GlobalOpt.cpp revision 9c9f10e3c7667d9104b1ed98090cf0c84e90f8e0
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/StringExtras.h"
40#include "llvm/ADT/STLExtras.h"
41#include <algorithm>
42using namespace llvm;
43
44STATISTIC(NumMarked    , "Number of globals marked constant");
45STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
46STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
47STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
48STATISTIC(NumDeleted   , "Number of globals deleted");
49STATISTIC(NumFnDeleted , "Number of functions deleted");
50STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
51STATISTIC(NumLocalized , "Number of globals localized");
52STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
53STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
54STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
55STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
56STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
57STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
58
59namespace {
60  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
62      AU.addRequired<TargetData>();
63    }
64    static char ID; // Pass identification, replacement for typeid
65    GlobalOpt() : ModulePass(&ID) {}
66
67    bool runOnModule(Module &M);
68
69  private:
70    GlobalVariable *FindGlobalCtors(Module &M);
71    bool OptimizeFunctions(Module &M);
72    bool OptimizeGlobalVars(Module &M);
73    bool OptimizeGlobalAliases(Module &M);
74    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
75    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
76  };
77}
78
79char GlobalOpt::ID = 0;
80static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
81
82ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
83
84namespace {
85
86/// GlobalStatus - As we analyze each global, keep track of some information
87/// about it.  If we find out that the address of the global is taken, none of
88/// this info will be accurate.
89struct VISIBILITY_HIDDEN GlobalStatus {
90  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
91  /// loaded it can be deleted.
92  bool isLoaded;
93
94  /// StoredType - Keep track of what stores to the global look like.
95  ///
96  enum StoredType {
97    /// NotStored - There is no store to this global.  It can thus be marked
98    /// constant.
99    NotStored,
100
101    /// isInitializerStored - This global is stored to, but the only thing
102    /// stored is the constant it was initialized with.  This is only tracked
103    /// for scalar globals.
104    isInitializerStored,
105
106    /// isStoredOnce - This global is stored to, but only its initializer and
107    /// one other value is ever stored to it.  If this global isStoredOnce, we
108    /// track the value stored to it in StoredOnceValue below.  This is only
109    /// tracked for scalar globals.
110    isStoredOnce,
111
112    /// isStored - This global is stored to by multiple values or something else
113    /// that we cannot track.
114    isStored
115  } StoredType;
116
117  /// StoredOnceValue - If only one value (besides the initializer constant) is
118  /// ever stored to this global, keep track of what value it is.
119  Value *StoredOnceValue;
120
121  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
122  /// null/false.  When the first accessing function is noticed, it is recorded.
123  /// When a second different accessing function is noticed,
124  /// HasMultipleAccessingFunctions is set to true.
125  Function *AccessingFunction;
126  bool HasMultipleAccessingFunctions;
127
128  /// HasNonInstructionUser - Set to true if this global has a user that is not
129  /// an instruction (e.g. a constant expr or GV initializer).
130  bool HasNonInstructionUser;
131
132  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
133  bool HasPHIUser;
134
135  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
136                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
137                   HasNonInstructionUser(false), HasPHIUser(false) {}
138};
139
140}
141
142// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
143// by constants itself.  Note that constants cannot be cyclic, so this test is
144// pretty easy to implement recursively.
145//
146static bool SafeToDestroyConstant(Constant *C) {
147  if (isa<GlobalValue>(C)) return false;
148
149  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
150    if (Constant *CU = dyn_cast<Constant>(*UI)) {
151      if (!SafeToDestroyConstant(CU)) return false;
152    } else
153      return false;
154  return true;
155}
156
157
158/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
159/// structure.  If the global has its address taken, return true to indicate we
160/// can't do anything with it.
161///
162static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
163                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
164  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
165    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
166      GS.HasNonInstructionUser = true;
167
168      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
169
170    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
171      if (!GS.HasMultipleAccessingFunctions) {
172        Function *F = I->getParent()->getParent();
173        if (GS.AccessingFunction == 0)
174          GS.AccessingFunction = F;
175        else if (GS.AccessingFunction != F)
176          GS.HasMultipleAccessingFunctions = true;
177      }
178      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
179        GS.isLoaded = true;
180        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
181      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
182        // Don't allow a store OF the address, only stores TO the address.
183        if (SI->getOperand(0) == V) return true;
184
185        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
186
187        // If this is a direct store to the global (i.e., the global is a scalar
188        // value, not an aggregate), keep more specific information about
189        // stores.
190        if (GS.StoredType != GlobalStatus::isStored) {
191          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
192            Value *StoredVal = SI->getOperand(0);
193            if (StoredVal == GV->getInitializer()) {
194              if (GS.StoredType < GlobalStatus::isInitializerStored)
195                GS.StoredType = GlobalStatus::isInitializerStored;
196            } else if (isa<LoadInst>(StoredVal) &&
197                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
198              // G = G
199              if (GS.StoredType < GlobalStatus::isInitializerStored)
200                GS.StoredType = GlobalStatus::isInitializerStored;
201            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
202              GS.StoredType = GlobalStatus::isStoredOnce;
203              GS.StoredOnceValue = StoredVal;
204            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
205                       GS.StoredOnceValue == StoredVal) {
206              // noop.
207            } else {
208              GS.StoredType = GlobalStatus::isStored;
209            }
210          } else {
211            GS.StoredType = GlobalStatus::isStored;
212          }
213        }
214      } else if (isa<GetElementPtrInst>(I)) {
215        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216      } else if (isa<SelectInst>(I)) {
217        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
218      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
219        // PHI nodes we can check just like select or GEP instructions, but we
220        // have to be careful about infinite recursion.
221        if (PHIUsers.insert(PN))  // Not already visited.
222          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
223        GS.HasPHIUser = true;
224      } else if (isa<CmpInst>(I)) {
225      } else if (isa<MemTransferInst>(I)) {
226        if (I->getOperand(1) == V)
227          GS.StoredType = GlobalStatus::isStored;
228        if (I->getOperand(2) == V)
229          GS.isLoaded = true;
230      } else if (isa<MemSetInst>(I)) {
231        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
232        GS.StoredType = GlobalStatus::isStored;
233      } else {
234        return true;  // Any other non-load instruction might take address!
235      }
236    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
237      GS.HasNonInstructionUser = true;
238      // We might have a dead and dangling constant hanging off of here.
239      if (!SafeToDestroyConstant(C))
240        return true;
241    } else {
242      GS.HasNonInstructionUser = true;
243      // Otherwise must be some other user.
244      return true;
245    }
246
247  return false;
248}
249
250static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
251                                             LLVMContext &Context) {
252  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
253  if (!CI) return 0;
254  unsigned IdxV = CI->getZExtValue();
255
256  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
257    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
258  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
259    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
260  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
261    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
262  } else if (isa<ConstantAggregateZero>(Agg)) {
263    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
264      if (IdxV < STy->getNumElements())
265        return Context.getNullValue(STy->getElementType(IdxV));
266    } else if (const SequentialType *STy =
267               dyn_cast<SequentialType>(Agg->getType())) {
268      return Context.getNullValue(STy->getElementType());
269    }
270  } else if (isa<UndefValue>(Agg)) {
271    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
272      if (IdxV < STy->getNumElements())
273        return Context.getUndef(STy->getElementType(IdxV));
274    } else if (const SequentialType *STy =
275               dyn_cast<SequentialType>(Agg->getType())) {
276      return Context.getUndef(STy->getElementType());
277    }
278  }
279  return 0;
280}
281
282
283/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
284/// users of the global, cleaning up the obvious ones.  This is largely just a
285/// quick scan over the use list to clean up the easy and obvious cruft.  This
286/// returns true if it made a change.
287static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
288                                       LLVMContext &Context) {
289  bool Changed = false;
290  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
291    User *U = *UI++;
292
293    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
294      if (Init) {
295        // Replace the load with the initializer.
296        LI->replaceAllUsesWith(Init);
297        LI->eraseFromParent();
298        Changed = true;
299      }
300    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
301      // Store must be unreachable or storing Init into the global.
302      SI->eraseFromParent();
303      Changed = true;
304    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
305      if (CE->getOpcode() == Instruction::GetElementPtr) {
306        Constant *SubInit = 0;
307        if (Init)
308          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
309        Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
310      } else if (CE->getOpcode() == Instruction::BitCast &&
311                 isa<PointerType>(CE->getType())) {
312        // Pointer cast, delete any stores and memsets to the global.
313        Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
314      }
315
316      if (CE->use_empty()) {
317        CE->destroyConstant();
318        Changed = true;
319      }
320    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323      // and will invalidate our notion of what Init is.
324      Constant *SubInit = 0;
325      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326        ConstantExpr *CE =
327          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
328        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
330      }
331      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
332
333      if (GEP->use_empty()) {
334        GEP->eraseFromParent();
335        Changed = true;
336      }
337    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
338      if (MI->getRawDest() == V) {
339        MI->eraseFromParent();
340        Changed = true;
341      }
342
343    } else if (Constant *C = dyn_cast<Constant>(U)) {
344      // If we have a chain of dead constantexprs or other things dangling from
345      // us, and if they are all dead, nuke them without remorse.
346      if (SafeToDestroyConstant(C)) {
347        C->destroyConstant();
348        // This could have invalidated UI, start over from scratch.
349        CleanupConstantGlobalUsers(V, Init, Context);
350        return true;
351      }
352    }
353  }
354  return Changed;
355}
356
357/// isSafeSROAElementUse - Return true if the specified instruction is a safe
358/// user of a derived expression from a global that we want to SROA.
359static bool isSafeSROAElementUse(Value *V) {
360  // We might have a dead and dangling constant hanging off of here.
