GlobalOpt.cpp revision a9390a4d5f5d568059a80970d22194b165d097a7
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumMarked    , "Number of globals marked constant");
44STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
45STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
46STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
47STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
48STATISTIC(NumDeleted   , "Number of globals deleted");
49STATISTIC(NumFnDeleted , "Number of functions deleted");
50STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
51STATISTIC(NumLocalized , "Number of globals localized");
52STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
53STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
54STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
55STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
56STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
57STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
58STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
59
60namespace {
61  struct GlobalStatus;
62  struct GlobalOpt : public ModulePass {
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64    }
65    static char ID; // Pass identification, replacement for typeid
66    GlobalOpt() : ModulePass(ID) {
67      initializeGlobalOptPass(*PassRegistry::getPassRegistry());
68    }
69
70    bool runOnModule(Module &M);
71
72  private:
73    GlobalVariable *FindGlobalCtors(Module &M);
74    bool OptimizeFunctions(Module &M);
75    bool OptimizeGlobalVars(Module &M);
76    bool OptimizeGlobalAliases(Module &M);
77    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
78    bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
79    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
80                               const SmallPtrSet<const PHINode*, 16> &PHIUsers,
81                               const GlobalStatus &GS);
82    bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
83  };
84}
85
86char GlobalOpt::ID = 0;
87INITIALIZE_PASS(GlobalOpt, "globalopt",
88                "Global Variable Optimizer", false, false)
89
90ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
91
92namespace {
93
94/// GlobalStatus - As we analyze each global, keep track of some information
95/// about it.  If we find out that the address of the global is taken, none of
96/// this info will be accurate.
97struct GlobalStatus {
98  /// isCompared - True if the global's address is used in a comparison.
99  bool isCompared;
100
101  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
102  /// loaded it can be deleted.
103  bool isLoaded;
104
105  /// StoredType - Keep track of what stores to the global look like.
106  ///
107  enum StoredType {
108    /// NotStored - There is no store to this global.  It can thus be marked
109    /// constant.
110    NotStored,
111
112    /// isInitializerStored - This global is stored to, but the only thing
113    /// stored is the constant it was initialized with.  This is only tracked
114    /// for scalar globals.
115    isInitializerStored,
116
117    /// isStoredOnce - This global is stored to, but only its initializer and
118    /// one other value is ever stored to it.  If this global isStoredOnce, we
119    /// track the value stored to it in StoredOnceValue below.  This is only
120    /// tracked for scalar globals.
121    isStoredOnce,
122
123    /// isStored - This global is stored to by multiple values or something else
124    /// that we cannot track.
125    isStored
126  } StoredType;
127
128  /// StoredOnceValue - If only one value (besides the initializer constant) is
129  /// ever stored to this global, keep track of what value it is.
130  Value *StoredOnceValue;
131
132  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
133  /// null/false.  When the first accessing function is noticed, it is recorded.
134  /// When a second different accessing function is noticed,
135  /// HasMultipleAccessingFunctions is set to true.
136  const Function *AccessingFunction;
137  bool HasMultipleAccessingFunctions;
138
139  /// HasNonInstructionUser - Set to true if this global has a user that is not
140  /// an instruction (e.g. a constant expr or GV initializer).
141  bool HasNonInstructionUser;
142
143  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
144  bool HasPHIUser;
145
146  GlobalStatus() : isCompared(false), isLoaded(false), StoredType(NotStored),
147                   StoredOnceValue(0), AccessingFunction(0),
148                   HasMultipleAccessingFunctions(false), HasNonInstructionUser(false),
149                   HasPHIUser(false) {}
150};
151
152}
153
154// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
155// by constants itself.  Note that constants cannot be cyclic, so this test is
156// pretty easy to implement recursively.
157//
158static bool SafeToDestroyConstant(const Constant *C) {
159  if (isa<GlobalValue>(C)) return false;
160
161  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
162       ++UI)
163    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
164      if (!SafeToDestroyConstant(CU)) return false;
165    } else
166      return false;
167  return true;
168}
169
170
171/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
172/// structure.  If the global has its address taken, return true to indicate we
173/// can't do anything with it.
174///
175static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
176                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
177  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
178       ++UI) {
179    const User *U = *UI;
180    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
181      GS.HasNonInstructionUser = true;
182
183      // If the result of the constantexpr isn't pointer type, then we won't
184      // know to expect it in various places.  Just reject early.
185      if (!isa<PointerType>(CE->getType())) return true;
186
187      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
188    } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
189      if (!GS.HasMultipleAccessingFunctions) {
190        const Function *F = I->getParent()->getParent();
191        if (GS.AccessingFunction == 0)
192          GS.AccessingFunction = F;
193        else if (GS.AccessingFunction != F)
194          GS.HasMultipleAccessingFunctions = true;
195      }
196      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
197        GS.isLoaded = true;
198        // Don't hack on volatile/atomic loads.
199        if (!LI->isSimple()) return true;
200      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
201        // Don't allow a store OF the address, only stores TO the address.
202        if (SI->getOperand(0) == V) return true;
203
204        // Don't hack on volatile/atomic stores.
205        if (!SI->isSimple()) return true;
206
207        // If this is a direct store to the global (i.e., the global is a scalar
208        // value, not an aggregate), keep more specific information about
209        // stores.
210        if (GS.StoredType != GlobalStatus::isStored) {
211          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
212                                                           SI->getOperand(1))) {
213            Value *StoredVal = SI->getOperand(0);
214            if (StoredVal == GV->getInitializer()) {
215              if (GS.StoredType < GlobalStatus::isInitializerStored)
216                GS.StoredType = GlobalStatus::isInitializerStored;
217            } else if (isa<LoadInst>(StoredVal) &&
218                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
219              if (GS.StoredType < GlobalStatus::isInitializerStored)
220                GS.StoredType = GlobalStatus::isInitializerStored;
221            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
222              GS.StoredType = GlobalStatus::isStoredOnce;
223              GS.StoredOnceValue = StoredVal;
224            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
225                       GS.StoredOnceValue == StoredVal) {
226              // noop.
227            } else {
228              GS.StoredType = GlobalStatus::isStored;
229            }
230          } else {
231            GS.StoredType = GlobalStatus::isStored;
232          }
233        }
234      } else if (isa<GetElementPtrInst>(I)) {
235        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
236      } else if (isa<SelectInst>(I)) {
237        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
238      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
239        // PHI nodes we can check just like select or GEP instructions, but we
240        // have to be careful about infinite recursion.
241        if (PHIUsers.insert(PN))  // Not already visited.
242          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
243        GS.HasPHIUser = true;
244      } else if (isa<CmpInst>(I)) {
245        GS.isCompared = true;
246      } else if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(I)) {
247        if (MTI->isVolatile()) return true;
248        if (MTI->getArgOperand(0) == V)
249          GS.StoredType = GlobalStatus::isStored;
250        if (MTI->getArgOperand(1) == V)
251          GS.isLoaded = true;
252      } else if (const MemSetInst *MSI = dyn_cast<MemSetInst>(I)) {
253        assert(MSI->getArgOperand(0) == V && "Memset only takes one pointer!");
254        if (MSI->isVolatile()) return true;
255        GS.StoredType = GlobalStatus::isStored;
256      } else {
257        return true;  // Any other non-load instruction might take address!
258      }
259    } else if (const Constant *C = dyn_cast<Constant>(U)) {
260      GS.HasNonInstructionUser = true;
261      // We might have a dead and dangling constant hanging off of here.
