GlobalOpt.cpp revision 9d835771bdc16fa527e26201b5e615e24471b0af
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46STATISTIC(NumDeleted   , "Number of globals deleted");
47STATISTIC(NumFnDeleted , "Number of functions deleted");
48STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49STATISTIC(NumLocalized , "Number of globals localized");
50STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56
57namespace {
58  struct GlobalOpt : public ModulePass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60    }
61    static char ID; // Pass identification, replacement for typeid
62    GlobalOpt() : ModulePass(&ID) {}
63
64    bool runOnModule(Module &M);
65
66  private:
67    GlobalVariable *FindGlobalCtors(Module &M);
68    bool OptimizeFunctions(Module &M);
69    bool OptimizeGlobalVars(Module &M);
70    bool OptimizeGlobalAliases(Module &M);
71    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
72    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
73  };
74}
75
76char GlobalOpt::ID = 0;
77static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
78
79ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
80
81namespace {
82
83/// GlobalStatus - As we analyze each global, keep track of some information
84/// about it.  If we find out that the address of the global is taken, none of
85/// this info will be accurate.
86struct GlobalStatus {
87  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
88  /// loaded it can be deleted.
89  bool isLoaded;
90
91  /// StoredType - Keep track of what stores to the global look like.
92  ///
93  enum StoredType {
94    /// NotStored - There is no store to this global.  It can thus be marked
95    /// constant.
96    NotStored,
97
98    /// isInitializerStored - This global is stored to, but the only thing
99    /// stored is the constant it was initialized with.  This is only tracked
100    /// for scalar globals.
101    isInitializerStored,
102
103    /// isStoredOnce - This global is stored to, but only its initializer and
104    /// one other value is ever stored to it.  If this global isStoredOnce, we
105    /// track the value stored to it in StoredOnceValue below.  This is only
106    /// tracked for scalar globals.
107    isStoredOnce,
108
109    /// isStored - This global is stored to by multiple values or something else
110    /// that we cannot track.
111    isStored
112  } StoredType;
113
114  /// StoredOnceValue - If only one value (besides the initializer constant) is
115  /// ever stored to this global, keep track of what value it is.
116  Value *StoredOnceValue;
117
118  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
119  /// null/false.  When the first accessing function is noticed, it is recorded.
120  /// When a second different accessing function is noticed,
121  /// HasMultipleAccessingFunctions is set to true.
122  const Function *AccessingFunction;
123  bool HasMultipleAccessingFunctions;
124
125  /// HasNonInstructionUser - Set to true if this global has a user that is not
126  /// an instruction (e.g. a constant expr or GV initializer).
127  bool HasNonInstructionUser;
128
129  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
130  bool HasPHIUser;
131
132  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
133                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
134                   HasNonInstructionUser(false), HasPHIUser(false) {}
135};
136
137}
138
139// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
140// by constants itself.  Note that constants cannot be cyclic, so this test is
141// pretty easy to implement recursively.
142//
143static bool SafeToDestroyConstant(const Constant *C) {
144  if (isa<GlobalValue>(C)) return false;
145
146  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
147       ++UI)
148    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
149      if (!SafeToDestroyConstant(CU)) return false;
150    } else
151      return false;
152  return true;
153}
154
155
156/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157/// structure.  If the global has its address taken, return true to indicate we
158/// can't do anything with it.
159///
160static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
161                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
162  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
163       ++UI) {
164    const User *U = *UI;
165    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
166      GS.HasNonInstructionUser = true;
167      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
168    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
169      if (!GS.HasMultipleAccessingFunctions) {
170        const Function *F = I->getParent()->getParent();
171        if (GS.AccessingFunction == 0)
172          GS.AccessingFunction = F;
173        else if (GS.AccessingFunction != F)
174          GS.HasMultipleAccessingFunctions = true;
175      }
176      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
177        GS.isLoaded = true;
178        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
179      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
180        // Don't allow a store OF the address, only stores TO the address.
181        if (SI->getOperand(0) == V) return true;
182
183        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
184
185        // If this is a direct store to the global (i.e., the global is a scalar
186        // value, not an aggregate), keep more specific information about
187        // stores.
188        if (GS.StoredType != GlobalStatus::isStored) {
189          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
190                                                           SI->getOperand(1))) {
191            Value *StoredVal = SI->getOperand(0);
192            if (StoredVal == GV->getInitializer()) {
193              if (GS.StoredType < GlobalStatus::isInitializerStored)
194                GS.StoredType = GlobalStatus::isInitializerStored;
195            } else if (isa<LoadInst>(StoredVal) &&
196                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
197              if (GS.StoredType < GlobalStatus::isInitializerStored)
198                GS.StoredType = GlobalStatus::isInitializerStored;
199            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
200              GS.StoredType = GlobalStatus::isStoredOnce;
201              GS.StoredOnceValue = StoredVal;
202            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
203                       GS.StoredOnceValue == StoredVal) {
204              // noop.
205            } else {
206              GS.StoredType = GlobalStatus::isStored;
207            }
208          } else {
209            GS.StoredType = GlobalStatus::isStored;
210          }
211        }
212      } else if (isa<GetElementPtrInst>(I)) {
213        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
214      } else if (isa<SelectInst>(I)) {
215        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
217        // PHI nodes we can check just like select or GEP instructions, but we
218        // have to be careful about infinite recursion.
219        if (PHIUsers.insert(PN))  // Not already visited.
220          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221        GS.HasPHIUser = true;
222      } else if (isa<CmpInst>(I)) {
223        // Nothing to analyse.
224      } else if (isa<MemTransferInst>(I)) {
225        const MemTransferInst *MTI = cast<MemTransferInst>(I);
226        if (MTI->getArgOperand(0) == V)
227          GS.StoredType = GlobalStatus::isStored;
228        if (MTI->getArgOperand(1) == V)
229          GS.isLoaded = true;
230      } else if (isa<MemSetInst>(I)) {
231        assert(cast<MemSetInst>(I)->getArgOperand(0) == V &&
232               "Memset only takes one pointer!");
233        GS.StoredType = GlobalStatus::isStored;
234      } else {
235        return true;  // Any other non-load instruction might take address!
236      }
237    } else if (const Constant *C = dyn_cast<Constant>(U)) {
238      GS.HasNonInstructionUser = true;
239      // We might have a dead and dangling constant hanging off of here.
240      if (!SafeToDestroyConstant(C))
241        return true;
242    } else {
243      GS.HasNonInstructionUser = true;
244      // Otherwise must be some other user.
245      return true;
246    }
247  }
248
249  return false;
250}
251
252static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
253  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
254  if (!CI) return 0;
255  unsigned IdxV = CI->getZExtValue();
256
257  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
258    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
259  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
260    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
261  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
262    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
263  } else if (isa<ConstantAggregateZero>(Agg)) {
264    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
265      if (IdxV < STy->getNumElements())
266        return Constant::getNullValue(STy->getElementType(IdxV));
267    } else if (const SequentialType *STy =
268               dyn_cast<SequentialType>(Agg->getType())) {
269      return Constant::getNullValue(STy->getElementType());
270    }
271  } else if (isa<UndefValue>(Agg)) {
272    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
273      if (IdxV < STy->getNumElements())
274        return UndefValue::get(STy->getElementType(IdxV));
275    } else if (const SequentialType *STy =
276               dyn_cast<SequentialType>(Agg->getType())) {
277      return UndefValue::get(STy->getElementType());
278    }
279  }
280  return 0;
281}
282
283
284/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
285/// users of the global, cleaning up the obvious ones.  This is largely just a
286/// quick scan over the use list to clean up the easy and obvious cruft.  This
287/// returns true if it made a change.
288static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
289  bool Changed = false;
290  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
291    User *U = *UI++;
292
293    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
294      if (Init) {
295        // Replace the load with the initializer.
296        LI->replaceAllUsesWith(Init);
297        LI->eraseFromParent();
298        Changed = true;
299      }
300    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
301      // Store must be unreachable or storing Init into the global.
302      SI->eraseFromParent();
303      Changed = true;
304    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
305      if (CE->getOpcode() == Instruction::GetElementPtr) {
306        Constant *SubInit = 0;
307        if (Init)
308          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
309        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
310      } else if (CE->getOpcode() == Instruction::BitCast &&
311                 CE->getType()->isPointerTy()) {
312        // Pointer cast, delete any stores and memsets to the global.
313        Changed |= CleanupConstantGlobalUsers(CE, 0);
314      }
315
316      if (CE->use_empty()) {
317        CE->destroyConstant();
318        Changed = true;
319      }
320    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323      // and will invalidate our notion of what Init is.
324      Constant *SubInit = 0;
325      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326        ConstantExpr *CE =
327          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
328        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330      }
331      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
332
333      if (GEP->use_empty()) {
334        GEP->eraseFromParent();
335        Changed = true;
336      }
337    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
338      if (MI->getRawDest() == V) {
339        MI->eraseFromParent();
340        Changed = true;
341      }
342
343    } else if (Constant *C = dyn_cast<Constant>(U)) {
344      // If we have a chain of dead constantexprs or other things dangling from
345      // us, and if they are all dead, nuke them without remorse.
346      if (SafeToDestroyConstant(C)) {
347        C->destroyConstant();
348        // This could have invalidated UI, start over from scratch.
349        CleanupConstantGlobalUsers(V, Init);
350        return true;
351      }
352    }
353  }
354  return Changed;
355}
356
357/// isSafeSROAElementUse - Return true if the specified instruction is a safe
358/// user of a derived expression from a global that we want to SROA.