361  if (Constant *C = dyn_cast<Constant>(V))
362    return SafeToDestroyConstant(C);
363
364  Instruction *I = dyn_cast<Instruction>(V);
365  if (!I) return false;
366
367  // Loads are ok.
368  if (isa<LoadInst>(I)) return true;
369
370  // Stores *to* the pointer are ok.
371  if (StoreInst *SI = dyn_cast<StoreInst>(I))
372    return SI->getOperand(0) != V;
373
374  // Otherwise, it must be a GEP.
375  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
376  if (GEPI == 0) return false;
377
378  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
379      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
380    return false;
381
382  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
383       I != E; ++I)
384    if (!isSafeSROAElementUse(*I))
385      return false;
386  return true;
387}
388
389
390/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
391/// Look at it and its uses and decide whether it is safe to SROA this global.
392///
393static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
394  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
395  if (!isa<GetElementPtrInst>(U) &&
396      (!isa<ConstantExpr>(U) ||
397       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
398    return false;
399
400  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
401  // don't like < 3 operand CE's, and we don't like non-constant integer
402  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
403  // value of C.
404  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
405      !cast<Constant>(U->getOperand(1))->isNullValue() ||
406      !isa<ConstantInt>(U->getOperand(2)))
407    return false;
408
409  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
410  ++GEPI;  // Skip over the pointer index.
411
412  // If this is a use of an array allocation, do a bit more checking for sanity.
413  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
414    uint64_t NumElements = AT->getNumElements();
415    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
416
417    // Check to make sure that index falls within the array.  If not,
418    // something funny is going on, so we won't do the optimization.
419    //
420    if (Idx->getZExtValue() >= NumElements)
421      return false;
422
423    // We cannot scalar repl this level of the array unless any array
424    // sub-indices are in-range constants.  In particular, consider:
425    // A[0][i].  We cannot know that the user isn't doing invalid things like
426    // allowing i to index an out-of-range subscript that accesses A[1].
427    //
428    // Scalar replacing *just* the outer index of the array is probably not
429    // going to be a win anyway, so just give up.
430    for (++GEPI; // Skip array index.
431         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
432         ++GEPI) {
433      uint64_t NumElements;
434      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
435        NumElements = SubArrayTy->getNumElements();
436      else
437        NumElements = cast<VectorType>(*GEPI)->getNumElements();
438
439      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
440      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
441        return false;
442    }
443  }
444
445  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
446    if (!isSafeSROAElementUse(*I))
447      return false;
448  return true;
449}
450
451/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
452/// is safe for us to perform this transformation.
453///
454static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
455  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
456       UI != E; ++UI) {
457    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
458      return false;
459  }
460  return true;
461}
462
463
464/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
465/// variable.  This opens the door for other optimizations by exposing the
466/// behavior of the program in a more fine-grained way.  We have determined that
467/// this transformation is safe already.  We return the first global variable we
468/// insert so that the caller can reprocess it.
469static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
470                                 LLVMContext &Context) {
471  // Make sure this global only has simple uses that we can SRA.
472  if (!GlobalUsersSafeToSRA(GV))
473    return 0;
474
475  assert(GV->hasLocalLinkage() && !GV->isConstant());
476  Constant *Init = GV->getInitializer();
477  const Type *Ty = Init->getType();
478
479  std::vector<GlobalVariable*> NewGlobals;
480  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
481
482  // Get the alignment of the global, either explicit or target-specific.
483  unsigned StartAlignment = GV->getAlignment();
484  if (StartAlignment == 0)
485    StartAlignment = TD.getABITypeAlignment(GV->getType());
486
487  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
488    NewGlobals.reserve(STy->getNumElements());
489    const StructLayout &Layout = *TD.getStructLayout(STy);
490    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
491      Constant *In = getAggregateConstantElement(Init,
492                                    ConstantInt::get(Type::Int32Ty, i),
493                                    Context);
494      assert(In && "Couldn't get element of initializer?");
495      GlobalVariable *NGV = new GlobalVariable(Context,
496                                               STy->getElementType(i), false,
497                                               GlobalVariable::InternalLinkage,
498                                               In, GV->getName()+"."+utostr(i),
499                                               GV->isThreadLocal(),
500                                              GV->getType()->getAddressSpace());
501      Globals.insert(GV, NGV);
502      NewGlobals.push_back(NGV);
503
504      // Calculate the known alignment of the field.  If the original aggregate
505      // had 256 byte alignment for example, something might depend on that:
506      // propagate info to each field.
507      uint64_t FieldOffset = Layout.getElementOffset(i);
508      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
509      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
510        NGV->setAlignment(NewAlign);
511    }
512  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
513    unsigned NumElements = 0;
514    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
515      NumElements = ATy->getNumElements();
516    else
517      NumElements = cast<VectorType>(STy)->getNumElements();
518
519    if (NumElements > 16 && GV->hasNUsesOrMore(16))
520      return 0; // It's not worth it.
521    NewGlobals.reserve(NumElements);
522
523    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
524    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
525    for (unsigned i = 0, e = NumElements; i != e; ++i) {
526      Constant *In = getAggregateConstantElement(Init,
527                                    ConstantInt::get(Type::Int32Ty, i),
528                                    Context);
529      assert(In && "Couldn't get element of initializer?");
530
531      GlobalVariable *NGV = new GlobalVariable(Context,
532                                               STy->getElementType(), false,
533                                               GlobalVariable::InternalLinkage,
534                                               In, GV->getName()+"."+utostr(i),
535                                               GV->isThreadLocal(),
536                                              GV->getType()->getAddressSpace());
537      Globals.insert(GV, NGV);
538      NewGlobals.push_back(NGV);
539
540      // Calculate the known alignment of the field.  If the original aggregate
541      // had 256 byte alignment for example, something might depend on that:
542      // propagate info to each field.
543      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
544      if (NewAlign > EltAlign)
545        NGV->setAlignment(NewAlign);
546    }
547  }
548
549  if (NewGlobals.empty())
550    return 0;
551
552  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
553
554  Constant *NullInt = Context.getNullValue(Type::Int32Ty);
555
556  // Loop over all of the uses of the global, replacing the constantexpr geps,
557  // with smaller constantexpr geps or direct references.
558  while (!GV->use_empty()) {
559    User *GEP = GV->use_back();
560    assert(((isa<ConstantExpr>(GEP) &&
561             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
562            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
563
564    // Ignore the 1th operand, which has to be zero or else the program is quite
565    // broken (undefined).  Get the 2nd operand, which is the structure or array
566    // index.
567    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
568    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
569
570    Value *NewPtr = NewGlobals[Val];
571
572    // Form a shorter GEP if needed.
573    if (GEP->getNumOperands() > 3) {
574      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
575        SmallVector<Constant*, 8> Idxs;
576        Idxs.push_back(NullInt);
577        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
578          Idxs.push_back(CE->getOperand(i));
579        NewPtr = Context.getConstantExprGetElementPtr(cast<Constant>(NewPtr),
580                                                &Idxs[0], Idxs.size());
581      } else {
582        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
583        SmallVector<Value*, 8> Idxs;
584        Idxs.push_back(NullInt);
585        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
586          Idxs.push_back(GEPI->getOperand(i));
587        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
588                                           GEPI->getName()+"."+utostr(Val), GEPI);
589      }
590    }
591    GEP->replaceAllUsesWith(NewPtr);
592
593    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
594      GEPI->eraseFromParent();
595    else
596      cast<ConstantExpr>(GEP)->destroyConstant();
597  }
598
599  // Delete the old global, now that it is dead.
600  Globals.erase(GV);
601  ++NumSRA;
602
603  // Loop over the new globals array deleting any globals that are obviously
604  // dead.  This can arise due to scalarization of a structure or an array that
605  // has elements that are dead.
606  unsigned FirstGlobal = 0;
607  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
608    if (NewGlobals[i]->use_empty()) {
609      Globals.erase(NewGlobals[i]);
610      if (FirstGlobal == i) ++FirstGlobal;
611    }
612
613  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
614}
615
616/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
617/// value will trap if the value is dynamically null.  PHIs keeps track of any
618/// phi nodes we've seen to avoid reprocessing them.
619static bool AllUsesOfValueWillTrapIfNull(Value *V,
620                                         SmallPtrSet<PHINode*, 8> &PHIs) {
621  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
622    if (isa<LoadInst>(*UI)) {
623      // Will trap.
624    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
625      if (SI->getOperand(0) == V) {
626        //cerr << "NONTRAPPING USE: " << **UI;
627        return false;  // Storing the value.
628      }
629    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
630      if (CI->getOperand(0) != V) {
631        //cerr << "NONTRAPPING USE: " << **UI;
632        return false;  // Not calling the ptr
633      }
634    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
635      if (II->getOperand(0) != V) {
636        //cerr << "NONTRAPPING USE: " << **UI;
637        return false;  // Not calling the ptr
638      }
639    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
640      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
641    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
642      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
643    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
644      // If we've already seen this phi node, ignore it, it has already been
645      // checked.
646      if (PHIs.insert(PN))
647        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
648    } else if (isa<ICmpInst>(*UI) &&
649               isa<ConstantPointerNull>(UI->getOperand(1))) {
650      // Ignore setcc X, null
651    } else {
652      //cerr << "NONTRAPPING USE: " << **UI;
653      return false;
654    }
655  return true;
656}
657
658/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
659/// from GV will trap if the loaded value is null.  Note that this also permits
660/// comparisons of the loaded value against null, as a special case.
661static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
662  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
663    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
664      SmallPtrSet<PHINode*, 8> PHIs;
665      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
666        return false;
667    } else if (isa<StoreInst>(*UI)) {
668      // Ignore stores to the global.
