2453    Constant *Aliasee = J->getAliasee();
2454    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2455    Target->removeDeadConstantUsers();
2456    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2457
2458    // Make all users of the alias use the aliasee instead.
2459    if (!J->use_empty()) {
2460      J->replaceAllUsesWith(Aliasee);
2461      ++NumAliasesResolved;
2462      Changed = true;
2463    }
2464
2465    // If the aliasee has internal linkage, give it the name and linkage
2466    // of the alias, and delete the alias.  This turns:
2467    //   define internal ... @f(...)
2468    //   @a = alias ... @f
2469    // into:
2470    //   define ... @a(...)
2471    if (!Target->hasLocalLinkage())
2472      continue;
2473
2474    // The transform is only useful if the alias does not have internal linkage.
2475    if (J->hasLocalLinkage())
2476      continue;
2477
2478    // Do not perform the transform if multiple aliases potentially target the
2479    // aliasee.  This check also ensures that it is safe to replace the section
2480    // and other attributes of the aliasee with those of the alias.
2481    if (!hasOneUse)
2482      continue;
2483
2484    // Give the aliasee the name, linkage and other attributes of the alias.
2485    Target->takeName(J);
2486    Target->setLinkage(J->getLinkage());
2487    Target->GlobalValue::copyAttributesFrom(J);
2488
2489    // Delete the alias.
2490    M.getAliasList().erase(J);
2491    ++NumAliasesRemoved;
2492    Changed = true;
2493  }
2494
2495  return Changed;
2496}
2497
2498bool GlobalOpt::runOnModule(Module &M) {
2499  bool Changed = false;
2500
2501  // Try to find the llvm.globalctors list.
2502  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2503
2504  bool LocalChange = true;
2505  while (LocalChange) {
2506    LocalChange = false;
2507
2508    // Delete functions that are trivially dead, ccc -> fastcc
2509    LocalChange |= OptimizeFunctions(M);
2510
2511    // Optimize global_ctors list.
2512    if (GlobalCtors)
2513      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2514
2515    // Optimize non-address-taken globals.
2516    LocalChange |= OptimizeGlobalVars(M);
2517
2518    // Resolve aliases, when possible.
2519    LocalChange |= OptimizeGlobalAliases(M);
2520    Changed |= LocalChange;
2521  }
2522
2523  // TODO: Move all global ctors functions to the end of the module for code
2524  // layout.
2525
2526  return Changed;
2527}
2528