359static bool isSafeSROAElementUse(Value *V) {
360  // We might have a dead and dangling constant hanging off of here.
361  if (Constant *C = dyn_cast<Constant>(V))
362    return SafeToDestroyConstant(C);
363
364  Instruction *I = dyn_cast<Instruction>(V);
365  if (!I) return false;
366
367  // Loads are ok.
368  if (isa<LoadInst>(I)) return true;
369
370  // Stores *to* the pointer are ok.
371  if (StoreInst *SI = dyn_cast<StoreInst>(I))
372    return SI->getOperand(0) != V;
373
374  // Otherwise, it must be a GEP.
375  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
376  if (GEPI == 0) return false;
377
378  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
379      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
380    return false;
381
382  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
383       I != E; ++I)
384    if (!isSafeSROAElementUse(*I))
385      return false;
386  return true;
387}
388
389
390/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
391/// Look at it and its uses and decide whether it is safe to SROA this global.
392///
393static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
394  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
395  if (!isa<GetElementPtrInst>(U) &&
396      (!isa<ConstantExpr>(U) ||
397       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
398    return false;
399
400  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
401  // don't like < 3 operand CE's, and we don't like non-constant integer
402  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
403  // value of C.
404  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
405      !cast<Constant>(U->getOperand(1))->isNullValue() ||
406      !isa<ConstantInt>(U->getOperand(2)))
407    return false;
408
409  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
410  ++GEPI;  // Skip over the pointer index.
411
412  // If this is a use of an array allocation, do a bit more checking for sanity.
413  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
414    uint64_t NumElements = AT->getNumElements();
415    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
416
417    // Check to make sure that index falls within the array.  If not,
418    // something funny is going on, so we won't do the optimization.
419    //
420    if (Idx->getZExtValue() >= NumElements)
421      return false;
422
423    // We cannot scalar repl this level of the array unless any array
424    // sub-indices are in-range constants.  In particular, consider:
425    // A[0][i].  We cannot know that the user isn't doing invalid things like
426    // allowing i to index an out-of-range subscript that accesses A[1].
427    //
428    // Scalar replacing *just* the outer index of the array is probably not
429    // going to be a win anyway, so just give up.
430    for (++GEPI; // Skip array index.
431         GEPI != E;
432         ++GEPI) {
433      uint64_t NumElements;
434      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
435        NumElements = SubArrayTy->getNumElements();
436      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
437        NumElements = SubVectorTy->getNumElements();
438      else {
439        assert((*GEPI)->isStructTy() &&
440               "Indexed GEP type is not array, vector, or struct!");
441        continue;
442      }
443
444      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
445      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
446        return false;
447    }
448  }
449
450  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
451    if (!isSafeSROAElementUse(*I))
452      return false;
453  return true;
454}
455
456/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
457/// is safe for us to perform this transformation.
458///
459static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
460  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
461       UI != E; ++UI) {
462    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
463      return false;
464  }
465  return true;
466}
467
468
469/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
470/// variable.  This opens the door for other optimizations by exposing the
471/// behavior of the program in a more fine-grained way.  We have determined that
472/// this transformation is safe already.  We return the first global variable we
473/// insert so that the caller can reprocess it.
474static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
475  // Make sure this global only has simple uses that we can SRA.
476  if (!GlobalUsersSafeToSRA(GV))
477    return 0;
478
479  assert(GV->hasLocalLinkage() && !GV->isConstant());
480  Constant *Init = GV->getInitializer();
481  const Type *Ty = Init->getType();
482
483  std::vector<GlobalVariable*> NewGlobals;
484  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
485
486  // Get the alignment of the global, either explicit or target-specific.
487  unsigned StartAlignment = GV->getAlignment();
488  if (StartAlignment == 0)
489    StartAlignment = TD.getABITypeAlignment(GV->getType());
490
491  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
492    NewGlobals.reserve(STy->getNumElements());
493    const StructLayout &Layout = *TD.getStructLayout(STy);
494    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
495      Constant *In = getAggregateConstantElement(Init,
496                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
497      assert(In && "Couldn't get element of initializer?");
498      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
499                                               GlobalVariable::InternalLinkage,
500                                               In, GV->getName()+"."+Twine(i),
501                                               GV->isThreadLocal(),
502                                              GV->getType()->getAddressSpace());
503      Globals.insert(GV, NGV);
504      NewGlobals.push_back(NGV);
505
506      // Calculate the known alignment of the field.  If the original aggregate
507      // had 256 byte alignment for example, something might depend on that:
508      // propagate info to each field.
509      uint64_t FieldOffset = Layout.getElementOffset(i);
510      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
511      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
512        NGV->setAlignment(NewAlign);
513    }
514  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
515    unsigned NumElements = 0;
516    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
517      NumElements = ATy->getNumElements();
518    else
519      NumElements = cast<VectorType>(STy)->getNumElements();
520
521    if (NumElements > 16 && GV->hasNUsesOrMore(16))
522      return 0; // It's not worth it.
523    NewGlobals.reserve(NumElements);
524
525    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
526    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
527    for (unsigned i = 0, e = NumElements; i != e; ++i) {
528      Constant *In = getAggregateConstantElement(Init,
529                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
530      assert(In && "Couldn't get element of initializer?");
531
532      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
533                                               GlobalVariable::InternalLinkage,
534                                               In, GV->getName()+"."+Twine(i),
535                                               GV->isThreadLocal(),
536                                              GV->getType()->getAddressSpace());
537      Globals.insert(GV, NGV);
538      NewGlobals.push_back(NGV);
539
540      // Calculate the known alignment of the field.  If the original aggregate
541      // had 256 byte alignment for example, something might depend on that:
542      // propagate info to each field.
543      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
544      if (NewAlign > EltAlign)
545        NGV->setAlignment(NewAlign);
546    }
547  }
548
549  if (NewGlobals.empty())
550    return 0;
551
552  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
553
554  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
555
556  // Loop over all of the uses of the global, replacing the constantexpr geps,
557  // with smaller constantexpr geps or direct references.
558  while (!GV->use_empty()) {
559    User *GEP = GV->use_back();
560    assert(((isa<ConstantExpr>(GEP) &&
561             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
562            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
563
564    // Ignore the 1th operand, which has to be zero or else the program is quite
565    // broken (undefined).  Get the 2nd operand, which is the structure or array
566    // index.
567    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
568    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
569
570    Value *NewPtr = NewGlobals[Val];
571
572    // Form a shorter GEP if needed.
573    if (GEP->getNumOperands() > 3) {
574      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
575        SmallVector<Constant*, 8> Idxs;
576        Idxs.push_back(NullInt);
577        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
578          Idxs.push_back(CE->getOperand(i));
579        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
580                                                &Idxs[0], Idxs.size());
581      } else {
582        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
583        SmallVector<Value*, 8> Idxs;
584        Idxs.push_back(NullInt);
585        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
586          Idxs.push_back(GEPI->getOperand(i));
587        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
588                                           GEPI->getName()+"."+Twine(Val),GEPI);
589      }
590    }
591    GEP->replaceAllUsesWith(NewPtr);
592
593    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
594      GEPI->eraseFromParent();
595    else
596      cast<ConstantExpr>(GEP)->destroyConstant();
597  }
598
599  // Delete the old global, now that it is dead.
600  Globals.erase(GV);
601  ++NumSRA;
602
603  // Loop over the new globals array deleting any globals that are obviously
604  // dead.  This can arise due to scalarization of a structure or an array that
605  // has elements that are dead.
606  unsigned FirstGlobal = 0;
607  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
608    if (NewGlobals[i]->use_empty()) {
609      Globals.erase(NewGlobals[i]);
610      if (FirstGlobal == i) ++FirstGlobal;
611    }
612
613  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
614}
615
616/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
617/// value will trap if the value is dynamically null.  PHIs keeps track of any
618/// phi nodes we've seen to avoid reprocessing them.
619static bool AllUsesOfValueWillTrapIfNull(const Value *V,
620                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
621  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
622       ++UI) {
623    const User *U = *UI;
624
625    if (isa<LoadInst>(U)) {
626      // Will trap.
627    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
628      if (SI->getOperand(0) == V) {
629        //cerr << "NONTRAPPING USE: " << *U;
630        return false;  // Storing the value.
631      }
632    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
633      if (CI->getCalledValue() != V) {
634        //cerr << "NONTRAPPING USE: " << *U;
635        return false;  // Not calling the ptr
636      }
637    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
638      if (II->getCalledValue() != V) {
639        //cerr << "NONTRAPPING USE: " << *U;
640        return false;  // Not calling the ptr
641      }
642    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
643      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
644    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
645      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
646    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
647      // If we've already seen this phi node, ignore it, it has already been
648      // checked.
649      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
650        return false;
651    } else if (isa<ICmpInst>(U) &&
652               isa<ConstantPointerNull>(UI->getOperand(1))) {
653      // Ignore icmp X, null
654    } else {
655      //cerr << "NONTRAPPING USE: " << *U;
656      return false;
657    }
658  }
659  return true;
660}
661
662/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
663/// from GV will trap if the loaded value is null.  Note that this also permits
664/// comparisons of the loaded value against null, as a special case.
665static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
666  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
667       UI != E; ++UI) {
668    const User *U = *UI;
669
670    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
671      SmallPtrSet<const PHINode*, 8> PHIs;
672      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
673        return false;
674    } else if (isa<StoreInst>(U)) {
675      // Ignore stores to the global.
676    } else {
677      // We don't know or understand this user, bail out.