669    } else {
670      // We don't know or understand this user, bail out.
671      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
672      return false;
673    }
674
675  return true;
676}
677
678static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
679                                           LLVMContext &Context) {
680  bool Changed = false;
681  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
682    Instruction *I = cast<Instruction>(*UI++);
683    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
684      LI->setOperand(0, NewV);
685      Changed = true;
686    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
687      if (SI->getOperand(1) == V) {
688        SI->setOperand(1, NewV);
689        Changed = true;
690      }
691    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
692      if (I->getOperand(0) == V) {
693        // Calling through the pointer!  Turn into a direct call, but be careful
694        // that the pointer is not also being passed as an argument.
695        I->setOperand(0, NewV);
696        Changed = true;
697        bool PassedAsArg = false;
698        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
699          if (I->getOperand(i) == V) {
700            PassedAsArg = true;
701            I->setOperand(i, NewV);
702          }
703
704        if (PassedAsArg) {
705          // Being passed as an argument also.  Be careful to not invalidate UI!
706          UI = V->use_begin();
707        }
708      }
709    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
710      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
711                                Context.getConstantExprCast(CI->getOpcode(),
712                                                NewV, CI->getType()), Context);
713      if (CI->use_empty()) {
714        Changed = true;
715        CI->eraseFromParent();
716      }
717    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
718      // Should handle GEP here.
719      SmallVector<Constant*, 8> Idxs;
720      Idxs.reserve(GEPI->getNumOperands()-1);
721      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
722           i != e; ++i)
723        if (Constant *C = dyn_cast<Constant>(*i))
724          Idxs.push_back(C);
725        else
726          break;
727      if (Idxs.size() == GEPI->getNumOperands()-1)
728        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
729                          Context.getConstantExprGetElementPtr(NewV, &Idxs[0],
730                                                        Idxs.size()), Context);
731      if (GEPI->use_empty()) {
732        Changed = true;
733        GEPI->eraseFromParent();
734      }
735    }
736  }
737
738  return Changed;
739}
740
741
742/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
743/// value stored into it.  If there are uses of the loaded value that would trap
744/// if the loaded value is dynamically null, then we know that they cannot be
745/// reachable with a null optimize away the load.
746static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
747                                            LLVMContext &Context) {
748  bool Changed = false;
749
750  // Keep track of whether we are able to remove all the uses of the global
751  // other than the store that defines it.
752  bool AllNonStoreUsesGone = true;
753
754  // Replace all uses of loads with uses of uses of the stored value.
755  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
756    User *GlobalUser = *GUI++;
757    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
758      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
759      // If we were able to delete all uses of the loads
760      if (LI->use_empty()) {
761        LI->eraseFromParent();
762        Changed = true;
763      } else {
764        AllNonStoreUsesGone = false;
765      }
766    } else if (isa<StoreInst>(GlobalUser)) {
767      // Ignore the store that stores "LV" to the global.
768      assert(GlobalUser->getOperand(1) == GV &&
769             "Must be storing *to* the global");
770    } else {
771      AllNonStoreUsesGone = false;
772
773      // If we get here we could have other crazy uses that are transitively
774      // loaded.
775      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
776              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
777    }
778  }
779
780  if (Changed) {
781    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
782    ++NumGlobUses;
783  }
784
785  // If we nuked all of the loads, then none of the stores are needed either,
786  // nor is the global.
787  if (AllNonStoreUsesGone) {
788    DOUT << "  *** GLOBAL NOW DEAD!\n";
789    CleanupConstantGlobalUsers(GV, 0, Context);
790    if (GV->use_empty()) {
791      GV->eraseFromParent();
792      ++NumDeleted;
793    }
794    Changed = true;
795  }
796  return Changed;
797}
798
799/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
800/// instructions that are foldable.
801static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
802  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
803    if (Instruction *I = dyn_cast<Instruction>(*UI++))
804      if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
805        I->replaceAllUsesWith(NewC);
806
807        // Advance UI to the next non-I use to avoid invalidating it!
808        // Instructions could multiply use V.
809        while (UI != E && *UI == I)
810          ++UI;
811        I->eraseFromParent();
812      }
813}
814
815/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
816/// variable, and transforms the program as if it always contained the result of
817/// the specified malloc.  Because it is always the result of the specified
818/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
819/// malloc into a global, and any loads of GV as uses of the new global.
820static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
821                                                     MallocInst *MI,
822                                                     LLVMContext &Context) {
823  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
824  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
825
826  if (NElements->getZExtValue() != 1) {
827    // If we have an array allocation, transform it to a single element
828    // allocation to make the code below simpler.
829    Type *NewTy = Context.getArrayType(MI->getAllocatedType(),
830                                 NElements->getZExtValue());
831    MallocInst *NewMI =
832      new MallocInst(NewTy, Context.getNullValue(Type::Int32Ty),
833                     MI->getAlignment(), MI->getName(), MI);
834    Value* Indices[2];
835    Indices[0] = Indices[1] = Context.getNullValue(Type::Int32Ty);
836    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
837                                              NewMI->getName()+".el0", MI);
838    MI->replaceAllUsesWith(NewGEP);
839    MI->eraseFromParent();
840    MI = NewMI;
841  }
842
843  // Create the new global variable.  The contents of the malloc'd memory is
844  // undefined, so initialize with an undef value.
845  // FIXME: This new global should have the alignment returned by malloc.  Code
846  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
847  // this would only guarantee some lower alignment.
848  Constant *Init = Context.getUndef(MI->getAllocatedType());
849  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
850                                             MI->getAllocatedType(), false,
851                                             GlobalValue::InternalLinkage, Init,
852                                             GV->getName()+".body",
853                                             GV,
854                                             GV->isThreadLocal());
855
856  // Anything that used the malloc now uses the global directly.
857  MI->replaceAllUsesWith(NewGV);
858
859  Constant *RepValue = NewGV;
860  if (NewGV->getType() != GV->getType()->getElementType())
861    RepValue = Context.getConstantExprBitCast(RepValue,
862                                        GV->getType()->getElementType());
863
864  // If there is a comparison against null, we will insert a global bool to
865  // keep track of whether the global was initialized yet or not.
866  GlobalVariable *InitBool =
867    new GlobalVariable(Context, Type::Int1Ty, false,
868                       GlobalValue::InternalLinkage,
869                       Context.getFalse(), GV->getName()+".init",
870                       GV->isThreadLocal());
871  bool InitBoolUsed = false;
872
873  // Loop over all uses of GV, processing them in turn.
874  std::vector<StoreInst*> Stores;
875  while (!GV->use_empty())
876    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
877      while (!LI->use_empty()) {
878        Use &LoadUse = LI->use_begin().getUse();
879        if (!isa<ICmpInst>(LoadUse.getUser()))
880          LoadUse = RepValue;
881        else {
882          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
883          // Replace the cmp X, 0 with a use of the bool value.
884          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
885          InitBoolUsed = true;
886          switch (CI->getPredicate()) {
887          default: llvm_unreachable("Unknown ICmp Predicate!");
888          case ICmpInst::ICMP_ULT:
889          case ICmpInst::ICMP_SLT:
890            LV = Context.getFalse();   // X < null -> always false
891            break;
892          case ICmpInst::ICMP_ULE:
893          case ICmpInst::ICMP_SLE:
894          case ICmpInst::ICMP_EQ:
895            LV = BinaryOperator::CreateNot(Context, LV, "notinit", CI);
896            break;
897          case ICmpInst::ICMP_NE:
898          case ICmpInst::ICMP_UGE:
899          case ICmpInst::ICMP_SGE:
900          case ICmpInst::ICMP_UGT:
901          case ICmpInst::ICMP_SGT:
902            break;  // no change.
903          }
904          CI->replaceAllUsesWith(LV);
905          CI->eraseFromParent();
906        }
907      }
908      LI->eraseFromParent();
909    } else {
910      StoreInst *SI = cast<StoreInst>(GV->use_back());
911      // The global is initialized when the store to it occurs.
912      new StoreInst(Context.getTrue(), InitBool, SI);
913      SI->eraseFromParent();
914    }
915
916  // If the initialization boolean was used, insert it, otherwise delete it.
917  if (!InitBoolUsed) {
918    while (!InitBool->use_empty())  // Delete initializations
919      cast<Instruction>(InitBool->use_back())->eraseFromParent();
920    delete InitBool;
921  } else
922    GV->getParent()->getGlobalList().insert(GV, InitBool);
923
924
925  // Now the GV is dead, nuke it and the malloc.
926  GV->eraseFromParent();
927  MI->eraseFromParent();
928
929  // To further other optimizations, loop over all users of NewGV and try to
930  // constant prop them.  This will promote GEP instructions with constant
931  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
932  ConstantPropUsersOf(NewGV, Context);
933  if (RepValue != NewGV)
934    ConstantPropUsersOf(RepValue, Context);
935
936  return NewGV;
937}
938
939/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
940/// to make sure that there are no complex uses of V.  We permit simple things
941/// like dereferencing the pointer, but not storing through the address, unless
942/// it is to the specified global.
943static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
944                                                      GlobalVariable *GV,
945                                              SmallPtrSet<PHINode*, 8> &PHIs) {
946  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
947    Instruction *Inst = cast<Instruction>(*UI);
948
949    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
950      continue; // Fine, ignore.
951    }
952
953    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
954      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
955        return false;  // Storing the pointer itself... bad.
956      continue; // Otherwise, storing through it, or storing into GV... fine.
957    }
958
959    if (isa<GetElementPtrInst>(Inst)) {
960      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
961        return false;
962      continue;
963    }
964
965    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
966      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
967      // cycles.