262      if (!SafeToDestroyConstant(C))
263        return true;
264    } else {
265      GS.HasNonInstructionUser = true;
266      // Otherwise must be some other user.
267      return true;
268    }
269  }
270
271  return false;
272}
273
274static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
275  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
276  if (!CI) return 0;
277  unsigned IdxV = CI->getZExtValue();
278
279  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
280    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
281  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
282    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
283  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
284    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
285  } else if (isa<ConstantAggregateZero>(Agg)) {
286    if (StructType *STy = dyn_cast<StructType>(Agg->getType())) {
287      if (IdxV < STy->getNumElements())
288        return Constant::getNullValue(STy->getElementType(IdxV));
289    } else if (SequentialType *STy =
290               dyn_cast<SequentialType>(Agg->getType())) {
291      return Constant::getNullValue(STy->getElementType());
292    }
293  } else if (isa<UndefValue>(Agg)) {
294    if (StructType *STy = dyn_cast<StructType>(Agg->getType())) {
295      if (IdxV < STy->getNumElements())
296        return UndefValue::get(STy->getElementType(IdxV));
297    } else if (SequentialType *STy =
298               dyn_cast<SequentialType>(Agg->getType())) {
299      return UndefValue::get(STy->getElementType());
300    }
301  }
302  return 0;
303}
304
305
306/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
307/// users of the global, cleaning up the obvious ones.  This is largely just a
308/// quick scan over the use list to clean up the easy and obvious cruft.  This
309/// returns true if it made a change.
310static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
311  bool Changed = false;
312  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
313    User *U = *UI++;
314
315    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
316      if (Init) {
317        // Replace the load with the initializer.
318        LI->replaceAllUsesWith(Init);
319        LI->eraseFromParent();
320        Changed = true;
321      }
322    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
323      // Store must be unreachable or storing Init into the global.
324      SI->eraseFromParent();
325      Changed = true;
326    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
327      if (CE->getOpcode() == Instruction::GetElementPtr) {
328        Constant *SubInit = 0;
329        if (Init)
330          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
331        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
332      } else if (CE->getOpcode() == Instruction::BitCast &&
333                 CE->getType()->isPointerTy()) {
334        // Pointer cast, delete any stores and memsets to the global.
335        Changed |= CleanupConstantGlobalUsers(CE, 0);
336      }
337
338      if (CE->use_empty()) {
339        CE->destroyConstant();
340        Changed = true;
341      }
342    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
343      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
344      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
345      // and will invalidate our notion of what Init is.
346      Constant *SubInit = 0;
347      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
348        ConstantExpr *CE =
349          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
350        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
351          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
352      }
353      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
354
355      if (GEP->use_empty()) {
356        GEP->eraseFromParent();
357        Changed = true;
358      }
359    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
360      if (MI->getRawDest() == V) {
361        MI->eraseFromParent();
362        Changed = true;
363      }
364
365    } else if (Constant *C = dyn_cast<Constant>(U)) {
366      // If we have a chain of dead constantexprs or other things dangling from
367      // us, and if they are all dead, nuke them without remorse.
368      if (SafeToDestroyConstant(C)) {
369        C->destroyConstant();
370        // This could have invalidated UI, start over from scratch.
371        CleanupConstantGlobalUsers(V, Init);
372        return true;
373      }
374    }
375  }
376  return Changed;
377}
378
379/// isSafeSROAElementUse - Return true if the specified instruction is a safe
380/// user of a derived expression from a global that we want to SROA.
381static bool isSafeSROAElementUse(Value *V) {
382  // We might have a dead and dangling constant hanging off of here.
383  if (Constant *C = dyn_cast<Constant>(V))
384    return SafeToDestroyConstant(C);
385
386  Instruction *I = dyn_cast<Instruction>(V);
387  if (!I) return false;
388
389  // Loads are ok.
390  if (isa<LoadInst>(I)) return true;
391
392  // Stores *to* the pointer are ok.
393  if (StoreInst *SI = dyn_cast<StoreInst>(I))
394    return SI->getOperand(0) != V;
395
396  // Otherwise, it must be a GEP.
397  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
398  if (GEPI == 0) return false;
399
400  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
401      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
402    return false;
403
404  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
405       I != E; ++I)
406    if (!isSafeSROAElementUse(*I))
407      return false;
408  return true;
409}
410
411
412/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
413/// Look at it and its uses and decide whether it is safe to SROA this global.
414///
415static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
416  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
417  if (!isa<GetElementPtrInst>(U) &&
418      (!isa<ConstantExpr>(U) ||
419       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
420    return false;
421
422  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
423  // don't like < 3 operand CE's, and we don't like non-constant integer
424  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
425  // value of C.
426  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
427      !cast<Constant>(U->getOperand(1))->isNullValue() ||
428      !isa<ConstantInt>(U->getOperand(2)))
429    return false;
430
431  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
432  ++GEPI;  // Skip over the pointer index.
433
434  // If this is a use of an array allocation, do a bit more checking for sanity.
435  if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
436    uint64_t NumElements = AT->getNumElements();
437    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
438
439    // Check to make sure that index falls within the array.  If not,
440    // something funny is going on, so we won't do the optimization.
441    //
442    if (Idx->getZExtValue() >= NumElements)
443      return false;
444
445    // We cannot scalar repl this level of the array unless any array
446    // sub-indices are in-range constants.  In particular, consider:
447    // A[0][i].  We cannot know that the user isn't doing invalid things like
448    // allowing i to index an out-of-range subscript that accesses A[1].
449    //
450    // Scalar replacing *just* the outer index of the array is probably not
451    // going to be a win anyway, so just give up.
452    for (++GEPI; // Skip array index.
453         GEPI != E;
454         ++GEPI) {
455      uint64_t NumElements;
456      if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
457        NumElements = SubArrayTy->getNumElements();
458      else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
459        NumElements = SubVectorTy->getNumElements();
460      else {
461        assert((*GEPI)->isStructTy() &&
462               "Indexed GEP type is not array, vector, or struct!");
463        continue;
464      }
465
466      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
467      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
468        return false;
469    }
470  }
471
472  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
473    if (!isSafeSROAElementUse(*I))
474      return false;
475  return true;
476}
477
478/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
479/// is safe for us to perform this transformation.
480///
481static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
482  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
483       UI != E; ++UI) {
484    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
485      return false;
486  }
487  return true;
488}
489
490
491/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
492/// variable.  This opens the door for other optimizations by exposing the
493/// behavior of the program in a more fine-grained way.  We have determined that
494/// this transformation is safe already.  We return the first global variable we
495/// insert so that the caller can reprocess it.
496static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
497  // Make sure this global only has simple uses that we can SRA.
498  if (!GlobalUsersSafeToSRA(GV))
499    return 0;
500
501  assert(GV->hasLocalLinkage() && !GV->isConstant());
502  Constant *Init = GV->getInitializer();
503  Type *Ty = Init->getType();
504
505  std::vector<GlobalVariable*> NewGlobals;
506  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
507
508  // Get the alignment of the global, either explicit or target-specific.