678      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
679      return false;
680    }
681  }
682  return true;
683}
684
685static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
686  bool Changed = false;
687  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
688    Instruction *I = cast<Instruction>(*UI++);
689    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
690      LI->setOperand(0, NewV);
691      Changed = true;
692    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
693      if (SI->getOperand(1) == V) {
694        SI->setOperand(1, NewV);
695        Changed = true;
696      }
697    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
698      CallSite CS(I);
699      if (CS.getCalledValue() == V) {
700        // Calling through the pointer!  Turn into a direct call, but be careful
701        // that the pointer is not also being passed as an argument.
702        CS.setCalledFunction(NewV);
703        Changed = true;
704        bool PassedAsArg = false;
705        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
706          if (CS.getArgument(i) == V) {
707            PassedAsArg = true;
708            CS.setArgument(i, NewV);
709          }
710
711        if (PassedAsArg) {
712          // Being passed as an argument also.  Be careful to not invalidate UI!
713          UI = V->use_begin();
714        }
715      }
716    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
717      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
718                                ConstantExpr::getCast(CI->getOpcode(),
719                                                      NewV, CI->getType()));
720      if (CI->use_empty()) {
721        Changed = true;
722        CI->eraseFromParent();
723      }
724    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
725      // Should handle GEP here.
726      SmallVector<Constant*, 8> Idxs;
727      Idxs.reserve(GEPI->getNumOperands()-1);
728      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
729           i != e; ++i)
730        if (Constant *C = dyn_cast<Constant>(*i))
731          Idxs.push_back(C);
732        else
733          break;
734      if (Idxs.size() == GEPI->getNumOperands()-1)
735        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
736                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
737                                                        Idxs.size()));
738      if (GEPI->use_empty()) {
739        Changed = true;
740        GEPI->eraseFromParent();
741      }
742    }
743  }
744
745  return Changed;
746}
747
748
749/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
750/// value stored into it.  If there are uses of the loaded value that would trap
751/// if the loaded value is dynamically null, then we know that they cannot be
752/// reachable with a null optimize away the load.
753static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
754  bool Changed = false;
755
756  // Keep track of whether we are able to remove all the uses of the global
757  // other than the store that defines it.
758  bool AllNonStoreUsesGone = true;
759
760  // Replace all uses of loads with uses of uses of the stored value.
761  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
762    User *GlobalUser = *GUI++;
763    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
764      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
765      // If we were able to delete all uses of the loads
766      if (LI->use_empty()) {
767        LI->eraseFromParent();
768        Changed = true;
769      } else {
770        AllNonStoreUsesGone = false;
771      }
772    } else if (isa<StoreInst>(GlobalUser)) {
773      // Ignore the store that stores "LV" to the global.
774      assert(GlobalUser->getOperand(1) == GV &&
775             "Must be storing *to* the global");
776    } else {
777      AllNonStoreUsesGone = false;
778
779      // If we get here we could have other crazy uses that are transitively
780      // loaded.
781      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
782              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
783    }
784  }
785
786  if (Changed) {
787    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
788    ++NumGlobUses;
789  }
790
791  // If we nuked all of the loads, then none of the stores are needed either,
792  // nor is the global.
793  if (AllNonStoreUsesGone) {
794    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
795    CleanupConstantGlobalUsers(GV, 0);
796    if (GV->use_empty()) {
797      GV->eraseFromParent();
798      ++NumDeleted;
799    }
800    Changed = true;
801  }
802  return Changed;
803}
804
805/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
806/// instructions that are foldable.
807static void ConstantPropUsersOf(Value *V) {
808  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
809    if (Instruction *I = dyn_cast<Instruction>(*UI++))
810      if (Constant *NewC = ConstantFoldInstruction(I)) {
811        I->replaceAllUsesWith(NewC);
812
813        // Advance UI to the next non-I use to avoid invalidating it!
814        // Instructions could multiply use V.
815        while (UI != E && *UI == I)
816          ++UI;
817        I->eraseFromParent();
818      }
819}
820
821/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
822/// variable, and transforms the program as if it always contained the result of
823/// the specified malloc.  Because it is always the result of the specified
824/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
825/// malloc into a global, and any loads of GV as uses of the new global.
826static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
827                                                     CallInst *CI,
828                                                     const Type *AllocTy,
829                                                     ConstantInt *NElements,
830                                                     TargetData* TD) {
831  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
832
833  const Type *GlobalType;
834  if (NElements->getZExtValue() == 1)
835    GlobalType = AllocTy;
836  else
837    // If we have an array allocation, the global variable is of an array.
838    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
839
840  // Create the new global variable.  The contents of the malloc'd memory is
841  // undefined, so initialize with an undef value.
842  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
843                                             GlobalType, false,
844                                             GlobalValue::InternalLinkage,
845                                             UndefValue::get(GlobalType),
846                                             GV->getName()+".body",
847                                             GV,
848                                             GV->isThreadLocal());
849
850  // If there are bitcast users of the malloc (which is typical, usually we have
851  // a malloc + bitcast) then replace them with uses of the new global.  Update
852  // other users to use the global as well.
853  BitCastInst *TheBC = 0;
854  while (!CI->use_empty()) {
855    Instruction *User = cast<Instruction>(CI->use_back());
856    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
857      if (BCI->getType() == NewGV->getType()) {
858        BCI->replaceAllUsesWith(NewGV);
859        BCI->eraseFromParent();
860      } else {
861        BCI->setOperand(0, NewGV);
862      }
863    } else {
864      if (TheBC == 0)
865        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
866      User->replaceUsesOfWith(CI, TheBC);
867    }
868  }
869
870  Constant *RepValue = NewGV;
871  if (NewGV->getType() != GV->getType()->getElementType())
872    RepValue = ConstantExpr::getBitCast(RepValue,
873                                        GV->getType()->getElementType());
874
875  // If there is a comparison against null, we will insert a global bool to
876  // keep track of whether the global was initialized yet or not.
877  GlobalVariable *InitBool =
878    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
879                       GlobalValue::InternalLinkage,
880                       ConstantInt::getFalse(GV->getContext()),
881                       GV->getName()+".init", GV->isThreadLocal());
882  bool InitBoolUsed = false;
883
884  // Loop over all uses of GV, processing them in turn.
885  while (!GV->use_empty()) {
886    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
887      // The global is initialized when the store to it occurs.
888      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
889      SI->eraseFromParent();
890      continue;
891    }
892
893    LoadInst *LI = cast<LoadInst>(GV->use_back());
894    while (!LI->use_empty()) {
895      Use &LoadUse = LI->use_begin().getUse();
896      if (!isa<ICmpInst>(LoadUse.getUser())) {
897        LoadUse = RepValue;
898        continue;
899      }
900
901      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
902      // Replace the cmp X, 0 with a use of the bool value.
903      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
904      InitBoolUsed = true;
905      switch (ICI->getPredicate()) {
906      default: llvm_unreachable("Unknown ICmp Predicate!");
907      case ICmpInst::ICMP_ULT:
908      case ICmpInst::ICMP_SLT:   // X < null -> always false
909        LV = ConstantInt::getFalse(GV->getContext());
910        break;
911      case ICmpInst::ICMP_ULE:
912      case ICmpInst::ICMP_SLE:
913      case ICmpInst::ICMP_EQ:
914        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
915        break;
916      case ICmpInst::ICMP_NE:
917      case ICmpInst::ICMP_UGE:
918      case ICmpInst::ICMP_SGE:
919      case ICmpInst::ICMP_UGT:
920      case ICmpInst::ICMP_SGT:
921        break;  // no change.
922      }
923      ICI->replaceAllUsesWith(LV);
924      ICI->eraseFromParent();
925    }
926    LI->eraseFromParent();
927  }
928
929  // If the initialization boolean was used, insert it, otherwise delete it.
930  if (!InitBoolUsed) {
931    while (!InitBool->use_empty())  // Delete initializations
932      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
933    delete InitBool;
934  } else
935    GV->getParent()->getGlobalList().insert(GV, InitBool);
936
937  // Now the GV is dead, nuke it and the malloc..
938  GV->eraseFromParent();
939  CI->eraseFromParent();
940
941  // To further other optimizations, loop over all users of NewGV and try to
942  // constant prop them.  This will promote GEP instructions with constant
943  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
944  ConstantPropUsersOf(NewGV);
945  if (RepValue != NewGV)
946    ConstantPropUsersOf(RepValue);
947
948  return NewGV;
949}
950
951/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
952/// to make sure that there are no complex uses of V.  We permit simple things
953/// like dereferencing the pointer, but not storing through the address, unless
954/// it is to the specified global.
955static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
956                                                      const GlobalVariable *GV,
957                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
958  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
959       UI != E; ++UI) {
960    const Instruction *Inst = cast<Instruction>(*UI);
961
962    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
963      continue; // Fine, ignore.
964    }
965
966    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
967      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
968        return false;  // Storing the pointer itself... bad.
969      continue; // Otherwise, storing through it, or storing into GV... fine.
970    }
971
972    // Must index into the array and into the struct.
973    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
974      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
975        return false;
976      continue;
977    }
978
979    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
980      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
981      // cycles.
982      if (PHIs.insert(PN))
983        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
984          return false;
985      continue;
986    }
987
988    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
989      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
990        return false;
991      continue;
992    }
993
994    return false;
995  }
996  return true;
997}
998
999/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1000/// somewhere.  Transform all uses of the allocation into loads from the
1001/// global and uses of the resultant pointer.  Further, delete the store into
1002/// GV.  This assumes that these value pass the
1003/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1004static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1005                                          GlobalVariable *GV) {
1006  while (!Alloc->use_empty()) {
1007    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1008    Instruction *InsertPt = U;
1009    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1010      // If this is the store of the allocation into the global, remove it.