968      if (PHIs.insert(PN))
969        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
970          return false;
971      continue;
972    }
973
974    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
975      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
976        return false;
977      continue;
978    }
979
980    return false;
981  }
982  return true;
983}
984
985/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
986/// somewhere.  Transform all uses of the allocation into loads from the
987/// global and uses of the resultant pointer.  Further, delete the store into
988/// GV.  This assumes that these value pass the
989/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
990static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
991                                          GlobalVariable *GV) {
992  while (!Alloc->use_empty()) {
993    Instruction *U = cast<Instruction>(*Alloc->use_begin());
994    Instruction *InsertPt = U;
995    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
996      // If this is the store of the allocation into the global, remove it.
997      if (SI->getOperand(1) == GV) {
998        SI->eraseFromParent();
999        continue;
1000      }
1001    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1002      // Insert the load in the corresponding predecessor, not right before the
1003      // PHI.
1004      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1005    } else if (isa<BitCastInst>(U)) {
1006      // Must be bitcast between the malloc and store to initialize the global.
1007      ReplaceUsesOfMallocWithGlobal(U, GV);
1008      U->eraseFromParent();
1009      continue;
1010    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1011      // If this is a "GEP bitcast" and the user is a store to the global, then
1012      // just process it as a bitcast.
1013      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1014        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1015          if (SI->getOperand(1) == GV) {
1016            // Must be bitcast GEP between the malloc and store to initialize
1017            // the global.
1018            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1019            GEPI->eraseFromParent();
1020            continue;
1021          }
1022    }
1023
1024    // Insert a load from the global, and use it instead of the malloc.
1025    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1026    U->replaceUsesOfWith(Alloc, NL);
1027  }
1028}
1029
1030/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1031/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1032/// that index through the array and struct field, icmps of null, and PHIs.
1033static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1034                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1035                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1036  // We permit two users of the load: setcc comparing against the null
1037  // pointer, and a getelementptr of a specific form.
1038  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1039    Instruction *User = cast<Instruction>(*UI);
1040
1041    // Comparison against null is ok.
1042    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1043      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1044        return false;
1045      continue;
1046    }
1047
1048    // getelementptr is also ok, but only a simple form.
1049    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1050      // Must index into the array and into the struct.
1051      if (GEPI->getNumOperands() < 3)
1052        return false;
1053
1054      // Otherwise the GEP is ok.
1055      continue;
1056    }
1057
1058    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1059      if (!LoadUsingPHIsPerLoad.insert(PN))
1060        // This means some phi nodes are dependent on each other.
1061        // Avoid infinite looping!
1062        return false;
1063      if (!LoadUsingPHIs.insert(PN))
1064        // If we have already analyzed this PHI, then it is safe.
1065        continue;
1066
1067      // Make sure all uses of the PHI are simple enough to transform.
1068      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1069                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1070        return false;
1071
1072      continue;
1073    }
1074
1075    // Otherwise we don't know what this is, not ok.
1076    return false;
1077  }
1078
1079  return true;
1080}
1081
1082
1083/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1084/// GV are simple enough to perform HeapSRA, return true.
1085static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1086                                                    MallocInst *MI) {
1087  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1088  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1089  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1090       ++UI)
1091    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1092      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1093                                          LoadUsingPHIsPerLoad))
1094        return false;
1095      LoadUsingPHIsPerLoad.clear();
1096    }
1097
1098  // If we reach here, we know that all uses of the loads and transitive uses
1099  // (through PHI nodes) are simple enough to transform.  However, we don't know
1100  // that all inputs the to the PHI nodes are in the same equivalence sets.
1101  // Check to verify that all operands of the PHIs are either PHIS that can be
1102  // transformed, loads from GV, or MI itself.
1103  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1104       E = LoadUsingPHIs.end(); I != E; ++I) {
1105    PHINode *PN = *I;
1106    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1107      Value *InVal = PN->getIncomingValue(op);
1108
1109      // PHI of the stored value itself is ok.
1110      if (InVal == MI) continue;
1111
1112      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1113        // One of the PHIs in our set is (optimistically) ok.
1114        if (LoadUsingPHIs.count(InPN))
1115          continue;
1116        return false;
1117      }
1118
1119      // Load from GV is ok.
1120      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1121        if (LI->getOperand(0) == GV)
1122          continue;
1123
1124      // UNDEF? NULL?
1125
1126      // Anything else is rejected.
1127      return false;
1128    }
1129  }
1130
1131  return true;
1132}
1133
1134static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1135               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1136                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1137                   LLVMContext &Context) {
1138  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1139
1140  if (FieldNo >= FieldVals.size())
1141    FieldVals.resize(FieldNo+1);
1142
1143  // If we already have this value, just reuse the previously scalarized
1144  // version.
1145  if (Value *FieldVal = FieldVals[FieldNo])
1146    return FieldVal;
1147
1148  // Depending on what instruction this is, we have several cases.
1149  Value *Result;
1150  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1151    // This is a scalarized version of the load from the global.  Just create
1152    // a new Load of the scalarized global.
1153    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1154                                           InsertedScalarizedValues,
1155                                           PHIsToRewrite, Context),
1156                          LI->getName()+".f" + utostr(FieldNo), LI);
1157  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1158    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1159    // field.
1160    const StructType *ST =
1161      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1162
1163    Result =
1164     PHINode::Create(Context.getPointerTypeUnqual(ST->getElementType(FieldNo)),
1165                            PN->getName()+".f"+utostr(FieldNo), PN);
1166    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1167  } else {
1168    llvm_unreachable("Unknown usable value");
1169    Result = 0;
1170  }
1171
1172  return FieldVals[FieldNo] = Result;
1173}
1174
1175/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1176/// the load, rewrite the derived value to use the HeapSRoA'd load.
1177static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1178             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1179                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1180                   LLVMContext &Context) {
1181  // If this is a comparison against null, handle it.
1182  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1183    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1184    // If we have a setcc of the loaded pointer, we can use a setcc of any
1185    // field.
1186    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1187                                   InsertedScalarizedValues, PHIsToRewrite,
1188                                   Context);
1189
1190    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1191                              Context.getNullValue(NPtr->getType()),
1192                              SCI->getName());
1193    SCI->replaceAllUsesWith(New);
1194    SCI->eraseFromParent();
1195    return;
1196  }
1197
1198  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1199  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1200    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1201           && "Unexpected GEPI!");
1202
1203    // Load the pointer for this field.
1204    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1205    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1206                                     InsertedScalarizedValues, PHIsToRewrite,
1207                                     Context);
1208
1209    // Create the new GEP idx vector.
1210    SmallVector<Value*, 8> GEPIdx;
1211    GEPIdx.push_back(GEPI->getOperand(1));
1212    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1213
1214    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1215                                             GEPIdx.begin(), GEPIdx.end(),
1216                                             GEPI->getName(), GEPI);
1217    GEPI->replaceAllUsesWith(NGEPI);
1218    GEPI->eraseFromParent();
1219    return;
1220  }
1221
1222  // Recursively transform the users of PHI nodes.  This will lazily create the
1223  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1224  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1225  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1226  // already been seen first by another load, so its uses have already been
1227  // processed.
1228  PHINode *PN = cast<PHINode>(LoadUser);
1229  bool Inserted;
1230  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1231  tie(InsertPos, Inserted) =
1232    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1233  if (!Inserted) return;
1234
1235  // If this is the first time we've seen this PHI, recursively process all
1236  // users.
1237  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1238    Instruction *User = cast<Instruction>(*UI++);
1239    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1240                            Context);
1241  }
1242}
1243
1244/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1245/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1246/// use FieldGlobals instead.  All uses of loaded values satisfy
1247/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1248static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1249               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1250                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1251                   LLVMContext &Context) {
1252  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1253       UI != E; ) {
1254    Instruction *User = cast<Instruction>(*UI++);
1255    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1256                            Context);
1257  }
1258
1259  if (Load->use_empty()) {
1260    Load->eraseFromParent();
1261    InsertedScalarizedValues.erase(Load);
1262  }
1263}
1264
1265/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1266/// it up into multiple allocations of arrays of the fields.
1267static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
1268                                            LLVMContext &Context){
1269  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1270  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1271
1272  // There is guaranteed to be at least one use of the malloc (storing
1273  // it into GV).  If there are other uses, change them to be uses of
1274  // the global to simplify later code.  This also deletes the store
1275  // into GV.
1276  ReplaceUsesOfMallocWithGlobal(MI, GV);
1277
1278  // Okay, at this point, there are no users of the malloc.  Insert N
1279  // new mallocs at the same place as MI, and N globals.
1280  std::vector<Value*> FieldGlobals;
1281  std::vector<MallocInst*> FieldMallocs;
1282
1283  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1284    const Type *FieldTy = STy->getElementType(FieldNo);
1285    const Type *PFieldTy = Context.getPointerTypeUnqual(FieldTy);
1286
1287    GlobalVariable *NGV =
1288      new GlobalVariable(*GV->getParent(),
1289                         PFieldTy, false, GlobalValue::InternalLinkage,
1290                         Context.getNullValue(PFieldTy),
1291                         GV->getName() + ".f" + utostr(FieldNo), GV,
1292                         GV->isThreadLocal());
1293    FieldGlobals.push_back(NGV);
1294
1295    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1296                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1297    FieldMallocs.push_back(NMI);
1298    new StoreInst(NMI, NGV, MI);
1299  }
1300
1301  // The tricky aspect of this transformation is handling the case when malloc
1302  // fails.  In the original code, malloc failing would set the result pointer
1303  // of malloc to null.  In this case, some mallocs could succeed and others
1304  // could fail.  As such, we emit code that looks like this:
1305  //    F0 = malloc(field0)
1306  //    F1 = malloc(field1)
1307  //    F2 = malloc(field2)
1308  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1309  //      if (F0) { free(F0); F0 = 0; }
1310  //      if (F1) { free(F1); F1 = 0; }
1311  //      if (F2) { free(F2); F2 = 0; }
1312  //    }
1313  Value *RunningOr = 0;
1314  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1315    Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1316                              Context.getNullValue(FieldMallocs[i]->getType()),
1317                                  "isnull");
1318    if (!RunningOr)
1319      RunningOr = Cond;   // First seteq
1320    else
1321      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1322  }
1323
1324  // Split the basic block at the old malloc.