509  unsigned StartAlignment = GV->getAlignment();
510  if (StartAlignment == 0)
511    StartAlignment = TD.getABITypeAlignment(GV->getType());
512
513  if (StructType *STy = dyn_cast<StructType>(Ty)) {
514    NewGlobals.reserve(STy->getNumElements());
515    const StructLayout &Layout = *TD.getStructLayout(STy);
516    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
517      Constant *In = getAggregateConstantElement(Init,
518                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
519      assert(In && "Couldn't get element of initializer?");
520      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
521                                               GlobalVariable::InternalLinkage,
522                                               In, GV->getName()+"."+Twine(i),
523                                               GV->isThreadLocal(),
524                                              GV->getType()->getAddressSpace());
525      Globals.insert(GV, NGV);
526      NewGlobals.push_back(NGV);
527
528      // Calculate the known alignment of the field.  If the original aggregate
529      // had 256 byte alignment for example, something might depend on that:
530      // propagate info to each field.
531      uint64_t FieldOffset = Layout.getElementOffset(i);
532      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
533      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
534        NGV->setAlignment(NewAlign);
535    }
536  } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
537    unsigned NumElements = 0;
538    if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
539      NumElements = ATy->getNumElements();
540    else
541      NumElements = cast<VectorType>(STy)->getNumElements();
542
543    if (NumElements > 16 && GV->hasNUsesOrMore(16))
544      return 0; // It's not worth it.
545    NewGlobals.reserve(NumElements);
546
547    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
548    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
549    for (unsigned i = 0, e = NumElements; i != e; ++i) {
550      Constant *In = getAggregateConstantElement(Init,
551                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
552      assert(In && "Couldn't get element of initializer?");
553
554      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
555                                               GlobalVariable::InternalLinkage,
556                                               In, GV->getName()+"."+Twine(i),
557                                               GV->isThreadLocal(),
558                                              GV->getType()->getAddressSpace());
559      Globals.insert(GV, NGV);
560      NewGlobals.push_back(NGV);
561
562      // Calculate the known alignment of the field.  If the original aggregate
563      // had 256 byte alignment for example, something might depend on that:
564      // propagate info to each field.
565      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
566      if (NewAlign > EltAlign)
567        NGV->setAlignment(NewAlign);
568    }
569  }
570
571  if (NewGlobals.empty())
572    return 0;
573
574  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
575
576  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
577
578  // Loop over all of the uses of the global, replacing the constantexpr geps,
579  // with smaller constantexpr geps or direct references.
580  while (!GV->use_empty()) {
581    User *GEP = GV->use_back();
582    assert(((isa<ConstantExpr>(GEP) &&
583             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
584            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
585
586    // Ignore the 1th operand, which has to be zero or else the program is quite
587    // broken (undefined).  Get the 2nd operand, which is the structure or array
588    // index.
589    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
590    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
591
592    Value *NewPtr = NewGlobals[Val];
593
594    // Form a shorter GEP if needed.
595    if (GEP->getNumOperands() > 3) {
596      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
597        SmallVector<Constant*, 8> Idxs;
598        Idxs.push_back(NullInt);
599        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
600          Idxs.push_back(CE->getOperand(i));
601        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
602      } else {
603        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
604        SmallVector<Value*, 8> Idxs;
605        Idxs.push_back(NullInt);
606        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
607          Idxs.push_back(GEPI->getOperand(i));
608        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
609                                           GEPI->getName()+"."+Twine(Val),GEPI);
610      }
611    }
612    GEP->replaceAllUsesWith(NewPtr);
613
614    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
615      GEPI->eraseFromParent();
616    else
617      cast<ConstantExpr>(GEP)->destroyConstant();
618  }
619
620  // Delete the old global, now that it is dead.
621  Globals.erase(GV);
622  ++NumSRA;
623
624  // Loop over the new globals array deleting any globals that are obviously
625  // dead.  This can arise due to scalarization of a structure or an array that
626  // has elements that are dead.
627  unsigned FirstGlobal = 0;
628  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
629    if (NewGlobals[i]->use_empty()) {
630      Globals.erase(NewGlobals[i]);
631      if (FirstGlobal == i) ++FirstGlobal;
632    }
633
634  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
635}
636
637/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
638/// value will trap if the value is dynamically null.  PHIs keeps track of any
639/// phi nodes we've seen to avoid reprocessing them.
640static bool AllUsesOfValueWillTrapIfNull(const Value *V,
641                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
642  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
643       ++UI) {
644    const User *U = *UI;
645
646    if (isa<LoadInst>(U)) {
647      // Will trap.
648    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
649      if (SI->getOperand(0) == V) {
650        //cerr << "NONTRAPPING USE: " << *U;
651        return false;  // Storing the value.
652      }
653    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
654      if (CI->getCalledValue() != V) {
655        //cerr << "NONTRAPPING USE: " << *U;
656        return false;  // Not calling the ptr
657      }
658    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
659      if (II->getCalledValue() != V) {
660        //cerr << "NONTRAPPING USE: " << *U;
661        return false;  // Not calling the ptr
662      }
663    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
664      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
665    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
666      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
667    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
668      // If we've already seen this phi node, ignore it, it has already been
669      // checked.
670      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
671        return false;
672    } else if (isa<ICmpInst>(U) &&
673               isa<ConstantPointerNull>(UI->getOperand(1))) {
674      // Ignore icmp X, null
675    } else {
676      //cerr << "NONTRAPPING USE: " << *U;
677      return false;
678    }
679  }
680  return true;
681}
682
683/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
684/// from GV will trap if the loaded value is null.  Note that this also permits
685/// comparisons of the loaded value against null, as a special case.
686static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
687  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
688       UI != E; ++UI) {
689    const User *U = *UI;
690
691    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
692      SmallPtrSet<const PHINode*, 8> PHIs;
693      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
694        return false;
695    } else if (isa<StoreInst>(U)) {
696      // Ignore stores to the global.
697    } else {
698      // We don't know or understand this user, bail out.
699      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
700      return false;
701    }
702  }
703  return true;
704}
705
706static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
707  bool Changed = false;
708  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
709    Instruction *I = cast<Instruction>(*UI++);
710    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
711      LI->setOperand(0, NewV);
712      Changed = true;
713    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
714      if (SI->getOperand(1) == V) {
715        SI->setOperand(1, NewV);
716        Changed = true;
717      }
718    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
719      CallSite CS(I);
720      if (CS.getCalledValue() == V) {
721        // Calling through the pointer!  Turn into a direct call, but be careful
722        // that the pointer is not also being passed as an argument.
723        CS.setCalledFunction(NewV);
724        Changed = true;
725        bool PassedAsArg = false;
726        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
727          if (CS.getArgument(i) == V) {
728            PassedAsArg = true;
729            CS.setArgument(i, NewV);
730          }
731
732        if (PassedAsArg) {
733          // Being passed as an argument also.  Be careful to not invalidate UI!
734          UI = V->use_begin();
735        }
736      }
737    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
738      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
739                                ConstantExpr::getCast(CI->getOpcode(),
740                                                      NewV, CI->getType()));
741      if (CI->use_empty()) {
742        Changed = true;
743        CI->eraseFromParent();
744      }
745    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
746      // Should handle GEP here.
747      SmallVector<Constant*, 8> Idxs;
748      Idxs.reserve(GEPI->getNumOperands()-1);
749      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
750           i != e; ++i)
751        if (Constant *C = dyn_cast<Constant>(*i))
752          Idxs.push_back(C);
753        else
754          break;
755      if (Idxs.size() == GEPI->getNumOperands()-1)
756        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
757                          ConstantExpr::getGetElementPtr(NewV, Idxs));
758      if (GEPI->use_empty()) {
759        Changed = true;
760        GEPI->eraseFromParent();
761      }
762    }
763  }
764
765  return Changed;
766}
767
768
769/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
770/// value stored into it.  If there are uses of the loaded value that would trap
771/// if the loaded value is dynamically null, then we know that they cannot be
772/// reachable with a null optimize away the load.