1011      if (SI->getOperand(1) == GV) {
1012        SI->eraseFromParent();
1013        continue;
1014      }
1015    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1016      // Insert the load in the corresponding predecessor, not right before the
1017      // PHI.
1018      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1019    } else if (isa<BitCastInst>(U)) {
1020      // Must be bitcast between the malloc and store to initialize the global.
1021      ReplaceUsesOfMallocWithGlobal(U, GV);
1022      U->eraseFromParent();
1023      continue;
1024    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1025      // If this is a "GEP bitcast" and the user is a store to the global, then
1026      // just process it as a bitcast.
1027      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1028        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1029          if (SI->getOperand(1) == GV) {
1030            // Must be bitcast GEP between the malloc and store to initialize
1031            // the global.
1032            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1033            GEPI->eraseFromParent();
1034            continue;
1035          }
1036    }
1037
1038    // Insert a load from the global, and use it instead of the malloc.
1039    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1040    U->replaceUsesOfWith(Alloc, NL);
1041  }
1042}
1043
1044/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1045/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1046/// that index through the array and struct field, icmps of null, and PHIs.
1047static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1048                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1049                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1050  // We permit two users of the load: setcc comparing against the null
1051  // pointer, and a getelementptr of a specific form.
1052  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1053       ++UI) {
1054    const Instruction *User = cast<Instruction>(*UI);
1055
1056    // Comparison against null is ok.
1057    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1058      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1059        return false;
1060      continue;
1061    }
1062
1063    // getelementptr is also ok, but only a simple form.
1064    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1065      // Must index into the array and into the struct.
1066      if (GEPI->getNumOperands() < 3)
1067        return false;
1068
1069      // Otherwise the GEP is ok.
1070      continue;
1071    }
1072
1073    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1074      if (!LoadUsingPHIsPerLoad.insert(PN))
1075        // This means some phi nodes are dependent on each other.
1076        // Avoid infinite looping!
1077        return false;
1078      if (!LoadUsingPHIs.insert(PN))
1079        // If we have already analyzed this PHI, then it is safe.
1080        continue;
1081
1082      // Make sure all uses of the PHI are simple enough to transform.
1083      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1084                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1085        return false;
1086
1087      continue;
1088    }
1089
1090    // Otherwise we don't know what this is, not ok.
1091    return false;
1092  }
1093
1094  return true;
1095}
1096
1097
1098/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1099/// GV are simple enough to perform HeapSRA, return true.
1100static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1101                                                    Instruction *StoredVal) {
1102  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1103  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1104  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1105       UI != E; ++UI)
1106    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1107      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1108                                          LoadUsingPHIsPerLoad))
1109        return false;
1110      LoadUsingPHIsPerLoad.clear();
1111    }
1112
1113  // If we reach here, we know that all uses of the loads and transitive uses
1114  // (through PHI nodes) are simple enough to transform.  However, we don't know
1115  // that all inputs the to the PHI nodes are in the same equivalence sets.
1116  // Check to verify that all operands of the PHIs are either PHIS that can be
1117  // transformed, loads from GV, or MI itself.
1118  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1119       , E = LoadUsingPHIs.end(); I != E; ++I) {
1120    const PHINode *PN = *I;
1121    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1122      Value *InVal = PN->getIncomingValue(op);
1123
1124      // PHI of the stored value itself is ok.
1125      if (InVal == StoredVal) continue;
1126
1127      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1128        // One of the PHIs in our set is (optimistically) ok.
1129        if (LoadUsingPHIs.count(InPN))
1130          continue;
1131        return false;
1132      }
1133
1134      // Load from GV is ok.
1135      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1136        if (LI->getOperand(0) == GV)
1137          continue;
1138
1139      // UNDEF? NULL?
1140
1141      // Anything else is rejected.
1142      return false;
1143    }
1144  }
1145
1146  return true;
1147}
1148
1149static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1150               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1151                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1152  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1153
1154  if (FieldNo >= FieldVals.size())
1155    FieldVals.resize(FieldNo+1);
1156
1157  // If we already have this value, just reuse the previously scalarized
1158  // version.
1159  if (Value *FieldVal = FieldVals[FieldNo])
1160    return FieldVal;
1161
1162  // Depending on what instruction this is, we have several cases.
1163  Value *Result;
1164  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1165    // This is a scalarized version of the load from the global.  Just create
1166    // a new Load of the scalarized global.
1167    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1168                                           InsertedScalarizedValues,
1169                                           PHIsToRewrite),
1170                          LI->getName()+".f"+Twine(FieldNo), LI);
1171  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1172    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1173    // field.
1174    const StructType *ST =
1175      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1176
1177    Result =
1178     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1179                     PN->getName()+".f"+Twine(FieldNo), PN);
1180    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1181  } else {
1182    llvm_unreachable("Unknown usable value");
1183    Result = 0;
1184  }
1185
1186  return FieldVals[FieldNo] = Result;
1187}
1188
1189/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1190/// the load, rewrite the derived value to use the HeapSRoA'd load.
1191static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1192             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1193                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1194  // If this is a comparison against null, handle it.
1195  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1196    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1197    // If we have a setcc of the loaded pointer, we can use a setcc of any
1198    // field.
1199    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1200                                   InsertedScalarizedValues, PHIsToRewrite);
1201
1202    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1203                              Constant::getNullValue(NPtr->getType()),
1204                              SCI->getName());
1205    SCI->replaceAllUsesWith(New);
1206    SCI->eraseFromParent();
1207    return;
1208  }
1209
1210  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1211  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1212    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1213           && "Unexpected GEPI!");
1214
1215    // Load the pointer for this field.
1216    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1217    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1218                                     InsertedScalarizedValues, PHIsToRewrite);
1219
1220    // Create the new GEP idx vector.
1221    SmallVector<Value*, 8> GEPIdx;
1222    GEPIdx.push_back(GEPI->getOperand(1));
1223    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1224
1225    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1226                                             GEPIdx.begin(), GEPIdx.end(),
1227                                             GEPI->getName(), GEPI);
1228    GEPI->replaceAllUsesWith(NGEPI);
1229    GEPI->eraseFromParent();
1230    return;
1231  }
1232
1233  // Recursively transform the users of PHI nodes.  This will lazily create the
1234  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1235  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1236  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1237  // already been seen first by another load, so its uses have already been
1238  // processed.
1239  PHINode *PN = cast<PHINode>(LoadUser);
1240  bool Inserted;
1241  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1242  tie(InsertPos, Inserted) =
1243    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1244  if (!Inserted) return;
1245
1246  // If this is the first time we've seen this PHI, recursively process all
1247  // users.
1248  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1249    Instruction *User = cast<Instruction>(*UI++);
1250    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1251  }
1252}
1253
1254/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1255/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1256/// use FieldGlobals instead.  All uses of loaded values satisfy
1257/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1258static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1259               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1260                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1261  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1262       UI != E; ) {
1263    Instruction *User = cast<Instruction>(*UI++);
1264    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1265  }
1266
1267  if (Load->use_empty()) {
1268    Load->eraseFromParent();
1269    InsertedScalarizedValues.erase(Load);
1270  }
1271}
1272
1273/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1274/// it up into multiple allocations of arrays of the fields.
1275static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1276                                            Value* NElems, TargetData *TD) {
1277  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1278  const Type* MAT = getMallocAllocatedType(CI);
1279  const StructType *STy = cast<StructType>(MAT);
1280
1281  // There is guaranteed to be at least one use of the malloc (storing
1282  // it into GV).  If there are other uses, change them to be uses of
1283  // the global to simplify later code.  This also deletes the store
1284  // into GV.
1285  ReplaceUsesOfMallocWithGlobal(CI, GV);
1286
1287  // Okay, at this point, there are no users of the malloc.  Insert N
1288  // new mallocs at the same place as CI, and N globals.
1289  std::vector<Value*> FieldGlobals;
1290  std::vector<Value*> FieldMallocs;
1291
1292  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1293    const Type *FieldTy = STy->getElementType(FieldNo);
1294    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1295
1296    GlobalVariable *NGV =
1297      new GlobalVariable(*GV->getParent(),
1298                         PFieldTy, false, GlobalValue::InternalLinkage,
1299                         Constant::getNullValue(PFieldTy),
1300                         GV->getName() + ".f" + Twine(FieldNo), GV,
1301                         GV->isThreadLocal());
1302    FieldGlobals.push_back(NGV);
1303
1304    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1305    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1306      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1307    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1308    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1309                                        ConstantInt::get(IntPtrTy, TypeSize),
1310                                        NElems, 0,
1311                                        CI->getName() + ".f" + Twine(FieldNo));
1312    FieldMallocs.push_back(NMI);
1313    new StoreInst(NMI, NGV, CI);
1314  }
1315
1316  // The tricky aspect of this transformation is handling the case when malloc
1317  // fails.  In the original code, malloc failing would set the result pointer
1318  // of malloc to null.  In this case, some mallocs could succeed and others
1319  // could fail.  As such, we emit code that looks like this:
1320  //    F0 = malloc(field0)
1321  //    F1 = malloc(field1)
1322  //    F2 = malloc(field2)
1323  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1324  //      if (F0) { free(F0); F0 = 0; }
1325  //      if (F1) { free(F1); F1 = 0; }
1326  //      if (F2) { free(F2); F2 = 0; }
1327  //    }
1328  // The malloc can also fail if its argument is too large.