1325  BasicBlock *OrigBB = MI->getParent();
1326  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1327
1328  // Create the block to check the first condition.  Put all these blocks at the
1329  // end of the function as they are unlikely to be executed.
1330  BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1331                                                OrigBB->getParent());
1332
1333  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1334  // branch on RunningOr.
1335  OrigBB->getTerminator()->eraseFromParent();
1336  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1337
1338  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1339  // pointer, because some may be null while others are not.
1340  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1341    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1342    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1343                              Context.getNullValue(GVVal->getType()),
1344                              "tmp");
1345    BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1346    BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1347    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1348
1349    // Fill in FreeBlock.
1350    new FreeInst(GVVal, FreeBlock);
1351    new StoreInst(Context.getNullValue(GVVal->getType()), FieldGlobals[i],
1352                  FreeBlock);
1353    BranchInst::Create(NextBlock, FreeBlock);
1354
1355    NullPtrBlock = NextBlock;
1356  }
1357
1358  BranchInst::Create(ContBB, NullPtrBlock);
1359
1360  // MI is no longer needed, remove it.
1361  MI->eraseFromParent();
1362
1363  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1364  /// update all uses of the load, keep track of what scalarized loads are
1365  /// inserted for a given load.
1366  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1367  InsertedScalarizedValues[GV] = FieldGlobals;
1368
1369  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1370
1371  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1372  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1373  // of the per-field globals instead.
1374  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1375    Instruction *User = cast<Instruction>(*UI++);
1376
1377    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1378      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
1379                                   Context);
1380      continue;
1381    }
1382
1383    // Must be a store of null.
1384    StoreInst *SI = cast<StoreInst>(User);
1385    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1386           "Unexpected heap-sra user!");
1387
1388    // Insert a store of null into each global.
1389    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1390      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1391      Constant *Null = Context.getNullValue(PT->getElementType());
1392      new StoreInst(Null, FieldGlobals[i], SI);
1393    }
1394    // Erase the original store.
1395    SI->eraseFromParent();
1396  }
1397
1398  // While we have PHIs that are interesting to rewrite, do it.
1399  while (!PHIsToRewrite.empty()) {
1400    PHINode *PN = PHIsToRewrite.back().first;
1401    unsigned FieldNo = PHIsToRewrite.back().second;
1402    PHIsToRewrite.pop_back();
1403    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1404    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1405
1406    // Add all the incoming values.  This can materialize more phis.
1407    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1408      Value *InVal = PN->getIncomingValue(i);
1409      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1410                               PHIsToRewrite, Context);
1411      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1412    }
1413  }
1414
1415  // Drop all inter-phi links and any loads that made it this far.
1416  for (DenseMap<Value*, std::vector<Value*> >::iterator
1417       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1418       I != E; ++I) {
1419    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1420      PN->dropAllReferences();
1421    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1422      LI->dropAllReferences();
1423  }
1424
1425  // Delete all the phis and loads now that inter-references are dead.
1426  for (DenseMap<Value*, std::vector<Value*> >::iterator
1427       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1428       I != E; ++I) {
1429    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1430      PN->eraseFromParent();
1431    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1432      LI->eraseFromParent();
1433  }
1434
1435  // The old global is now dead, remove it.
1436  GV->eraseFromParent();
1437
1438  ++NumHeapSRA;
1439  return cast<GlobalVariable>(FieldGlobals[0]);
1440}
1441
1442/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1443/// pointer global variable with a single value stored it that is a malloc or
1444/// cast of malloc.
1445static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1446                                               MallocInst *MI,
1447                                               Module::global_iterator &GVI,
1448                                               TargetData &TD,
1449                                               LLVMContext &Context) {
1450  // If this is a malloc of an abstract type, don't touch it.
1451  if (!MI->getAllocatedType()->isSized())
1452    return false;
1453
1454  // We can't optimize this global unless all uses of it are *known* to be
1455  // of the malloc value, not of the null initializer value (consider a use
1456  // that compares the global's value against zero to see if the malloc has
1457  // been reached).  To do this, we check to see if all uses of the global
1458  // would trap if the global were null: this proves that they must all
1459  // happen after the malloc.
1460  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1461    return false;
1462
1463  // We can't optimize this if the malloc itself is used in a complex way,
1464  // for example, being stored into multiple globals.  This allows the
1465  // malloc to be stored into the specified global, loaded setcc'd, and
1466  // GEP'd.  These are all things we could transform to using the global
1467  // for.
1468  {
1469    SmallPtrSet<PHINode*, 8> PHIs;
1470    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1471      return false;
1472  }
1473
1474
1475  // If we have a global that is only initialized with a fixed size malloc,
1476  // transform the program to use global memory instead of malloc'd memory.
1477  // This eliminates dynamic allocation, avoids an indirection accessing the
1478  // data, and exposes the resultant global to further GlobalOpt.
1479  if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1480    // Restrict this transformation to only working on small allocations
1481    // (2048 bytes currently), as we don't want to introduce a 16M global or
1482    // something.
1483    if (NElements->getZExtValue()*
1484        TD.getTypeAllocSize(MI->getAllocatedType()) < 2048) {
1485      GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context);
1486      return true;
1487    }
1488  }
1489
1490  // If the allocation is an array of structures, consider transforming this
1491  // into multiple malloc'd arrays, one for each field.  This is basically
1492  // SRoA for malloc'd memory.
1493  const Type *AllocTy = MI->getAllocatedType();
1494
1495  // If this is an allocation of a fixed size array of structs, analyze as a
1496  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1497  if (!MI->isArrayAllocation())
1498    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1499      AllocTy = AT->getElementType();
1500
1501  if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1502    // This the structure has an unreasonable number of fields, leave it
1503    // alone.
1504    if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1505        AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1506
1507      // If this is a fixed size array, transform the Malloc to be an alloc of
1508      // structs.  malloc [100 x struct],1 -> malloc struct, 100
1509      if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
1510        MallocInst *NewMI =
1511          new MallocInst(AllocSTy,
1512                  ConstantInt::get(Type::Int32Ty, AT->getNumElements()),
1513                         "", MI);
1514        NewMI->takeName(MI);
1515        Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
1516        MI->replaceAllUsesWith(Cast);
1517        MI->eraseFromParent();
1518        MI = NewMI;
1519      }
1520
1521      GVI = PerformHeapAllocSRoA(GV, MI, Context);
1522      return true;
1523    }
1524  }
1525
1526  return false;
1527}
1528
1529// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1530// that only one value (besides its initializer) is ever stored to the global.
1531static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1532                                     Module::global_iterator &GVI,
1533                                     TargetData &TD, LLVMContext &Context) {
1534  // Ignore no-op GEPs and bitcasts.
1535  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1536
1537  // If we are dealing with a pointer global that is initialized to null and
1538  // only has one (non-null) value stored into it, then we can optimize any
1539  // users of the loaded value (often calls and loads) that would trap if the
1540  // value was null.
1541  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1542      GV->getInitializer()->isNullValue()) {
1543    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1544      if (GV->getInitializer()->getType() != SOVC->getType())
1545        SOVC =
1546         Context.getConstantExprBitCast(SOVC, GV->getInitializer()->getType());
1547
1548      // Optimize away any trapping uses of the loaded value.
1549      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
1550        return true;
1551    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1552      if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context))
1553        return true;
1554    }
1555  }
1556
1557  return false;
1558}
1559
1560/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1561/// two values ever stored into GV are its initializer and OtherVal.  See if we
1562/// can shrink the global into a boolean and select between the two values
1563/// whenever it is used.  This exposes the values to other scalar optimizations.
1564static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
1565                                       LLVMContext &Context) {
1566  const Type *GVElType = GV->getType()->getElementType();
1567
1568  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1569  // an FP value, pointer or vector, don't do this optimization because a select
1570  // between them is very expensive and unlikely to lead to later
1571  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1572  // where v1 and v2 both require constant pool loads, a big loss.
1573  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1574      isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1575    return false;
1576
1577  // Walk the use list of the global seeing if all the uses are load or store.
1578  // If there is anything else, bail out.
1579  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1580    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1581      return false;
1582
1583  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1584
1585  // Create the new global, initializing it to false.
1586  GlobalVariable *NewGV = new GlobalVariable(Context, Type::Int1Ty, false,
1587         GlobalValue::InternalLinkage, Context.getFalse(),
1588                                             GV->getName()+".b",
1589                                             GV->isThreadLocal());
1590  GV->getParent()->getGlobalList().insert(GV, NewGV);
1591
1592  Constant *InitVal = GV->getInitializer();
1593  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1594
1595  // If initialized to zero and storing one into the global, we can use a cast
1596  // instead of a select to synthesize the desired value.
1597  bool IsOneZero = false;
1598  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1599    IsOneZero = InitVal->isNullValue() && CI->isOne();
1600
1601  while (!GV->use_empty()) {
1602    Instruction *UI = cast<Instruction>(GV->use_back());
1603    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1604      // Change the store into a boolean store.