773static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
774  bool Changed = false;
775
776  // Keep track of whether we are able to remove all the uses of the global
777  // other than the store that defines it.
778  bool AllNonStoreUsesGone = true;
779
780  // Replace all uses of loads with uses of uses of the stored value.
781  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
782    User *GlobalUser = *GUI++;
783    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
784      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
785      // If we were able to delete all uses of the loads
786      if (LI->use_empty()) {
787        LI->eraseFromParent();
788        Changed = true;
789      } else {
790        AllNonStoreUsesGone = false;
791      }
792    } else if (isa<StoreInst>(GlobalUser)) {
793      // Ignore the store that stores "LV" to the global.
794      assert(GlobalUser->getOperand(1) == GV &&
795             "Must be storing *to* the global");
796    } else {
797      AllNonStoreUsesGone = false;
798
799      // If we get here we could have other crazy uses that are transitively
800      // loaded.
801      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
802              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser)) &&
803             "Only expect load and stores!");
804    }
805  }
806
807  if (Changed) {
808    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
809    ++NumGlobUses;
810  }
811
812  // If we nuked all of the loads, then none of the stores are needed either,
813  // nor is the global.
814  if (AllNonStoreUsesGone) {
815    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
816    CleanupConstantGlobalUsers(GV, 0);
817    if (GV->use_empty()) {
818      GV->eraseFromParent();
819      ++NumDeleted;
820    }
821    Changed = true;
822  }
823  return Changed;
824}
825
826/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
827/// instructions that are foldable.
828static void ConstantPropUsersOf(Value *V) {
829  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
830    if (Instruction *I = dyn_cast<Instruction>(*UI++))
831      if (Constant *NewC = ConstantFoldInstruction(I)) {
832        I->replaceAllUsesWith(NewC);
833
834        // Advance UI to the next non-I use to avoid invalidating it!
835        // Instructions could multiply use V.
836        while (UI != E && *UI == I)
837          ++UI;
838        I->eraseFromParent();
839      }
840}
841
842/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
843/// variable, and transforms the program as if it always contained the result of
844/// the specified malloc.  Because it is always the result of the specified
845/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
846/// malloc into a global, and any loads of GV as uses of the new global.
847static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
848                                                     CallInst *CI,
849                                                     Type *AllocTy,
850                                                     ConstantInt *NElements,
851                                                     TargetData* TD) {
852  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
853
854  Type *GlobalType;
855  if (NElements->getZExtValue() == 1)
856    GlobalType = AllocTy;
857  else
858    // If we have an array allocation, the global variable is of an array.
859    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
860
861  // Create the new global variable.  The contents of the malloc'd memory is
862  // undefined, so initialize with an undef value.
863  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
864                                             GlobalType, false,
865                                             GlobalValue::InternalLinkage,
866                                             UndefValue::get(GlobalType),
867                                             GV->getName()+".body",
868                                             GV,
869                                             GV->isThreadLocal());
870
871  // If there are bitcast users of the malloc (which is typical, usually we have
872  // a malloc + bitcast) then replace them with uses of the new global.  Update
873  // other users to use the global as well.
874  BitCastInst *TheBC = 0;
875  while (!CI->use_empty()) {
876    Instruction *User = cast<Instruction>(CI->use_back());
877    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
878      if (BCI->getType() == NewGV->getType()) {
879        BCI->replaceAllUsesWith(NewGV);
880        BCI->eraseFromParent();
881      } else {
882        BCI->setOperand(0, NewGV);
883      }
884    } else {
885      if (TheBC == 0)
886        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
887      User->replaceUsesOfWith(CI, TheBC);
888    }
889  }
890
891  Constant *RepValue = NewGV;
892  if (NewGV->getType() != GV->getType()->getElementType())
893    RepValue = ConstantExpr::getBitCast(RepValue,
894                                        GV->getType()->getElementType());
895
896  // If there is a comparison against null, we will insert a global bool to
897  // keep track of whether the global was initialized yet or not.
898  GlobalVariable *InitBool =
899    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
900                       GlobalValue::InternalLinkage,
901                       ConstantInt::getFalse(GV->getContext()),
902                       GV->getName()+".init", GV->isThreadLocal());
903  bool InitBoolUsed = false;
904
905  // Loop over all uses of GV, processing them in turn.
906  while (!GV->use_empty()) {
907    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
908      // The global is initialized when the store to it occurs.
909      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
910      SI->eraseFromParent();
911      continue;
912    }
913
914    LoadInst *LI = cast<LoadInst>(GV->use_back());
915    while (!LI->use_empty()) {
916      Use &LoadUse = LI->use_begin().getUse();
917      if (!isa<ICmpInst>(LoadUse.getUser())) {
918        LoadUse = RepValue;
919        continue;
920      }
921
922      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
923      // Replace the cmp X, 0 with a use of the bool value.
924      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
925      InitBoolUsed = true;
926      switch (ICI->getPredicate()) {
927      default: llvm_unreachable("Unknown ICmp Predicate!");
928      case ICmpInst::ICMP_ULT:
929      case ICmpInst::ICMP_SLT:   // X < null -> always false
930        LV = ConstantInt::getFalse(GV->getContext());
931        break;
932      case ICmpInst::ICMP_ULE:
933      case ICmpInst::ICMP_SLE:
934      case ICmpInst::ICMP_EQ:
935        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
936        break;
937      case ICmpInst::ICMP_NE:
938      case ICmpInst::ICMP_UGE:
939      case ICmpInst::ICMP_SGE:
940      case ICmpInst::ICMP_UGT:
941      case ICmpInst::ICMP_SGT:
942        break;  // no change.
943      }
944      ICI->replaceAllUsesWith(LV);
945      ICI->eraseFromParent();
946    }
947    LI->eraseFromParent();
948  }
949
950  // If the initialization boolean was used, insert it, otherwise delete it.
951  if (!InitBoolUsed) {
952    while (!InitBool->use_empty())  // Delete initializations
953      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
954    delete InitBool;
955  } else
956    GV->getParent()->getGlobalList().insert(GV, InitBool);
957
958  // Now the GV is dead, nuke it and the malloc..
959  GV->eraseFromParent();
960  CI->eraseFromParent();
961
962  // To further other optimizations, loop over all users of NewGV and try to
963  // constant prop them.  This will promote GEP instructions with constant
964  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
965  ConstantPropUsersOf(NewGV);
966  if (RepValue != NewGV)
967    ConstantPropUsersOf(RepValue);
968
969  return NewGV;
970}
971
972/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
973/// to make sure that there are no complex uses of V.  We permit simple things
974/// like dereferencing the pointer, but not storing through the address, unless
975/// it is to the specified global.
976static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
977                                                      const GlobalVariable *GV,
978                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
979  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
980       UI != E; ++UI) {
981    const Instruction *Inst = cast<Instruction>(*UI);
982
983    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
984      continue; // Fine, ignore.
985    }
986
987    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
988      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
989        return false;  // Storing the pointer itself... bad.
990      continue; // Otherwise, storing through it, or storing into GV... fine.
991    }
992
993    // Must index into the array and into the struct.
994    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
995      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
996        return false;
997      continue;
998    }
999
1000    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1001      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1002      // cycles.