1329  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1330  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1331                                  ConstantZero, "isneg");
1332  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1333    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1334                             Constant::getNullValue(FieldMallocs[i]->getType()),
1335                               "isnull");
1336    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1337  }
1338
1339  // Split the basic block at the old malloc.
1340  BasicBlock *OrigBB = CI->getParent();
1341  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1342
1343  // Create the block to check the first condition.  Put all these blocks at the
1344  // end of the function as they are unlikely to be executed.
1345  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1346                                                "malloc_ret_null",
1347                                                OrigBB->getParent());
1348
1349  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1350  // branch on RunningOr.
1351  OrigBB->getTerminator()->eraseFromParent();
1352  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1353
1354  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1355  // pointer, because some may be null while others are not.
1356  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1357    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1358    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1359                              Constant::getNullValue(GVVal->getType()),
1360                              "tmp");
1361    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1362                                               OrigBB->getParent());
1363    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1364                                               OrigBB->getParent());
1365    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1366                                         Cmp, NullPtrBlock);
1367
1368    // Fill in FreeBlock.
1369    CallInst::CreateFree(GVVal, BI);
1370    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1371                  FreeBlock);
1372    BranchInst::Create(NextBlock, FreeBlock);
1373
1374    NullPtrBlock = NextBlock;
1375  }
1376
1377  BranchInst::Create(ContBB, NullPtrBlock);
1378
1379  // CI is no longer needed, remove it.
1380  CI->eraseFromParent();
1381
1382  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1383  /// update all uses of the load, keep track of what scalarized loads are
1384  /// inserted for a given load.
1385  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1386  InsertedScalarizedValues[GV] = FieldGlobals;
1387
1388  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1389
1390  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1391  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1392  // of the per-field globals instead.
1393  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1394    Instruction *User = cast<Instruction>(*UI++);
1395
1396    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1397      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1398      continue;
1399    }
1400
1401    // Must be a store of null.
1402    StoreInst *SI = cast<StoreInst>(User);
1403    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1404           "Unexpected heap-sra user!");
1405
1406    // Insert a store of null into each global.
1407    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1408      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1409      Constant *Null = Constant::getNullValue(PT->getElementType());
1410      new StoreInst(Null, FieldGlobals[i], SI);
1411    }
1412    // Erase the original store.
1413    SI->eraseFromParent();
1414  }
1415
1416  // While we have PHIs that are interesting to rewrite, do it.
1417  while (!PHIsToRewrite.empty()) {
1418    PHINode *PN = PHIsToRewrite.back().first;
1419    unsigned FieldNo = PHIsToRewrite.back().second;
1420    PHIsToRewrite.pop_back();
1421    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1422    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1423
1424    // Add all the incoming values.  This can materialize more phis.
1425    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1426      Value *InVal = PN->getIncomingValue(i);
1427      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1428                               PHIsToRewrite);
1429      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1430    }
1431  }
1432
1433  // Drop all inter-phi links and any loads that made it this far.
1434  for (DenseMap<Value*, std::vector<Value*> >::iterator
1435       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1436       I != E; ++I) {
1437    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1438      PN->dropAllReferences();
1439    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1440      LI->dropAllReferences();
1441  }
1442
1443  // Delete all the phis and loads now that inter-references are dead.
1444  for (DenseMap<Value*, std::vector<Value*> >::iterator
1445       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1446       I != E; ++I) {
1447    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1448      PN->eraseFromParent();
1449    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1450      LI->eraseFromParent();
1451  }
1452
1453  // The old global is now dead, remove it.
1454  GV->eraseFromParent();
1455
1456  ++NumHeapSRA;
1457  return cast<GlobalVariable>(FieldGlobals[0]);
1458}
1459
1460/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1461/// pointer global variable with a single value stored it that is a malloc or
1462/// cast of malloc.
1463static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1464                                               CallInst *CI,
1465                                               const Type *AllocTy,
1466                                               Module::global_iterator &GVI,
1467                                               TargetData *TD) {
1468  if (!TD)
1469    return false;
1470
1471  // If this is a malloc of an abstract type, don't touch it.
1472  if (!AllocTy->isSized())
1473    return false;
1474
1475  // We can't optimize this global unless all uses of it are *known* to be
1476  // of the malloc value, not of the null initializer value (consider a use
1477  // that compares the global's value against zero to see if the malloc has
1478  // been reached).  To do this, we check to see if all uses of the global
1479  // would trap if the global were null: this proves that they must all
1480  // happen after the malloc.
1481  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1482    return false;
1483
1484  // We can't optimize this if the malloc itself is used in a complex way,
1485  // for example, being stored into multiple globals.  This allows the
1486  // malloc to be stored into the specified global, loaded setcc'd, and
1487  // GEP'd.  These are all things we could transform to using the global
1488  // for.
1489  SmallPtrSet<const PHINode*, 8> PHIs;
1490  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1491    return false;
1492
1493  // If we have a global that is only initialized with a fixed size malloc,
1494  // transform the program to use global memory instead of malloc'd memory.
1495  // This eliminates dynamic allocation, avoids an indirection accessing the
1496  // data, and exposes the resultant global to further GlobalOpt.
1497  // We cannot optimize the malloc if we cannot determine malloc array size.
1498  Value *NElems = getMallocArraySize(CI, TD, true);
1499  if (!NElems)
1500    return false;
1501
1502  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1503    // Restrict this transformation to only working on small allocations
1504    // (2048 bytes currently), as we don't want to introduce a 16M global or
1505    // something.
1506    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1507      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1508      return true;
1509    }
1510
1511  // If the allocation is an array of structures, consider transforming this
1512  // into multiple malloc'd arrays, one for each field.  This is basically
1513  // SRoA for malloc'd memory.
1514
1515  // If this is an allocation of a fixed size array of structs, analyze as a
1516  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1517  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1518    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1519      AllocTy = AT->getElementType();
1520
1521  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1522  if (!AllocSTy)
1523    return false;
1524
1525  // This the structure has an unreasonable number of fields, leave it
1526  // alone.
1527  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1528      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1529
1530    // If this is a fixed size array, transform the Malloc to be an alloc of
1531    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1532    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1533      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1534      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1535      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1536      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1537      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1538                                                   AllocSize, NumElements,
1539                                                   0, CI->getName());
1540      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1541      CI->replaceAllUsesWith(Cast);
1542      CI->eraseFromParent();
1543      CI = dyn_cast<BitCastInst>(Malloc) ?
1544        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1545    }
1546
1547    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1548    return true;
1549  }
1550
1551  return false;
1552}
1553
1554// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1555// that only one value (besides its initializer) is ever stored to the global.
1556static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1557                                     Module::global_iterator &GVI,
1558                                     TargetData *TD) {
1559  // Ignore no-op GEPs and bitcasts.
1560  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1561
1562  // If we are dealing with a pointer global that is initialized to null and
1563  // only has one (non-null) value stored into it, then we can optimize any
1564  // users of the loaded value (often calls and loads) that would trap if the
1565  // value was null.
1566  if (GV->getInitializer()->getType()->isPointerTy() &&
1567      GV->getInitializer()->isNullValue()) {
1568    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1569      if (GV->getInitializer()->getType() != SOVC->getType())
1570        SOVC =
1571         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1572
1573      // Optimize away any trapping uses of the loaded value.
1574      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1575        return true;
1576    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1577      const Type* MallocType = getMallocAllocatedType(CI);
1578      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1579                                                           GVI, TD))
1580        return true;
1581    }
1582  }
1583
1584  return false;
1585}
1586
1587/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1588/// two values ever stored into GV are its initializer and OtherVal.  See if we
1589/// can shrink the global into a boolean and select between the two values
1590/// whenever it is used.  This exposes the values to other scalar optimizations.
1591static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1592  const Type *GVElType = GV->getType()->getElementType();
1593
1594  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1595  // an FP value, pointer or vector, don't do this optimization because a select
1596  // between them is very expensive and unlikely to lead to later
1597  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1598  // where v1 and v2 both require constant pool loads, a big loss.
1599  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1600      GVElType->isFloatingPointTy() ||
1601      GVElType->isPointerTy() || GVElType->isVectorTy())
1602    return false;
1603
1604  // Walk the use list of the global seeing if all the uses are load or store.
1605  // If there is anything else, bail out.
1606  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1607    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1608      return false;
1609
1610  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1611
1612  // Create the new global, initializing it to false.
1613  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1614                                             false,
1615                                             GlobalValue::InternalLinkage,
1616                                        ConstantInt::getFalse(GV->getContext()),
1617                                             GV->getName()+".b",
1618                                             GV->isThreadLocal());
1619  GV->getParent()->getGlobalList().insert(GV, NewGV);
1620
1621  Constant *InitVal = GV->getInitializer();
1622  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1623         "No reason to shrink to bool!");
1624
1625  // If initialized to zero and storing one into the global, we can use a cast
1626  // instead of a select to synthesize the desired value.
1627  bool IsOneZero = false;
1628  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1629    IsOneZero = InitVal->isNullValue() && CI->isOne();
1630
1631  while (!GV->use_empty()) {
1632    Instruction *UI = cast<Instruction>(GV->use_back());
1633    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1634      // Change the store into a boolean store.
1635      bool StoringOther = SI->getOperand(0) == OtherVal;
1636      // Only do this if we weren't storing a loaded value.