1605      bool StoringOther = SI->getOperand(0) == OtherVal;
1606      // Only do this if we weren't storing a loaded value.
1607      Value *StoreVal;
1608      if (StoringOther || SI->getOperand(0) == InitVal)
1609        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1610      else {
1611        // Otherwise, we are storing a previously loaded copy.  To do this,
1612        // change the copy from copying the original value to just copying the
1613        // bool.
1614        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1615
1616        // If we're already replaced the input, StoredVal will be a cast or
1617        // select instruction.  If not, it will be a load of the original
1618        // global.
1619        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1620          assert(LI->getOperand(0) == GV && "Not a copy!");
1621          // Insert a new load, to preserve the saved value.
1622          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1623        } else {
1624          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1625                 "This is not a form that we understand!");
1626          StoreVal = StoredVal->getOperand(0);
1627          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1628        }
1629      }
1630      new StoreInst(StoreVal, NewGV, SI);
1631    } else {
1632      // Change the load into a load of bool then a select.
1633      LoadInst *LI = cast<LoadInst>(UI);
1634      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1635      Value *NSI;
1636      if (IsOneZero)
1637        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1638      else
1639        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1640      NSI->takeName(LI);
1641      LI->replaceAllUsesWith(NSI);
1642    }
1643    UI->eraseFromParent();
1644  }
1645
1646  GV->eraseFromParent();
1647  return true;
1648}
1649
1650
1651/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1652/// it if possible.  If we make a change, return true.
1653bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1654                                      Module::global_iterator &GVI) {
1655  SmallPtrSet<PHINode*, 16> PHIUsers;
1656  GlobalStatus GS;
1657  GV->removeDeadConstantUsers();
1658
1659  if (GV->use_empty()) {
1660    DOUT << "GLOBAL DEAD: " << *GV;
1661    GV->eraseFromParent();
1662    ++NumDeleted;
1663    return true;
1664  }
1665
1666  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1667#if 0
1668    cerr << "Global: " << *GV;
1669    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1670    cerr << "  StoredType = ";
1671    switch (GS.StoredType) {
1672    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1673    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1674    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1675    case GlobalStatus::isStored: cerr << "stored\n"; break;
1676    }
1677    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1678      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1679    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1680      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1681                << "\n";
1682    cerr << "  HasMultipleAccessingFunctions =  "
1683              << GS.HasMultipleAccessingFunctions << "\n";
1684    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1685    cerr << "\n";
1686#endif
1687
1688    // If this is a first class global and has only one accessing function
1689    // and this function is main (which we know is not recursive we can make
1690    // this global a local variable) we replace the global with a local alloca
1691    // in this function.
1692    //
1693    // NOTE: It doesn't make sense to promote non single-value types since we
1694    // are just replacing static memory to stack memory.
1695    //
1696    // If the global is in different address space, don't bring it to stack.
1697    if (!GS.HasMultipleAccessingFunctions &&
1698        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1699        GV->getType()->getElementType()->isSingleValueType() &&
1700        GS.AccessingFunction->getName() == "main" &&
1701        GS.AccessingFunction->hasExternalLinkage() &&
1702        GV->getType()->getAddressSpace() == 0) {
1703      DOUT << "LOCALIZING GLOBAL: " << *GV;
1704      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1705      const Type* ElemTy = GV->getType()->getElementType();
1706      // FIXME: Pass Global's alignment when globals have alignment
1707      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1708      if (!isa<UndefValue>(GV->getInitializer()))
1709        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1710
1711      GV->replaceAllUsesWith(Alloca);
1712      GV->eraseFromParent();
1713      ++NumLocalized;
1714      return true;
1715    }
1716
1717    // If the global is never loaded (but may be stored to), it is dead.
1718    // Delete it now.
1719    if (!GS.isLoaded) {
1720      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1721
1722      // Delete any stores we can find to the global.  We may not be able to
1723      // make it completely dead though.
1724      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1725                                                GV->getContext());
1726
1727      // If the global is dead now, delete it.
1728      if (GV->use_empty()) {
1729        GV->eraseFromParent();
1730        ++NumDeleted;
1731        Changed = true;
1732      }
1733      return Changed;
1734
1735    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1736      DOUT << "MARKING CONSTANT: " << *GV;
1737      GV->setConstant(true);
1738
1739      // Clean up any obviously simplifiable users now.
1740      CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
1741
1742      // If the global is dead now, just nuke it.
1743      if (GV->use_empty()) {
1744        DOUT << "   *** Marking constant allowed us to simplify "
1745             << "all users and delete global!\n";
1746        GV->eraseFromParent();
1747        ++NumDeleted;
1748      }
1749
1750      ++NumMarked;
1751      return true;
1752    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1753      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1754                                                 getAnalysis<TargetData>(),
1755                                                 GV->getContext())) {
1756        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1757        return true;
1758      }
1759    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1760      // If the initial value for the global was an undef value, and if only
1761      // one other value was stored into it, we can just change the
1762      // initializer to be the stored value, then delete all stores to the
1763      // global.  This allows us to mark it constant.
1764      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1765        if (isa<UndefValue>(GV->getInitializer())) {
1766          // Change the initial value here.
1767          GV->setInitializer(SOVConstant);
1768
1769          // Clean up any obviously simplifiable users now.
1770          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1771                                     GV->getContext());
1772
1773          if (GV->use_empty()) {
1774            DOUT << "   *** Substituting initializer allowed us to "
1775                 << "simplify all users and delete global!\n";
1776            GV->eraseFromParent();
1777            ++NumDeleted;
1778          } else {
1779            GVI = GV;
1780          }
1781          ++NumSubstitute;
1782          return true;
1783        }
1784
1785      // Try to optimize globals based on the knowledge that only one value
1786      // (besides its initializer) is ever stored to the global.
1787      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1788                                   getAnalysis<TargetData>(), GV->getContext()))
1789        return true;
1790
1791      // Otherwise, if the global was not a boolean, we can shrink it to be a
1792      // boolean.
1793      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1794        if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
1795          ++NumShrunkToBool;
1796          return true;
1797        }
1798    }
1799  }
1800  return false;
1801}
1802
1803/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1804/// function, changing them to FastCC.
1805static void ChangeCalleesToFastCall(Function *F) {
1806  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1807    CallSite User(cast<Instruction>(*UI));
1808    User.setCallingConv(CallingConv::Fast);
1809  }
1810}
1811
1812static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1813  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1814    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1815      continue;
1816
1817    // There can be only one.
1818    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1819  }
1820
1821  return Attrs;
1822}
1823
1824static void RemoveNestAttribute(Function *F) {
1825  F->setAttributes(StripNest(F->getAttributes()));
1826  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1827    CallSite User(cast<Instruction>(*UI));
1828    User.setAttributes(StripNest(User.getAttributes()));
1829  }
1830}
1831
1832bool GlobalOpt::OptimizeFunctions(Module &M) {
1833  bool Changed = false;
1834  // Optimize functions.
1835  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1836    Function *F = FI++;
1837    // Functions without names cannot be referenced outside this module.
1838    if (!F->hasName() && !F->isDeclaration())
1839      F->setLinkage(GlobalValue::InternalLinkage);
1840    F->removeDeadConstantUsers();
1841    if (F->use_empty() && (F->hasLocalLinkage() ||
1842                           F->hasLinkOnceLinkage())) {
1843      M.getFunctionList().erase(F);
1844      Changed = true;
1845      ++NumFnDeleted;
1846    } else if (F->hasLocalLinkage()) {
1847      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1848          !F->hasAddressTaken()) {
1849        // If this function has C calling conventions, is not a varargs
1850        // function, and is only called directly, promote it to use the Fast
1851        // calling convention.
1852        F->setCallingConv(CallingConv::Fast);
1853        ChangeCalleesToFastCall(F);
1854        ++NumFastCallFns;
1855        Changed = true;
1856      }
1857
1858      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1859          !F->hasAddressTaken()) {
1860        // The function is not used by a trampoline intrinsic, so it is safe
1861        // to remove the 'nest' attribute.
1862        RemoveNestAttribute(F);
1863        ++NumNestRemoved;
1864        Changed = true;
1865      }
1866    }
1867  }
1868  return Changed;
1869}
1870
1871bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1872  bool Changed = false;
1873  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1874       GVI != E; ) {
1875    GlobalVariable *GV = GVI++;
1876    // Global variables without names cannot be referenced outside this module.
1877    if (!GV->hasName() && !GV->isDeclaration())
1878      GV->setLinkage(GlobalValue::InternalLinkage);
1879    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1880        GV->hasInitializer())
1881      Changed |= ProcessInternalGlobal(GV, GVI);
1882  }
1883  return Changed;
1884}
1885
1886/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1887/// initializers have an init priority of 65535.
1888GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1889  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1890       I != E; ++I)
1891    if (I->getName() == "llvm.global_ctors") {
1892      // Found it, verify it's an array of { int, void()* }.
1893      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1894      if (!ATy) return 0;
1895      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1896      if (!STy || STy->getNumElements() != 2 ||
1897          STy->getElementType(0) != Type::Int32Ty) return 0;
1898      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1899      if (!PFTy) return 0;
1900      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1901      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1902          FTy->getNumParams() != 0)
1903        return 0;
1904
1905      // Verify that the initializer is simple enough for us to handle.
1906      if (!I->hasInitializer()) return 0;
1907      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1908      if (!CA) return 0;
1909      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1910        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1911          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1912            continue;
1913
1914          // Must have a function or null ptr.
1915          if (!isa<Function>(CS->getOperand(1)))
1916            return 0;
1917
1918          // Init priority must be standard.