1003      if (PHIs.insert(PN))
1004        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1005          return false;
1006      continue;
1007    }
1008
1009    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1010      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1011        return false;
1012      continue;
1013    }
1014
1015    return false;
1016  }
1017  return true;
1018}
1019
1020/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
1021/// somewhere.  Transform all uses of the allocation into loads from the
1022/// global and uses of the resultant pointer.  Further, delete the store into
1023/// GV.  This assumes that these value pass the
1024/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1025static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1026                                          GlobalVariable *GV) {
1027  while (!Alloc->use_empty()) {
1028    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1029    Instruction *InsertPt = U;
1030    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1031      // If this is the store of the allocation into the global, remove it.
1032      if (SI->getOperand(1) == GV) {
1033        SI->eraseFromParent();
1034        continue;
1035      }
1036    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1037      // Insert the load in the corresponding predecessor, not right before the
1038      // PHI.
1039      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1040    } else if (isa<BitCastInst>(U)) {
1041      // Must be bitcast between the malloc and store to initialize the global.
1042      ReplaceUsesOfMallocWithGlobal(U, GV);
1043      U->eraseFromParent();
1044      continue;
1045    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1046      // If this is a "GEP bitcast" and the user is a store to the global, then
1047      // just process it as a bitcast.
1048      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1049        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1050          if (SI->getOperand(1) == GV) {
1051            // Must be bitcast GEP between the malloc and store to initialize
1052            // the global.
1053            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1054            GEPI->eraseFromParent();
1055            continue;
1056          }
1057    }
1058
1059    // Insert a load from the global, and use it instead of the malloc.
1060    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1061    U->replaceUsesOfWith(Alloc, NL);
1062  }
1063}
1064
1065/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1066/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1067/// that index through the array and struct field, icmps of null, and PHIs.
1068static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1069                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1070                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1071  // We permit two users of the load: setcc comparing against the null
1072  // pointer, and a getelementptr of a specific form.
1073  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1074       ++UI) {
1075    const Instruction *User = cast<Instruction>(*UI);
1076
1077    // Comparison against null is ok.
1078    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1079      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1080        return false;
1081      continue;
1082    }
1083
1084    // getelementptr is also ok, but only a simple form.
1085    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1086      // Must index into the array and into the struct.
1087      if (GEPI->getNumOperands() < 3)
1088        return false;
1089
1090      // Otherwise the GEP is ok.
1091      continue;
1092    }
1093
1094    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1095      if (!LoadUsingPHIsPerLoad.insert(PN))
1096        // This means some phi nodes are dependent on each other.
1097        // Avoid infinite looping!
1098        return false;
1099      if (!LoadUsingPHIs.insert(PN))
1100        // If we have already analyzed this PHI, then it is safe.
1101        continue;
1102
1103      // Make sure all uses of the PHI are simple enough to transform.
1104      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1105                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1106        return false;
1107
1108      continue;
1109    }
1110
1111    // Otherwise we don't know what this is, not ok.
1112    return false;
1113  }
1114
1115  return true;
1116}
1117
1118
1119/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1120/// GV are simple enough to perform HeapSRA, return true.
1121static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1122                                                    Instruction *StoredVal) {
1123  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1124  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1125  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1126       UI != E; ++UI)
1127    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1128      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1129                                          LoadUsingPHIsPerLoad))
1130        return false;
1131      LoadUsingPHIsPerLoad.clear();
1132    }
1133
1134  // If we reach here, we know that all uses of the loads and transitive uses
1135  // (through PHI nodes) are simple enough to transform.  However, we don't know
1136  // that all inputs the to the PHI nodes are in the same equivalence sets.
1137  // Check to verify that all operands of the PHIs are either PHIS that can be
1138  // transformed, loads from GV, or MI itself.
1139  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1140       , E = LoadUsingPHIs.end(); I != E; ++I) {
1141    const PHINode *PN = *I;
1142    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1143      Value *InVal = PN->getIncomingValue(op);
1144
1145      // PHI of the stored value itself is ok.
1146      if (InVal == StoredVal) continue;
1147
1148      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1149        // One of the PHIs in our set is (optimistically) ok.
1150        if (LoadUsingPHIs.count(InPN))
1151          continue;
1152        return false;
1153      }
1154
1155      // Load from GV is ok.
1156      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1157        if (LI->getOperand(0) == GV)
1158          continue;
1159
1160      // UNDEF? NULL?
1161
1162      // Anything else is rejected.
1163      return false;
1164    }
1165  }
1166
1167  return true;
1168}
1169
1170static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1171               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1172                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1173  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1174
1175  if (FieldNo >= FieldVals.size())
1176    FieldVals.resize(FieldNo+1);
1177
1178  // If we already have this value, just reuse the previously scalarized
1179  // version.
1180  if (Value *FieldVal = FieldVals[FieldNo])
1181    return FieldVal;
1182
1183  // Depending on what instruction this is, we have several cases.
1184  Value *Result;
1185  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1186    // This is a scalarized version of the load from the global.  Just create
1187    // a new Load of the scalarized global.
1188    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1189                                           InsertedScalarizedValues,
1190                                           PHIsToRewrite),
1191                          LI->getName()+".f"+Twine(FieldNo), LI);
1192  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1193    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1194    // field.
1195    StructType *ST =
1196      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1197
1198    PHINode *NewPN =
1199     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1200                     PN->getNumIncomingValues(),
1201                     PN->getName()+".f"+Twine(FieldNo), PN);
1202    Result = NewPN;
1203    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1204  } else {
1205    llvm_unreachable("Unknown usable value");
1206    Result = 0;
1207  }
1208
1209  return FieldVals[FieldNo] = Result;
1210}
1211
1212/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1213/// the load, rewrite the derived value to use the HeapSRoA'd load.
1214static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1215             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1216                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1217  // If this is a comparison against null, handle it.
1218  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1219    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1220    // If we have a setcc of the loaded pointer, we can use a setcc of any
1221    // field.
1222    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1223                                   InsertedScalarizedValues, PHIsToRewrite);
1224
1225    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1226                              Constant::getNullValue(NPtr->getType()),
1227                              SCI->getName());
1228    SCI->replaceAllUsesWith(New);
1229    SCI->eraseFromParent();
1230    return;
1231  }
1232
1233  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1234  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1235    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1236           && "Unexpected GEPI!");
1237
1238    // Load the pointer for this field.
1239    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1240    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1241                                     InsertedScalarizedValues, PHIsToRewrite);
1242
1243    // Create the new GEP idx vector.
1244    SmallVector<Value*, 8> GEPIdx;
1245    GEPIdx.push_back(GEPI->getOperand(1));
1246    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1247
1248    Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
1249                                             GEPI->getName(), GEPI);
1250    GEPI->replaceAllUsesWith(NGEPI);
1251    GEPI->eraseFromParent();
1252    return;
1253  }
1254
1255  // Recursively transform the users of PHI nodes.  This will lazily create the
1256  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1257  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1258  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1259  // already been seen first by another load, so its uses have already been
1260  // processed.
1261  PHINode *PN = cast<PHINode>(LoadUser);
1262  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1263                                              std::vector<Value*>())).second)
1264    return;
1265
1266  // If this is the first time we've seen this PHI, recursively process all
1267  // users.