1637      Value *StoreVal;
1638      if (StoringOther || SI->getOperand(0) == InitVal)
1639        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1640                                    StoringOther);
1641      else {
1642        // Otherwise, we are storing a previously loaded copy.  To do this,
1643        // change the copy from copying the original value to just copying the
1644        // bool.
1645        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1646
1647        // If we've already replaced the input, StoredVal will be a cast or
1648        // select instruction.  If not, it will be a load of the original
1649        // global.
1650        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1651          assert(LI->getOperand(0) == GV && "Not a copy!");
1652          // Insert a new load, to preserve the saved value.
1653          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1654        } else {
1655          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1656                 "This is not a form that we understand!");
1657          StoreVal = StoredVal->getOperand(0);
1658          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1659        }
1660      }
1661      new StoreInst(StoreVal, NewGV, SI);
1662    } else {
1663      // Change the load into a load of bool then a select.
1664      LoadInst *LI = cast<LoadInst>(UI);
1665      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1666      Value *NSI;
1667      if (IsOneZero)
1668        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1669      else
1670        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1671      NSI->takeName(LI);
1672      LI->replaceAllUsesWith(NSI);
1673    }
1674    UI->eraseFromParent();
1675  }
1676
1677  GV->eraseFromParent();
1678  return true;
1679}
1680
1681
1682/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1683/// it if possible.  If we make a change, return true.
1684bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1685                                      Module::global_iterator &GVI) {
1686  SmallPtrSet<const PHINode*, 16> PHIUsers;
1687  GlobalStatus GS;
1688  GV->removeDeadConstantUsers();
1689
1690  if (GV->use_empty()) {
1691    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1692    GV->eraseFromParent();
1693    ++NumDeleted;
1694    return true;
1695  }
1696
1697  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1698#if 0
1699    DEBUG(dbgs() << "Global: " << *GV);
1700    DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
1701    DEBUG(dbgs() << "  StoredType = ");
1702    switch (GS.StoredType) {
1703    case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
1704    case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
1705                                            break;
1706    case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
1707    case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
1708    }
1709    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1710      DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
1711    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1712      DEBUG(dbgs() << "  AccessingFunction = "
1713                   << GS.AccessingFunction->getName() << "\n");
1714    DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
1715                 << GS.HasMultipleAccessingFunctions << "\n");
1716    DEBUG(dbgs() << "  HasNonInstructionUser = "
1717                 << GS.HasNonInstructionUser<<"\n");
1718    DEBUG(dbgs() << "\n");
1719#endif
1720
1721    // If this is a first class global and has only one accessing function
1722    // and this function is main (which we know is not recursive we can make
1723    // this global a local variable) we replace the global with a local alloca
1724    // in this function.
1725    //
1726    // NOTE: It doesn't make sense to promote non single-value types since we
1727    // are just replacing static memory to stack memory.
1728    //
1729    // If the global is in different address space, don't bring it to stack.
1730    if (!GS.HasMultipleAccessingFunctions &&
1731        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1732        GV->getType()->getElementType()->isSingleValueType() &&
1733        GS.AccessingFunction->getName() == "main" &&
1734        GS.AccessingFunction->hasExternalLinkage() &&
1735        GV->getType()->getAddressSpace() == 0) {
1736      DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1737      Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1738                                                     ->getEntryBlock().begin());
1739      const Type* ElemTy = GV->getType()->getElementType();
1740      // FIXME: Pass Global's alignment when globals have alignment
1741      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1742      if (!isa<UndefValue>(GV->getInitializer()))
1743        new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1744
1745      GV->replaceAllUsesWith(Alloca);
1746      GV->eraseFromParent();
1747      ++NumLocalized;
1748      return true;
1749    }
1750
1751    // If the global is never loaded (but may be stored to), it is dead.
1752    // Delete it now.
1753    if (!GS.isLoaded) {
1754      DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1755
1756      // Delete any stores we can find to the global.  We may not be able to
1757      // make it completely dead though.
1758      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1759
1760      // If the global is dead now, delete it.
1761      if (GV->use_empty()) {
1762        GV->eraseFromParent();
1763        ++NumDeleted;
1764        Changed = true;
1765      }
1766      return Changed;
1767
1768    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1769      DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1770      GV->setConstant(true);
1771
1772      // Clean up any obviously simplifiable users now.
1773      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1774
1775      // If the global is dead now, just nuke it.
1776      if (GV->use_empty()) {
1777        DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1778                     << "all users and delete global!\n");
1779        GV->eraseFromParent();
1780        ++NumDeleted;
1781      }
1782
1783      ++NumMarked;
1784      return true;
1785    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1786      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1787        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1788          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1789          return true;
1790        }
1791    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1792      // If the initial value for the global was an undef value, and if only
1793      // one other value was stored into it, we can just change the
1794      // initializer to be the stored value, then delete all stores to the
1795      // global.  This allows us to mark it constant.
1796      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1797        if (isa<UndefValue>(GV->getInitializer())) {
1798          // Change the initial value here.
1799          GV->setInitializer(SOVConstant);
1800
1801          // Clean up any obviously simplifiable users now.
1802          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1803
1804          if (GV->use_empty()) {
1805            DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1806                         << "simplify all users and delete global!\n");
1807            GV->eraseFromParent();
1808            ++NumDeleted;
1809          } else {
1810            GVI = GV;
1811          }
1812          ++NumSubstitute;
1813          return true;
1814        }
1815
1816      // Try to optimize globals based on the knowledge that only one value
1817      // (besides its initializer) is ever stored to the global.
1818      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1819                                   getAnalysisIfAvailable<TargetData>()))
1820        return true;
1821
1822      // Otherwise, if the global was not a boolean, we can shrink it to be a
1823      // boolean.
1824      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1825        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1826          ++NumShrunkToBool;
1827          return true;
1828        }
1829    }
1830  }
1831  return false;
1832}
1833
1834/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1835/// function, changing them to FastCC.
1836static void ChangeCalleesToFastCall(Function *F) {
1837  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1838    CallSite User(cast<Instruction>(*UI));
1839    User.setCallingConv(CallingConv::Fast);
1840  }
1841}
1842
1843static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1844  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1845    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1846      continue;
1847
1848    // There can be only one.
1849    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1850  }
1851
1852  return Attrs;
1853}
1854
1855static void RemoveNestAttribute(Function *F) {
1856  F->setAttributes(StripNest(F->getAttributes()));
1857  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1858    CallSite User(cast<Instruction>(*UI));
1859    User.setAttributes(StripNest(User.getAttributes()));
1860  }
1861}
1862
1863bool GlobalOpt::OptimizeFunctions(Module &M) {
1864  bool Changed = false;
1865  // Optimize functions.
1866  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1867    Function *F = FI++;
1868    // Functions without names cannot be referenced outside this module.
1869    if (!F->hasName() && !F->isDeclaration())
1870      F->setLinkage(GlobalValue::InternalLinkage);
1871    F->removeDeadConstantUsers();
1872    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1873      F->eraseFromParent();
1874      Changed = true;
1875      ++NumFnDeleted;
1876    } else if (F->hasLocalLinkage()) {
1877      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1878          !F->hasAddressTaken()) {
1879        // If this function has C calling conventions, is not a varargs
1880        // function, and is only called directly, promote it to use the Fast
1881        // calling convention.
1882        F->setCallingConv(CallingConv::Fast);
1883        ChangeCalleesToFastCall(F);
1884        ++NumFastCallFns;
1885        Changed = true;
1886      }
1887
1888      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1889          !F->hasAddressTaken()) {
1890        // The function is not used by a trampoline intrinsic, so it is safe
1891        // to remove the 'nest' attribute.
1892        RemoveNestAttribute(F);
1893        ++NumNestRemoved;
1894        Changed = true;
1895      }
1896    }
1897  }
1898  return Changed;
1899}
1900
1901bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1902  bool Changed = false;
1903  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1904       GVI != E; ) {
1905    GlobalVariable *GV = GVI++;
1906    // Global variables without names cannot be referenced outside this module.
1907    if (!GV->hasName() && !GV->isDeclaration())
1908      GV->setLinkage(GlobalValue::InternalLinkage);
1909    // Simplify the initializer.
1910    if (GV->hasInitializer())
1911      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1912        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1913        Constant *New = ConstantFoldConstantExpression(CE, TD);
1914        if (New && New != CE)
1915          GV->setInitializer(New);
1916      }
1917    // Do more involved optimizations if the global is internal.
1918    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1919        GV->hasInitializer())
1920      Changed |= ProcessInternalGlobal(GV, GVI);
1921  }
1922  return Changed;
1923}
1924
1925/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1926/// initializers have an init priority of 65535.
1927GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1928  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1929       I != E; ++I)
1930    if (I->getName() == "llvm.global_ctors") {
1931      // Found it, verify it's an array of { int, void()* }.
1932      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1933      if (!ATy) return 0;
1934      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1935      if (!STy || STy->getNumElements() != 2 ||
1936          !STy->getElementType(0)->isIntegerTy(32)) return 0;
1937      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1938      if (!PFTy) return 0;
1939      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1940      if (!FTy || !FTy->getReturnType()->isVoidTy() ||
1941          FTy->isVarArg() || FTy->getNumParams() != 0)
1942        return 0;
1943
1944      // Verify that the initializer is simple enough for us to handle.
1945      if (!I->hasDefinitiveInitializer()) return 0;
1946      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1947      if (!CA) return 0;
1948      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1949        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1950          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1951            continue;
1952
1953          // Must have a function or null ptr.
1954          if (!isa<Function>(CS->getOperand(1)))
1955            return 0;
1956
1957          // Init priority must be standard.