1919          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1920          if (!CI || CI->getZExtValue() != 65535)
1921            return 0;
1922        } else {
1923          return 0;
1924        }
1925
1926      return I;
1927    }
1928  return 0;
1929}
1930
1931/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1932/// return a list of the functions and null terminator as a vector.
1933static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1934  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1935  std::vector<Function*> Result;
1936  Result.reserve(CA->getNumOperands());
1937  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1938    ConstantStruct *CS = cast<ConstantStruct>(*i);
1939    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1940  }
1941  return Result;
1942}
1943
1944/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1945/// specified array, returning the new global to use.
1946static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1947                                          const std::vector<Function*> &Ctors,
1948                                          LLVMContext &Context) {
1949  // If we made a change, reassemble the initializer list.
1950  std::vector<Constant*> CSVals;
1951  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1952  CSVals.push_back(0);
1953
1954  // Create the new init list.
1955  std::vector<Constant*> CAList;
1956  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1957    if (Ctors[i]) {
1958      CSVals[1] = Ctors[i];
1959    } else {
1960      const Type *FTy = Context.getFunctionType(Type::VoidTy, false);
1961      const PointerType *PFTy = Context.getPointerTypeUnqual(FTy);
1962      CSVals[1] = Context.getNullValue(PFTy);
1963      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1964    }
1965    CAList.push_back(ConstantStruct::get(CSVals));
1966  }
1967
1968  // Create the array initializer.
1969  const Type *StructTy =
1970    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1971  Constant *CA = Context.getConstantArray(ArrayType::get(StructTy,
1972                                           CAList.size()), CAList);
1973
1974  // If we didn't change the number of elements, don't create a new GV.
1975  if (CA->getType() == GCL->getInitializer()->getType()) {
1976    GCL->setInitializer(CA);
1977    return GCL;
1978  }
1979
1980  // Create the new global and insert it next to the existing list.
1981  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
1982                                           GCL->isConstant(),
1983                                           GCL->getLinkage(), CA, "",
1984                                           GCL->isThreadLocal());
1985  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1986  NGV->takeName(GCL);
1987
1988  // Nuke the old list, replacing any uses with the new one.
1989  if (!GCL->use_empty()) {
1990    Constant *V = NGV;
1991    if (V->getType() != GCL->getType())
1992      V = Context.getConstantExprBitCast(V, GCL->getType());
1993    GCL->replaceAllUsesWith(V);
1994  }
1995  GCL->eraseFromParent();
1996
1997  if (Ctors.size())
1998    return NGV;
1999  else
2000    return 0;
2001}
2002
2003
2004static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2005                        Value *V) {
2006  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2007  Constant *R = ComputedValues[V];
2008  assert(R && "Reference to an uncomputed value!");
2009  return R;
2010}
2011
2012/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2013/// enough for us to understand.  In particular, if it is a cast of something,
2014/// we punt.  We basically just support direct accesses to globals and GEP's of
2015/// globals.  This should be kept up to date with CommitValueTo.
2016static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
2017  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
2018    if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2019      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2020    return !GV->isDeclaration();  // reject external globals.
2021  }
2022  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2023    // Handle a constantexpr gep.
2024    if (CE->getOpcode() == Instruction::GetElementPtr &&
2025        isa<GlobalVariable>(CE->getOperand(0))) {
2026      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2027      if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2028        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2029      return GV->hasInitializer() &&
2030             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2031                                                    Context);
2032    }
2033  return false;
2034}
2035
2036/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2037/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2038/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2039static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2040                                   ConstantExpr *Addr, unsigned OpNo,
2041                                   LLVMContext &Context) {
2042  // Base case of the recursion.
2043  if (OpNo == Addr->getNumOperands()) {
2044    assert(Val->getType() == Init->getType() && "Type mismatch!");
2045    return Val;
2046  }
2047
2048  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2049    std::vector<Constant*> Elts;
2050
2051    // Break up the constant into its elements.
2052    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2053      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2054        Elts.push_back(cast<Constant>(*i));
2055    } else if (isa<ConstantAggregateZero>(Init)) {
2056      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2057        Elts.push_back(Context.getNullValue(STy->getElementType(i)));
2058    } else if (isa<UndefValue>(Init)) {
2059      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2060        Elts.push_back(Context.getUndef(STy->getElementType(i)));
2061    } else {
2062      llvm_unreachable("This code is out of sync with "
2063             " ConstantFoldLoadThroughGEPConstantExpr");
2064    }
2065
2066    // Replace the element that we are supposed to.
2067    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2068    unsigned Idx = CU->getZExtValue();
2069    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2070    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
2071
2072    // Return the modified struct.
2073    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
2074  } else {
2075    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2076    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2077
2078    // Break up the array into elements.
2079    std::vector<Constant*> Elts;
2080    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2081      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2082        Elts.push_back(cast<Constant>(*i));
2083    } else if (isa<ConstantAggregateZero>(Init)) {
2084      Constant *Elt = Context.getNullValue(ATy->getElementType());
2085      Elts.assign(ATy->getNumElements(), Elt);
2086    } else if (isa<UndefValue>(Init)) {
2087      Constant *Elt = Context.getUndef(ATy->getElementType());
2088      Elts.assign(ATy->getNumElements(), Elt);
2089    } else {
2090      llvm_unreachable("This code is out of sync with "
2091             " ConstantFoldLoadThroughGEPConstantExpr");
2092    }
2093
2094    assert(CI->getZExtValue() < ATy->getNumElements());
2095    Elts[CI->getZExtValue()] =
2096      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
2097    return Context.getConstantArray(ATy, Elts);
2098  }
2099}
2100
2101/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2102/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2103static void CommitValueTo(Constant *Val, Constant *Addr,
2104                          LLVMContext &Context) {
2105  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2106    assert(GV->hasInitializer());
2107    GV->setInitializer(Val);
2108    return;
2109  }
2110
2111  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2112  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2113
2114  Constant *Init = GV->getInitializer();
2115  Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
2116  GV->setInitializer(Init);
2117}
2118
2119/// ComputeLoadResult - Return the value that would be computed by a load from
2120/// P after the stores reflected by 'memory' have been performed.  If we can't
2121/// decide, return null.
2122static Constant *ComputeLoadResult(Constant *P,
2123                                const DenseMap<Constant*, Constant*> &Memory,
2124                                LLVMContext &Context) {
2125  // If this memory location has been recently stored, use the stored value: it
2126  // is the most up-to-date.
2127  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2128  if (I != Memory.end()) return I->second;
2129
2130  // Access it.
2131  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2132    if (GV->hasInitializer())
2133      return GV->getInitializer();
2134    return 0;
2135  }
2136
2137  // Handle a constantexpr getelementptr.
2138  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2139    if (CE->getOpcode() == Instruction::GetElementPtr &&
2140        isa<GlobalVariable>(CE->getOperand(0))) {
2141      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2142      if (GV->hasInitializer())
2143        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2144                                                      Context);
2145    }
2146
2147  return 0;  // don't know how to evaluate.
2148}
2149
2150/// EvaluateFunction - Evaluate a call to function F, returning true if
2151/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2152/// arguments for the function.
2153static bool EvaluateFunction(Function *F, Constant *&RetVal,
2154                             const std::vector<Constant*> &ActualArgs,
2155                             std::vector<Function*> &CallStack,
2156                             DenseMap<Constant*, Constant*> &MutatedMemory,
2157                             std::vector<GlobalVariable*> &AllocaTmps) {
2158  // Check to see if this function is already executing (recursion).  If so,
2159  // bail out.  TODO: we might want to accept limited recursion.
2160  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2161    return false;
2162
2163  LLVMContext &Context = F->getContext();
2164
2165  CallStack.push_back(F);
2166
2167  /// Values - As we compute SSA register values, we store their contents here.
2168  DenseMap<Value*, Constant*> Values;
2169
2170  // Initialize arguments to the incoming values specified.
2171  unsigned ArgNo = 0;
2172  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2173       ++AI, ++ArgNo)
2174    Values[AI] = ActualArgs[ArgNo];
2175
2176  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2177  /// we can only evaluate any one basic block at most once.  This set keeps
2178  /// track of what we have executed so we can detect recursive cases etc.
2179  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2180
2181  // CurInst - The current instruction we're evaluating.
2182  BasicBlock::iterator CurInst = F->begin()->begin();
2183
2184  // This is the main evaluation loop.
2185  while (1) {
2186    Constant *InstResult = 0;
2187
2188    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2189      if (SI->isVolatile()) return false;  // no volatile accesses.
2190      Constant *Ptr = getVal(Values, SI->getOperand(1));
2191      if (!isSimpleEnoughPointerToCommit(Ptr, Context))
2192        // If this is too complex for us to commit, reject it.
2193        return false;
2194      Constant *Val = getVal(Values, SI->getOperand(0));
2195      MutatedMemory[Ptr] = Val;
2196    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2197      InstResult = Context.getConstantExpr(BO->getOpcode(),
2198                                     getVal(Values, BO->getOperand(0)),
2199                                     getVal(Values, BO->getOperand(1)));
2200    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2201      InstResult = Context.getConstantExprCompare(CI->getPredicate(),
2202                                            getVal(Values, CI->getOperand(0)),
2203                                            getVal(Values, CI->getOperand(1)));
2204    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2205      InstResult = Context.getConstantExprCast(CI->getOpcode(),
2206                                         getVal(Values, CI->getOperand(0)),
2207                                         CI->getType());
2208    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2209      InstResult =
2210            Context.getConstantExprSelect(getVal(Values, SI->getOperand(0)),
2211                                           getVal(Values, SI->getOperand(1)),
2212                                           getVal(Values, SI->getOperand(2)));
2213    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2214      Constant *P = getVal(Values, GEP->getOperand(0));
2215      SmallVector<Constant*, 8> GEPOps;
2216      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2217           i != e; ++i)
2218        GEPOps.push_back(getVal(Values, *i));
2219      InstResult =
2220            Context.getConstantExprGetElementPtr(P, &GEPOps[0], GEPOps.size());
2221    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2222      if (LI->isVolatile()) return false;  // no volatile accesses.