1268  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1269    Instruction *User = cast<Instruction>(*UI++);
1270    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1271  }
1272}
1273
1274/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1275/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1276/// use FieldGlobals instead.  All uses of loaded values satisfy
1277/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1278static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1279               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1280                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1281  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1282       UI != E; ) {
1283    Instruction *User = cast<Instruction>(*UI++);
1284    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1285  }
1286
1287  if (Load->use_empty()) {
1288    Load->eraseFromParent();
1289    InsertedScalarizedValues.erase(Load);
1290  }
1291}
1292
1293/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1294/// it up into multiple allocations of arrays of the fields.
1295static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1296                                            Value* NElems, TargetData *TD) {
1297  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1298  Type* MAT = getMallocAllocatedType(CI);
1299  StructType *STy = cast<StructType>(MAT);
1300
1301  // There is guaranteed to be at least one use of the malloc (storing
1302  // it into GV).  If there are other uses, change them to be uses of
1303  // the global to simplify later code.  This also deletes the store
1304  // into GV.
1305  ReplaceUsesOfMallocWithGlobal(CI, GV);
1306
1307  // Okay, at this point, there are no users of the malloc.  Insert N
1308  // new mallocs at the same place as CI, and N globals.
1309  std::vector<Value*> FieldGlobals;
1310  std::vector<Value*> FieldMallocs;
1311
1312  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1313    Type *FieldTy = STy->getElementType(FieldNo);
1314    PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1315
1316    GlobalVariable *NGV =
1317      new GlobalVariable(*GV->getParent(),
1318                         PFieldTy, false, GlobalValue::InternalLinkage,
1319                         Constant::getNullValue(PFieldTy),
1320                         GV->getName() + ".f" + Twine(FieldNo), GV,
1321                         GV->isThreadLocal());
1322    FieldGlobals.push_back(NGV);
1323
1324    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1325    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1326      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1327    Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1328    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1329                                        ConstantInt::get(IntPtrTy, TypeSize),
1330                                        NElems, 0,
1331                                        CI->getName() + ".f" + Twine(FieldNo));
1332    FieldMallocs.push_back(NMI);
1333    new StoreInst(NMI, NGV, CI);
1334  }
1335
1336  // The tricky aspect of this transformation is handling the case when malloc
1337  // fails.  In the original code, malloc failing would set the result pointer
1338  // of malloc to null.  In this case, some mallocs could succeed and others
1339  // could fail.  As such, we emit code that looks like this:
1340  //    F0 = malloc(field0)
1341  //    F1 = malloc(field1)
1342  //    F2 = malloc(field2)
1343  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1344  //      if (F0) { free(F0); F0 = 0; }
1345  //      if (F1) { free(F1); F1 = 0; }
1346  //      if (F2) { free(F2); F2 = 0; }
1347  //    }
1348  // The malloc can also fail if its argument is too large.
1349  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1350  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1351                                  ConstantZero, "isneg");
1352  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1353    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1354                             Constant::getNullValue(FieldMallocs[i]->getType()),
1355                               "isnull");
1356    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1357  }
1358
1359  // Split the basic block at the old malloc.
1360  BasicBlock *OrigBB = CI->getParent();
1361  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1362
1363  // Create the block to check the first condition.  Put all these blocks at the
1364  // end of the function as they are unlikely to be executed.
1365  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1366                                                "malloc_ret_null",
1367                                                OrigBB->getParent());
1368
1369  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1370  // branch on RunningOr.
1371  OrigBB->getTerminator()->eraseFromParent();
1372  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1373
1374  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1375  // pointer, because some may be null while others are not.
1376  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1377    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1378    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1379                              Constant::getNullValue(GVVal->getType()));
1380    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1381                                               OrigBB->getParent());
1382    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1383                                               OrigBB->getParent());
1384    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1385                                         Cmp, NullPtrBlock);
1386
1387    // Fill in FreeBlock.
1388    CallInst::CreateFree(GVVal, BI);
1389    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1390                  FreeBlock);
1391    BranchInst::Create(NextBlock, FreeBlock);
1392
1393    NullPtrBlock = NextBlock;
1394  }
1395
1396  BranchInst::Create(ContBB, NullPtrBlock);
1397
1398  // CI is no longer needed, remove it.
1399  CI->eraseFromParent();
1400
1401  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1402  /// update all uses of the load, keep track of what scalarized loads are
1403  /// inserted for a given load.
1404  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1405  InsertedScalarizedValues[GV] = FieldGlobals;
1406
1407  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1408
1409  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1410  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1411  // of the per-field globals instead.
1412  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1413    Instruction *User = cast<Instruction>(*UI++);
1414
1415    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1416      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1417      continue;
1418    }
1419
1420    // Must be a store of null.
1421    StoreInst *SI = cast<StoreInst>(User);
1422    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1423           "Unexpected heap-sra user!");
1424
1425    // Insert a store of null into each global.
1426    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1427      PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1428      Constant *Null = Constant::getNullValue(PT->getElementType());
1429      new StoreInst(Null, FieldGlobals[i], SI);
1430    }
1431    // Erase the original store.
1432    SI->eraseFromParent();
1433  }
1434
1435  // While we have PHIs that are interesting to rewrite, do it.
1436  while (!PHIsToRewrite.empty()) {
1437    PHINode *PN = PHIsToRewrite.back().first;
1438    unsigned FieldNo = PHIsToRewrite.back().second;
1439    PHIsToRewrite.pop_back();
1440    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1441    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1442
1443    // Add all the incoming values.  This can materialize more phis.
1444    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1445      Value *InVal = PN->getIncomingValue(i);
1446      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1447                               PHIsToRewrite);
1448      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1449    }
1450  }
1451
1452  // Drop all inter-phi links and any loads that made it this far.
1453  for (DenseMap<Value*, std::vector<Value*> >::iterator
1454       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1455       I != E; ++I) {
1456    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1457      PN->dropAllReferences();
1458    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1459      LI->dropAllReferences();
1460  }
1461
1462  // Delete all the phis and loads now that inter-references are dead.
1463  for (DenseMap<Value*, std::vector<Value*> >::iterator
1464       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1465       I != E; ++I) {
1466    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1467      PN->eraseFromParent();
1468    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1469      LI->eraseFromParent();
1470  }
1471
1472  // The old global is now dead, remove it.
1473  GV->eraseFromParent();
1474
1475  ++NumHeapSRA;
1476  return cast<GlobalVariable>(FieldGlobals[0]);
1477}
1478
1479/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1480/// pointer global variable with a single value stored it that is a malloc or
1481/// cast of malloc.
1482static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1483                                               CallInst *CI,
1484                                               Type *AllocTy,
1485                                               Module::global_iterator &GVI,
1486                                               TargetData *TD) {
1487  if (!TD)
1488    return false;
1489
1490  // If this is a malloc of an abstract type, don't touch it.
1491  if (!AllocTy->isSized())
1492    return false;
1493
1494  // We can't optimize this global unless all uses of it are *known* to be
1495  // of the malloc value, not of the null initializer value (consider a use
1496  // that compares the global's value against zero to see if the malloc has
1497  // been reached).  To do this, we check to see if all uses of the global
1498  // would trap if the global were null: this proves that they must all
1499  // happen after the malloc.
1500  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1501    return false;
1502
1503  // We can't optimize this if the malloc itself is used in a complex way,
1504  // for example, being stored into multiple globals.  This allows the
1505  // malloc to be stored into the specified global, loaded setcc'd, and
1506  // GEP'd.  These are all things we could transform to using the global
1507  // for.