1958          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1959          if (!CI || CI->getZExtValue() != 65535)
1960            return 0;
1961        } else {
1962          return 0;
1963        }
1964
1965      return I;
1966    }
1967  return 0;
1968}
1969
1970/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1971/// return a list of the functions and null terminator as a vector.
1972static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1973  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1974  std::vector<Function*> Result;
1975  Result.reserve(CA->getNumOperands());
1976  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1977    ConstantStruct *CS = cast<ConstantStruct>(*i);
1978    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1979  }
1980  return Result;
1981}
1982
1983/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1984/// specified array, returning the new global to use.
1985static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1986                                          const std::vector<Function*> &Ctors) {
1987  // If we made a change, reassemble the initializer list.
1988  std::vector<Constant*> CSVals;
1989  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
1990  CSVals.push_back(0);
1991
1992  // Create the new init list.
1993  std::vector<Constant*> CAList;
1994  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1995    if (Ctors[i]) {
1996      CSVals[1] = Ctors[i];
1997    } else {
1998      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
1999                                          false);
2000      const PointerType *PFTy = PointerType::getUnqual(FTy);
2001      CSVals[1] = Constant::getNullValue(PFTy);
2002      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2003                                   2147483647);
2004    }
2005    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
2006  }
2007
2008  // Create the array initializer.
2009  const Type *StructTy =
2010      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2011  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2012                                                   CAList.size()), CAList);
2013
2014  // If we didn't change the number of elements, don't create a new GV.
2015  if (CA->getType() == GCL->getInitializer()->getType()) {
2016    GCL->setInitializer(CA);
2017    return GCL;
2018  }
2019
2020  // Create the new global and insert it next to the existing list.
2021  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2022                                           GCL->getLinkage(), CA, "",
2023                                           GCL->isThreadLocal());
2024  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2025  NGV->takeName(GCL);
2026
2027  // Nuke the old list, replacing any uses with the new one.
2028  if (!GCL->use_empty()) {
2029    Constant *V = NGV;
2030    if (V->getType() != GCL->getType())
2031      V = ConstantExpr::getBitCast(V, GCL->getType());
2032    GCL->replaceAllUsesWith(V);
2033  }
2034  GCL->eraseFromParent();
2035
2036  if (Ctors.size())
2037    return NGV;
2038  else
2039    return 0;
2040}
2041
2042
2043static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2044                        Value *V) {
2045  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2046  Constant *R = ComputedValues[V];
2047  assert(R && "Reference to an uncomputed value!");
2048  return R;
2049}
2050
2051/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2052/// enough for us to understand.  In particular, if it is a cast of something,
2053/// we punt.  We basically just support direct accesses to globals and GEP's of
2054/// globals.  This should be kept up to date with CommitValueTo.
2055static bool isSimpleEnoughPointerToCommit(Constant *C) {
2056  // Conservatively, avoid aggregate types. This is because we don't
2057  // want to worry about them partially overlapping other stores.
2058  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2059    return false;
2060
2061  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2062    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2063    // external globals.
2064    return GV->hasDefinitiveInitializer();
2065
2066  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2067    // Handle a constantexpr gep.
2068    if (CE->getOpcode() == Instruction::GetElementPtr &&
2069        isa<GlobalVariable>(CE->getOperand(0)) &&
2070        cast<GEPOperator>(CE)->isInBounds()) {
2071      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2072      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2073      // external globals.
2074      if (!GV->hasDefinitiveInitializer())
2075        return false;
2076
2077      // The first index must be zero.
2078      ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2079      if (!CI || !CI->isZero()) return false;
2080
2081      // The remaining indices must be compile-time known integers within the
2082      // notional bounds of the corresponding static array types.
2083      if (!CE->isGEPWithNoNotionalOverIndexing())
2084        return false;
2085
2086      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2087    }
2088  return false;
2089}
2090
2091/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2092/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2093/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2094static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2095                                   ConstantExpr *Addr, unsigned OpNo) {
2096  // Base case of the recursion.
2097  if (OpNo == Addr->getNumOperands()) {
2098    assert(Val->getType() == Init->getType() && "Type mismatch!");
2099    return Val;
2100  }
2101
2102  std::vector<Constant*> Elts;
2103  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2104
2105    // Break up the constant into its elements.
2106    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2107      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2108        Elts.push_back(cast<Constant>(*i));
2109    } else if (isa<ConstantAggregateZero>(Init)) {
2110      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2111        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2112    } else if (isa<UndefValue>(Init)) {
2113      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2114        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2115    } else {
2116      llvm_unreachable("This code is out of sync with "
2117             " ConstantFoldLoadThroughGEPConstantExpr");
2118    }
2119
2120    // Replace the element that we are supposed to.
2121    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2122    unsigned Idx = CU->getZExtValue();
2123    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2124    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2125
2126    // Return the modified struct.
2127    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2128                               STy->isPacked());
2129  } else {
2130    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2131    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2132
2133    uint64_t NumElts;
2134    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2135      NumElts = ATy->getNumElements();
2136    else
2137      NumElts = cast<VectorType>(InitTy)->getNumElements();
2138
2139
2140    // Break up the array into elements.
2141    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2142      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2143        Elts.push_back(cast<Constant>(*i));
2144    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2145      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2146        Elts.push_back(cast<Constant>(*i));
2147    } else if (isa<ConstantAggregateZero>(Init)) {
2148      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2149    } else {
2150      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2151             " ConstantFoldLoadThroughGEPConstantExpr");
2152      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2153    }
2154
2155    assert(CI->getZExtValue() < NumElts);
2156    Elts[CI->getZExtValue()] =
2157      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2158
2159    if (Init->getType()->isArrayTy())
2160      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2161    else
2162      return ConstantVector::get(&Elts[0], Elts.size());
2163  }
2164}
2165
2166/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2167/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2168static void CommitValueTo(Constant *Val, Constant *Addr) {
2169  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2170    assert(GV->hasInitializer());
2171    GV->setInitializer(Val);
2172    return;
2173  }
2174
2175  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2176  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2177  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2178}
2179
2180/// ComputeLoadResult - Return the value that would be computed by a load from
2181/// P after the stores reflected by 'memory' have been performed.  If we can't
2182/// decide, return null.
2183static Constant *ComputeLoadResult(Constant *P,
2184                                const DenseMap<Constant*, Constant*> &Memory) {
2185  // If this memory location has been recently stored, use the stored value: it
2186  // is the most up-to-date.
2187  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2188  if (I != Memory.end()) return I->second;
2189
2190  // Access it.
2191  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2192    if (GV->hasDefinitiveInitializer())
2193      return GV->getInitializer();
2194    return 0;
2195  }
2196
2197  // Handle a constantexpr getelementptr.
2198  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2199    if (CE->getOpcode() == Instruction::GetElementPtr &&
2200        isa<GlobalVariable>(CE->getOperand(0))) {
2201      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2202      if (GV->hasDefinitiveInitializer())
2203        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2204    }
2205
2206  return 0;  // don't know how to evaluate.
2207}
2208
2209/// EvaluateFunction - Evaluate a call to function F, returning true if
2210/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2211/// arguments for the function.
2212static bool EvaluateFunction(Function *F, Constant *&RetVal,
2213                             const SmallVectorImpl<Constant*> &ActualArgs,
2214                             std::vector<Function*> &CallStack,
2215                             DenseMap<Constant*, Constant*> &MutatedMemory,
2216                             std::vector<GlobalVariable*> &AllocaTmps) {
2217  // Check to see if this function is already executing (recursion).  If so,
2218  // bail out.  TODO: we might want to accept limited recursion.
2219  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2220    return false;
2221
2222  CallStack.push_back(F);
2223
2224  /// Values - As we compute SSA register values, we store their contents here.
2225  DenseMap<Value*, Constant*> Values;
2226
2227  // Initialize arguments to the incoming values specified.
2228  unsigned ArgNo = 0;
2229  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2230       ++AI, ++ArgNo)
2231    Values[AI] = ActualArgs[ArgNo];
2232
2233  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2234  /// we can only evaluate any one basic block at most once.  This set keeps
2235  /// track of what we have executed so we can detect recursive cases etc.
2236  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2237
2238  // CurInst - The current instruction we're evaluating.
2239  BasicBlock::iterator CurInst = F->begin()->begin();
2240
2241  // This is the main evaluation loop.
2242  while (1) {
2243    Constant *InstResult = 0;
2244
2245    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2246      if (SI->isVolatile()) return false;  // no volatile accesses.
2247      Constant *Ptr = getVal(Values, SI->getOperand(1));
2248      if (!isSimpleEnoughPointerToCommit(Ptr))
2249        // If this is too complex for us to commit, reject it.
2250        return false;
2251      Constant *Val = getVal(Values, SI->getOperand(0));
2252      MutatedMemory[Ptr] = Val;
2253    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2254      InstResult = ConstantExpr::get(BO->getOpcode(),
2255                                     getVal(Values, BO->getOperand(0)),
2256                                     getVal(Values, BO->getOperand(1)));
2257    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2258      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2259                                            getVal(Values, CI->getOperand(0)),
2260                                            getVal(Values, CI->getOperand(1)));
2261    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2262      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2263                                         getVal(Values, CI->getOperand(0)),
2264                                         CI->getType());
2265    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2266      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2267                                           getVal(Values, SI->getOperand(1)),
2268                                           getVal(Values, SI->getOperand(2)));
2269    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2270      Constant *P = getVal(Values, GEP->getOperand(0));
2271      SmallVector<Constant*, 8> GEPOps;
2272      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2273           i != e; ++i)
2274        GEPOps.push_back(getVal(Values, *i));
2275      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2276          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2277          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2278    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2279      if (LI->isVolatile()) return false;  // no volatile accesses.