2223      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2224                                     MutatedMemory, Context);
2225      if (InstResult == 0) return false; // Could not evaluate load.
2226    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2227      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2228      const Type *Ty = AI->getType()->getElementType();
2229      AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
2230                                              GlobalValue::InternalLinkage,
2231                                              Context.getUndef(Ty),
2232                                              AI->getName()));
2233      InstResult = AllocaTmps.back();
2234    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2235
2236      // Debug info can safely be ignored here.
2237      if (isa<DbgInfoIntrinsic>(CI)) {
2238        ++CurInst;
2239        continue;
2240      }
2241
2242      // Cannot handle inline asm.
2243      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2244
2245      // Resolve function pointers.
2246      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2247      if (!Callee) return false;  // Cannot resolve.
2248
2249      std::vector<Constant*> Formals;
2250      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2251           i != e; ++i)
2252        Formals.push_back(getVal(Values, *i));
2253
2254      if (Callee->isDeclaration()) {
2255        // If this is a function we can constant fold, do it.
2256        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2257                                           Formals.size())) {
2258          InstResult = C;
2259        } else {
2260          return false;
2261        }
2262      } else {
2263        if (Callee->getFunctionType()->isVarArg())
2264          return false;
2265
2266        Constant *RetVal;
2267        // Execute the call, if successful, use the return value.
2268        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2269                              MutatedMemory, AllocaTmps))
2270          return false;
2271        InstResult = RetVal;
2272      }
2273    } else if (isa<TerminatorInst>(CurInst)) {
2274      BasicBlock *NewBB = 0;
2275      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2276        if (BI->isUnconditional()) {
2277          NewBB = BI->getSuccessor(0);
2278        } else {
2279          ConstantInt *Cond =
2280            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2281          if (!Cond) return false;  // Cannot determine.
2282
2283          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2284        }
2285      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2286        ConstantInt *Val =
2287          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2288        if (!Val) return false;  // Cannot determine.
2289        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2290      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2291        if (RI->getNumOperands())
2292          RetVal = getVal(Values, RI->getOperand(0));
2293
2294        CallStack.pop_back();  // return from fn.
2295        return true;  // We succeeded at evaluating this ctor!
2296      } else {
2297        // invoke, unwind, unreachable.
2298        return false;  // Cannot handle this terminator.
2299      }
2300
2301      // Okay, we succeeded in evaluating this control flow.  See if we have
2302      // executed the new block before.  If so, we have a looping function,
2303      // which we cannot evaluate in reasonable time.
2304      if (!ExecutedBlocks.insert(NewBB))
2305        return false;  // looped!
2306
2307      // Okay, we have never been in this block before.  Check to see if there
2308      // are any PHI nodes.  If so, evaluate them with information about where
2309      // we came from.
2310      BasicBlock *OldBB = CurInst->getParent();
2311      CurInst = NewBB->begin();
2312      PHINode *PN;
2313      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2314        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2315
2316      // Do NOT increment CurInst.  We know that the terminator had no value.
2317      continue;
2318    } else {
2319      // Did not know how to evaluate this!
2320      return false;
2321    }
2322
2323    if (!CurInst->use_empty())
2324      Values[CurInst] = InstResult;
2325
2326    // Advance program counter.
2327    ++CurInst;
2328  }
2329}
2330
2331/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2332/// we can.  Return true if we can, false otherwise.
2333static bool EvaluateStaticConstructor(Function *F) {
2334  /// MutatedMemory - For each store we execute, we update this map.  Loads
2335  /// check this to get the most up-to-date value.  If evaluation is successful,
2336  /// this state is committed to the process.
2337  DenseMap<Constant*, Constant*> MutatedMemory;
2338
2339  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2340  /// to represent its body.  This vector is needed so we can delete the
2341  /// temporary globals when we are done.
2342  std::vector<GlobalVariable*> AllocaTmps;
2343
2344  /// CallStack - This is used to detect recursion.  In pathological situations
2345  /// we could hit exponential behavior, but at least there is nothing
2346  /// unbounded.
2347  std::vector<Function*> CallStack;
2348
2349  // Call the function.
2350  Constant *RetValDummy;
2351  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2352                                       CallStack, MutatedMemory, AllocaTmps);
2353  if (EvalSuccess) {
2354    // We succeeded at evaluation: commit the result.
2355    DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2356          << F->getName() << "' to " << MutatedMemory.size()
2357          << " stores.\n");
2358    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2359         E = MutatedMemory.end(); I != E; ++I)
2360      CommitValueTo(I->second, I->first, F->getContext());
2361  }
2362
2363  // At this point, we are done interpreting.  If we created any 'alloca'
2364  // temporaries, release them now.
2365  while (!AllocaTmps.empty()) {
2366    GlobalVariable *Tmp = AllocaTmps.back();
2367    AllocaTmps.pop_back();
2368
2369    // If there are still users of the alloca, the program is doing something
2370    // silly, e.g. storing the address of the alloca somewhere and using it
2371    // later.  Since this is undefined, we'll just make it be null.
2372    if (!Tmp->use_empty())
2373      Tmp->replaceAllUsesWith(F->getContext().getNullValue(Tmp->getType()));
2374    delete Tmp;
2375  }
2376
2377  return EvalSuccess;
2378}
2379
2380
2381
2382/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2383/// Return true if anything changed.
2384bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2385  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2386  bool MadeChange = false;
2387  if (Ctors.empty()) return false;
2388
2389  // Loop over global ctors, optimizing them when we can.
2390  for (unsigned i = 0; i != Ctors.size(); ++i) {
2391    Function *F = Ctors[i];
2392    // Found a null terminator in the middle of the list, prune off the rest of
2393    // the list.
2394    if (F == 0) {
2395      if (i != Ctors.size()-1) {
2396        Ctors.resize(i+1);
2397        MadeChange = true;
2398      }
2399      break;
2400    }
2401
2402    // We cannot simplify external ctor functions.
2403    if (F->empty()) continue;
2404
2405    // If we can evaluate the ctor at compile time, do.
2406    if (EvaluateStaticConstructor(F)) {
2407      Ctors.erase(Ctors.begin()+i);
2408      MadeChange = true;
2409      --i;
2410      ++NumCtorsEvaluated;
2411      continue;
2412    }
2413  }
2414
2415  if (!MadeChange) return false;
2416
2417  GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
2418  return true;
2419}
2420
2421bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2422  bool Changed = false;
2423
2424  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2425       I != E;) {
2426    Module::alias_iterator J = I++;
2427    // Aliases without names cannot be referenced outside this module.
2428    if (!J->hasName() && !J->isDeclaration())
2429      J->setLinkage(GlobalValue::InternalLinkage);
2430    // If the aliasee may change at link time, nothing can be done - bail out.
2431    if (J->mayBeOverridden())
2432      continue;
2433
2434    Constant *Aliasee = J->getAliasee();
2435    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2436    Target->removeDeadConstantUsers();
2437    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2438
2439    // Make all users of the alias use the aliasee instead.
2440    if (!J->use_empty()) {
2441      J->replaceAllUsesWith(Aliasee);
2442      ++NumAliasesResolved;
2443      Changed = true;
2444    }
2445
2446    // If the aliasee has internal linkage, give it the name and linkage
2447    // of the alias, and delete the alias.  This turns:
2448    //   define internal ... @f(...)
2449    //   @a = alias ... @f
2450    // into:
2451    //   define ... @a(...)
2452    if (!Target->hasLocalLinkage())
2453      continue;
2454
2455    // The transform is only useful if the alias does not have internal linkage.
2456    if (J->hasLocalLinkage())
2457      continue;
2458
2459    // Do not perform the transform if multiple aliases potentially target the
2460    // aliasee.  This check also ensures that it is safe to replace the section
2461    // and other attributes of the aliasee with those of the alias.
2462    if (!hasOneUse)
2463      continue;
2464
2465    // Give the aliasee the name, linkage and other attributes of the alias.
2466    Target->takeName(J);
2467    Target->setLinkage(J->getLinkage());
2468    Target->GlobalValue::copyAttributesFrom(J);
2469
2470    // Delete the alias.
2471    M.getAliasList().erase(J);
2472    ++NumAliasesRemoved;
2473    Changed = true;
2474  }
2475
2476  return Changed;
2477}
2478
2479bool GlobalOpt::runOnModule(Module &M) {
2480  bool Changed = false;
2481
2482  // Try to find the llvm.globalctors list.
2483  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2484
2485  bool LocalChange = true;
2486  while (LocalChange) {
2487    LocalChange = false;
2488
2489    // Delete functions that are trivially dead, ccc -> fastcc
2490    LocalChange |= OptimizeFunctions(M);
2491
2492    // Optimize global_ctors list.
2493    if (GlobalCtors)
2494      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2495
2496    // Optimize non-address-taken globals.
2497    LocalChange |= OptimizeGlobalVars(M);
2498
2499    // Resolve aliases, when possible.
2500    LocalChange |= OptimizeGlobalAliases(M);
2501    Changed |= LocalChange;
2502  }
2503
2504  // TODO: Move all global ctors functions to the end of the module for code
2505  // layout.
2506
2507  return Changed;
2508}
2509