1508  SmallPtrSet<const PHINode*, 8> PHIs;
1509  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1510    return false;
1511
1512  // If we have a global that is only initialized with a fixed size malloc,
1513  // transform the program to use global memory instead of malloc'd memory.
1514  // This eliminates dynamic allocation, avoids an indirection accessing the
1515  // data, and exposes the resultant global to further GlobalOpt.
1516  // We cannot optimize the malloc if we cannot determine malloc array size.
1517  Value *NElems = getMallocArraySize(CI, TD, true);
1518  if (!NElems)
1519    return false;
1520
1521  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1522    // Restrict this transformation to only working on small allocations
1523    // (2048 bytes currently), as we don't want to introduce a 16M global or
1524    // something.
1525    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1526      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1527      return true;
1528    }
1529
1530  // If the allocation is an array of structures, consider transforming this
1531  // into multiple malloc'd arrays, one for each field.  This is basically
1532  // SRoA for malloc'd memory.
1533
1534  // If this is an allocation of a fixed size array of structs, analyze as a
1535  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1536  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1537    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1538      AllocTy = AT->getElementType();
1539
1540  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1541  if (!AllocSTy)
1542    return false;
1543
1544  // This the structure has an unreasonable number of fields, leave it
1545  // alone.
1546  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1547      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1548
1549    // If this is a fixed size array, transform the Malloc to be an alloc of
1550    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1551    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1552      Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1553      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1554      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1555      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1556      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1557                                                   AllocSize, NumElements,
1558                                                   0, CI->getName());
1559      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1560      CI->replaceAllUsesWith(Cast);
1561      CI->eraseFromParent();
1562      CI = dyn_cast<BitCastInst>(Malloc) ?
1563        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1564    }
1565
1566    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1567    return true;
1568  }
1569
1570  return false;
1571}
1572
1573// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1574// that only one value (besides its initializer) is ever stored to the global.
1575static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1576                                     Module::global_iterator &GVI,
1577                                     TargetData *TD) {
1578  // Ignore no-op GEPs and bitcasts.
1579  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1580
1581  // If we are dealing with a pointer global that is initialized to null and
1582  // only has one (non-null) value stored into it, then we can optimize any
1583  // users of the loaded value (often calls and loads) that would trap if the
1584  // value was null.
1585  if (GV->getInitializer()->getType()->isPointerTy() &&
1586      GV->getInitializer()->isNullValue()) {
1587    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1588      if (GV->getInitializer()->getType() != SOVC->getType())
1589        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1590
1591      // Optimize away any trapping uses of the loaded value.
1592      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1593        return true;
1594    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1595      Type* MallocType = getMallocAllocatedType(CI);
1596      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1597                                                           GVI, TD))
1598        return true;
1599    }
1600  }
1601
1602  return false;
1603}
1604
1605/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1606/// two values ever stored into GV are its initializer and OtherVal.  See if we
1607/// can shrink the global into a boolean and select between the two values
1608/// whenever it is used.  This exposes the values to other scalar optimizations.
1609static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1610  Type *GVElType = GV->getType()->getElementType();
1611
1612  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1613  // an FP value, pointer or vector, don't do this optimization because a select
1614  // between them is very expensive and unlikely to lead to later
1615  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1616  // where v1 and v2 both require constant pool loads, a big loss.
1617  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1618      GVElType->isFloatingPointTy() ||
1619      GVElType->isPointerTy() || GVElType->isVectorTy())
1620    return false;
1621
1622  // Walk the use list of the global seeing if all the uses are load or store.
1623  // If there is anything else, bail out.
1624  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
1625    User *U = *I;
1626    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1627      return false;
1628  }
1629
1630  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1631
1632  // Create the new global, initializing it to false.
1633  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1634                                             false,
1635                                             GlobalValue::InternalLinkage,
1636                                        ConstantInt::getFalse(GV->getContext()),
1637                                             GV->getName()+".b",
1638                                             GV->isThreadLocal());
1639  GV->getParent()->getGlobalList().insert(GV, NewGV);
1640
1641  Constant *InitVal = GV->getInitializer();
1642  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1643         "No reason to shrink to bool!");
1644
1645  // If initialized to zero and storing one into the global, we can use a cast
1646  // instead of a select to synthesize the desired value.
1647  bool IsOneZero = false;
1648  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1649    IsOneZero = InitVal->isNullValue() && CI->isOne();
1650
1651  while (!GV->use_empty()) {
1652    Instruction *UI = cast<Instruction>(GV->use_back());
1653    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1654      // Change the store into a boolean store.
1655      bool StoringOther = SI->getOperand(0) == OtherVal;
1656      // Only do this if we weren't storing a loaded value.
1657      Value *StoreVal;
1658      if (StoringOther || SI->getOperand(0) == InitVal)
1659        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1660                                    StoringOther);
1661      else {
1662        // Otherwise, we are storing a previously loaded copy.  To do this,
1663        // change the copy from copying the original value to just copying the
1664        // bool.
1665        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1666
1667        // If we've already replaced the input, StoredVal will be a cast or
1668        // select instruction.  If not, it will be a load of the original
1669        // global.
1670        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1671          assert(LI->getOperand(0) == GV && "Not a copy!");
1672          // Insert a new load, to preserve the saved value.
1673          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1674        } else {
1675          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1676                 "This is not a form that we understand!");
1677          StoreVal = StoredVal->getOperand(0);
1678          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1679        }
1680      }
1681      new StoreInst(StoreVal, NewGV, SI);
1682    } else {
1683      // Change the load into a load of bool then a select.
1684      LoadInst *LI = cast<LoadInst>(UI);
1685      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1686      Value *NSI;
1687      if (IsOneZero)
1688        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1689      else
1690        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1691      NSI->takeName(LI);
1692      LI->replaceAllUsesWith(NSI);
1693    }
1694    UI->eraseFromParent();
1695  }
1696
1697  GV->eraseFromParent();
1698  return true;
1699}
1700
1701
1702/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1703/// it if possible.  If we make a change, return true.
1704bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
1705                              Module::global_iterator &GVI) {
1706  if (!GV->hasLocalLinkage())
1707    return false;
1708
1709  // Do more involved optimizations if the global is internal.
1710  GV->removeDeadConstantUsers();
1711
1712  if (GV->use_empty()) {
1713    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1714    GV->eraseFromParent();
1715    ++NumDeleted;
1716    return true;
1717  }
1718
1719  SmallPtrSet<const PHINode*, 16> PHIUsers;
1720  GlobalStatus GS;
1721
1722  if (AnalyzeGlobal(GV, GS, PHIUsers))
1723    return false;
1724
1725  if (!GS.isCompared && !GV->hasUnnamedAddr()) {
1726    GV->setUnnamedAddr(true);
1727    NumUnnamed++;
1728  }
1729
1730  if (GV->isConstant() || !GV->hasInitializer())
1731    return false;
1732
1733  return ProcessInternalGlobal(GV, GVI, PHIUsers, GS);
1734}
1735
1736/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1737/// it if possible.  If we make a change, return true.
1738bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1739                                      Module::global_iterator &GVI,
1740                                      const SmallPtrSet<const PHINode*, 16> &PHIUsers,
1741                                      const GlobalStatus &GS) {
1742  // If this is a first class global and has only one accessing function
1743  // and this function is main (which we know is not recursive we can make
1744  // this global a local variable) we replace the global with a local alloca
1745  // in this function.
1746  //
1747  // NOTE: It doesn't make sense to promote non single-value types since we
1748  // are just replacing static memory to stack memory.