2280      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2281                                     MutatedMemory);
2282      if (InstResult == 0) return false; // Could not evaluate load.
2283    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2284      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2285      const Type *Ty = AI->getType()->getElementType();
2286      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2287                                              GlobalValue::InternalLinkage,
2288                                              UndefValue::get(Ty),
2289                                              AI->getName()));
2290      InstResult = AllocaTmps.back();
2291    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2292
2293      // Debug info can safely be ignored here.
2294      if (isa<DbgInfoIntrinsic>(CI)) {
2295        ++CurInst;
2296        continue;
2297      }
2298
2299      // Cannot handle inline asm.
2300      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2301
2302      // Resolve function pointers.
2303      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getCalledValue()));
2304      if (!Callee) return false;  // Cannot resolve.
2305
2306      SmallVector<Constant*, 8> Formals;
2307      CallSite CS(CI);
2308      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2309           i != e; ++i)
2310        Formals.push_back(getVal(Values, *i));
2311
2312      if (Callee->isDeclaration()) {
2313        // If this is a function we can constant fold, do it.
2314        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2315                                           Formals.size())) {
2316          InstResult = C;
2317        } else {
2318          return false;
2319        }
2320      } else {
2321        if (Callee->getFunctionType()->isVarArg())
2322          return false;
2323
2324        Constant *RetVal;
2325        // Execute the call, if successful, use the return value.
2326        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2327                              MutatedMemory, AllocaTmps))
2328          return false;
2329        InstResult = RetVal;
2330      }
2331    } else if (isa<TerminatorInst>(CurInst)) {
2332      BasicBlock *NewBB = 0;
2333      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2334        if (BI->isUnconditional()) {
2335          NewBB = BI->getSuccessor(0);
2336        } else {
2337          ConstantInt *Cond =
2338            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2339          if (!Cond) return false;  // Cannot determine.
2340
2341          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2342        }
2343      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2344        ConstantInt *Val =
2345          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2346        if (!Val) return false;  // Cannot determine.
2347        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2348      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2349        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2350        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2351          NewBB = BA->getBasicBlock();
2352        else
2353          return false;  // Cannot determine.
2354      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2355        if (RI->getNumOperands())
2356          RetVal = getVal(Values, RI->getOperand(0));
2357
2358        CallStack.pop_back();  // return from fn.
2359        return true;  // We succeeded at evaluating this ctor!
2360      } else {
2361        // invoke, unwind, unreachable.
2362        return false;  // Cannot handle this terminator.
2363      }
2364
2365      // Okay, we succeeded in evaluating this control flow.  See if we have
2366      // executed the new block before.  If so, we have a looping function,
2367      // which we cannot evaluate in reasonable time.
2368      if (!ExecutedBlocks.insert(NewBB))
2369        return false;  // looped!
2370
2371      // Okay, we have never been in this block before.  Check to see if there
2372      // are any PHI nodes.  If so, evaluate them with information about where
2373      // we came from.
2374      BasicBlock *OldBB = CurInst->getParent();
2375      CurInst = NewBB->begin();
2376      PHINode *PN;
2377      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2378        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2379
2380      // Do NOT increment CurInst.  We know that the terminator had no value.
2381      continue;
2382    } else {
2383      // Did not know how to evaluate this!
2384      return false;
2385    }
2386
2387    if (!CurInst->use_empty())
2388      Values[CurInst] = InstResult;
2389
2390    // Advance program counter.
2391    ++CurInst;
2392  }
2393}
2394
2395/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2396/// we can.  Return true if we can, false otherwise.
2397static bool EvaluateStaticConstructor(Function *F) {
2398  /// MutatedMemory - For each store we execute, we update this map.  Loads
2399  /// check this to get the most up-to-date value.  If evaluation is successful,
2400  /// this state is committed to the process.
2401  DenseMap<Constant*, Constant*> MutatedMemory;
2402
2403  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2404  /// to represent its body.  This vector is needed so we can delete the
2405  /// temporary globals when we are done.
2406  std::vector<GlobalVariable*> AllocaTmps;
2407
2408  /// CallStack - This is used to detect recursion.  In pathological situations
2409  /// we could hit exponential behavior, but at least there is nothing
2410  /// unbounded.
2411  std::vector<Function*> CallStack;
2412
2413  // Call the function.
2414  Constant *RetValDummy;
2415  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2416                                      SmallVector<Constant*, 0>(), CallStack,
2417                                      MutatedMemory, AllocaTmps);
2418  if (EvalSuccess) {
2419    // We succeeded at evaluation: commit the result.
2420    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2421          << F->getName() << "' to " << MutatedMemory.size()
2422          << " stores.\n");
2423    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2424         E = MutatedMemory.end(); I != E; ++I)
2425      CommitValueTo(I->second, I->first);
2426  }
2427
2428  // At this point, we are done interpreting.  If we created any 'alloca'
2429  // temporaries, release them now.
2430  while (!AllocaTmps.empty()) {
2431    GlobalVariable *Tmp = AllocaTmps.back();
2432    AllocaTmps.pop_back();
2433
2434    // If there are still users of the alloca, the program is doing something
2435    // silly, e.g. storing the address of the alloca somewhere and using it
2436    // later.  Since this is undefined, we'll just make it be null.
2437    if (!Tmp->use_empty())
2438      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2439    delete Tmp;
2440  }
2441
2442  return EvalSuccess;
2443}
2444
2445
2446
2447/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2448/// Return true if anything changed.
2449bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2450  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2451  bool MadeChange = false;
2452  if (Ctors.empty()) return false;
2453
2454  // Loop over global ctors, optimizing them when we can.
2455  for (unsigned i = 0; i != Ctors.size(); ++i) {
2456    Function *F = Ctors[i];
2457    // Found a null terminator in the middle of the list, prune off the rest of
2458    // the list.
2459    if (F == 0) {
2460      if (i != Ctors.size()-1) {
2461        Ctors.resize(i+1);
2462        MadeChange = true;
2463      }
2464      break;
2465    }
2466
2467    // We cannot simplify external ctor functions.
2468    if (F->empty()) continue;
2469
2470    // If we can evaluate the ctor at compile time, do.
2471    if (EvaluateStaticConstructor(F)) {
2472      Ctors.erase(Ctors.begin()+i);
2473      MadeChange = true;
2474      --i;
2475      ++NumCtorsEvaluated;
2476      continue;
2477    }
2478  }
2479
2480  if (!MadeChange) return false;
2481
2482  GCL = InstallGlobalCtors(GCL, Ctors);
2483  return true;
2484}
2485
2486bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2487  bool Changed = false;
2488
2489  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2490       I != E;) {
2491    Module::alias_iterator J = I++;
2492    // Aliases without names cannot be referenced outside this module.
2493    if (!J->hasName() && !J->isDeclaration())
2494      J->setLinkage(GlobalValue::InternalLinkage);
2495    // If the aliasee may change at link time, nothing can be done - bail out.
2496    if (J->mayBeOverridden())
2497      continue;
2498
2499    Constant *Aliasee = J->getAliasee();
2500    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2501    Target->removeDeadConstantUsers();
2502    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2503
2504    // Make all users of the alias use the aliasee instead.
2505    if (!J->use_empty()) {
2506      J->replaceAllUsesWith(Aliasee);
2507      ++NumAliasesResolved;
2508      Changed = true;
2509    }
2510
2511    // If the alias is externally visible, we may still be able to simplify it.
2512    if (!J->hasLocalLinkage()) {
2513      // If the aliasee has internal linkage, give it the name and linkage
2514      // of the alias, and delete the alias.  This turns:
2515      //   define internal ... @f(...)
2516      //   @a = alias ... @f
2517      // into:
2518      //   define ... @a(...)
2519      if (!Target->hasLocalLinkage())
2520        continue;
2521
2522      // Do not perform the transform if multiple aliases potentially target the
2523      // aliasee. This check also ensures that it is safe to replace the section
2524      // and other attributes of the aliasee with those of the alias.
2525      if (!hasOneUse)
2526        continue;
2527
2528      // Give the aliasee the name, linkage and other attributes of the alias.
2529      Target->takeName(J);
2530      Target->setLinkage(J->getLinkage());
2531      Target->GlobalValue::copyAttributesFrom(J);
2532    }
2533
2534    // Delete the alias.
2535    M.getAliasList().erase(J);
2536    ++NumAliasesRemoved;
2537    Changed = true;
2538  }
2539
2540  return Changed;
2541}
2542
2543bool GlobalOpt::runOnModule(Module &M) {
2544  bool Changed = false;
2545
2546  // Try to find the llvm.globalctors list.
2547  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2548
2549  bool LocalChange = true;
2550  while (LocalChange) {
2551    LocalChange = false;
2552
2553    // Delete functions that are trivially dead, ccc -> fastcc
2554    LocalChange |= OptimizeFunctions(M);
2555
2556    // Optimize global_ctors list.
2557    if (GlobalCtors)
2558      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2559
2560    // Optimize non-address-taken globals.
2561    LocalChange |= OptimizeGlobalVars(M);
2562
2563    // Resolve aliases, when possible.
2564    LocalChange |= OptimizeGlobalAliases(M);
2565    Changed |= LocalChange;
2566  }
2567
2568  // TODO: Move all global ctors functions to the end of the module for code
2569  // layout.
2570
2571  return Changed;
2572}
2573