1749  //
1750  // If the global is in different address space, don't bring it to stack.
1751  if (!GS.HasMultipleAccessingFunctions &&
1752      GS.AccessingFunction && !GS.HasNonInstructionUser &&
1753      GV->getType()->getElementType()->isSingleValueType() &&
1754      GS.AccessingFunction->getName() == "main" &&
1755      GS.AccessingFunction->hasExternalLinkage() &&
1756      GV->getType()->getAddressSpace() == 0) {
1757    DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1758    Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1759                                                   ->getEntryBlock().begin());
1760    Type* ElemTy = GV->getType()->getElementType();
1761    // FIXME: Pass Global's alignment when globals have alignment
1762    AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1763    if (!isa<UndefValue>(GV->getInitializer()))
1764      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1765
1766    GV->replaceAllUsesWith(Alloca);
1767    GV->eraseFromParent();
1768    ++NumLocalized;
1769    return true;
1770  }
1771
1772  // If the global is never loaded (but may be stored to), it is dead.
1773  // Delete it now.
1774  if (!GS.isLoaded) {
1775    DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1776
1777    // Delete any stores we can find to the global.  We may not be able to
1778    // make it completely dead though.
1779    bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1780
1781    // If the global is dead now, delete it.
1782    if (GV->use_empty()) {
1783      GV->eraseFromParent();
1784      ++NumDeleted;
1785      Changed = true;
1786    }
1787    return Changed;
1788
1789  } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1790    DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1791    GV->setConstant(true);
1792
1793    // Clean up any obviously simplifiable users now.
1794    CleanupConstantGlobalUsers(GV, GV->getInitializer());
1795
1796    // If the global is dead now, just nuke it.
1797    if (GV->use_empty()) {
1798      DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1799            << "all users and delete global!\n");
1800      GV->eraseFromParent();
1801      ++NumDeleted;
1802    }
1803
1804    ++NumMarked;
1805    return true;
1806  } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1807    if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1808      if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1809        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1810        return true;
1811      }
1812  } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1813    // If the initial value for the global was an undef value, and if only
1814    // one other value was stored into it, we can just change the
1815    // initializer to be the stored value, then delete all stores to the
1816    // global.  This allows us to mark it constant.
1817    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1818      if (isa<UndefValue>(GV->getInitializer())) {
1819        // Change the initial value here.
1820        GV->setInitializer(SOVConstant);
1821
1822        // Clean up any obviously simplifiable users now.
1823        CleanupConstantGlobalUsers(GV, GV->getInitializer());
1824
1825        if (GV->use_empty()) {
1826          DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1827                << "simplify all users and delete global!\n");
1828          GV->eraseFromParent();
1829          ++NumDeleted;
1830        } else {
1831          GVI = GV;
1832        }
1833        ++NumSubstitute;
1834        return true;
1835      }
1836
1837    // Try to optimize globals based on the knowledge that only one value
1838    // (besides its initializer) is ever stored to the global.
1839    if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1840                                 getAnalysisIfAvailable<TargetData>()))
1841      return true;
1842
1843    // Otherwise, if the global was not a boolean, we can shrink it to be a
1844    // boolean.
1845    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1846      if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1847        ++NumShrunkToBool;
1848        return true;
1849      }
1850  }
1851
1852  return false;
1853}
1854
1855/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1856/// function, changing them to FastCC.
1857static void ChangeCalleesToFastCall(Function *F) {
1858  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1859    CallSite User(cast<Instruction>(*UI));
1860    User.setCallingConv(CallingConv::Fast);
1861  }
1862}
1863
1864static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1865  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1866    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1867      continue;
1868
1869    // There can be only one.
1870    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1871  }
1872
1873  return Attrs;
1874}
1875
1876static void RemoveNestAttribute(Function *F) {
1877  F->setAttributes(StripNest(F->getAttributes()));
1878  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1879    CallSite User(cast<Instruction>(*UI));
1880    User.setAttributes(StripNest(User.getAttributes()));
1881  }
1882}
1883
1884bool GlobalOpt::OptimizeFunctions(Module &M) {
1885  bool Changed = false;
1886  // Optimize functions.
1887  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1888    Function *F = FI++;
1889    // Functions without names cannot be referenced outside this module.
1890    if (!F->hasName() && !F->isDeclaration())
1891      F->setLinkage(GlobalValue::InternalLinkage);
1892    F->removeDeadConstantUsers();
1893    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1894      F->eraseFromParent();
1895      Changed = true;
1896      ++NumFnDeleted;
1897    } else if (F->hasLocalLinkage()) {
1898      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1899          !F->hasAddressTaken()) {
1900        // If this function has C calling conventions, is not a varargs
1901        // function, and is only called directly, promote it to use the Fast
1902        // calling convention.
1903        F->setCallingConv(CallingConv::Fast);
1904        ChangeCalleesToFastCall(F);
1905        ++NumFastCallFns;
1906        Changed = true;
1907      }
1908
1909      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1910          !F->hasAddressTaken()) {
1911        // The function is not used by a trampoline intrinsic, so it is safe
1912        // to remove the 'nest' attribute.
1913        RemoveNestAttribute(F);
1914        ++NumNestRemoved;
1915        Changed = true;
1916      }
1917    }
1918  }
1919  return Changed;
1920}
1921
1922bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1923  bool Changed = false;
1924  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1925       GVI != E; ) {
1926    GlobalVariable *GV = GVI++;
1927    // Global variables without names cannot be referenced outside this module.
1928    if (!GV->hasName() && !GV->isDeclaration())
1929      GV->setLinkage(GlobalValue::InternalLinkage);
1930    // Simplify the initializer.
1931    if (GV->hasInitializer())
1932      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1933        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1934        Constant *New = ConstantFoldConstantExpression(CE, TD);
1935        if (New && New != CE)
1936          GV->setInitializer(New);
1937      }
1938
1939    Changed |= ProcessGlobal(GV, GVI);
1940  }
1941  return Changed;
1942}
1943
1944/// FindGlobalCtors - Find the llvm.global_ctors list, verifying that all
1945/// initializers have an init priority of 65535.
1946GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1947  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1948  if (GV == 0) return 0;
1949
1950  // Verify that the initializer is simple enough for us to handle. We are
1951  // only allowed to optimize the initializer if it is unique.
1952  if (!GV->hasUniqueInitializer()) return 0;
1953
1954  if (isa<ConstantAggregateZero>(GV->getInitializer()))
1955    return GV;
1956  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1957
1958  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1959    if (isa<ConstantAggregateZero>(*i))
1960      continue;
1961    ConstantStruct *CS = cast<ConstantStruct>(*i);
1962    if (isa<ConstantPointerNull>(CS->getOperand(1)))
1963      continue;
1964
1965    // Must have a function or null ptr.
1966    if (!isa<Function>(CS->getOperand(1)))
1967      return 0;
1968
1969    // Init priority must be standard.
1970    ConstantInt *CI = cast<ConstantInt>(CS->getOperand(0));
1971    if (CI->getZExtValue() != 65535)
1972      return 0;
1973  }
1974
1975  return GV;
1976}
1977
1978/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1979/// return a list of the functions and null terminator as a vector.
1980static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1981  if (GV->getInitializer()->isNullValue())
1982    return std::vector<Function*>();
1983  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1984  std::vector<Function*> Result;
1985  Result.reserve(CA->getNumOperands());
1986  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1987    ConstantStruct *CS = cast<ConstantStruct>(*i);
1988    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1989  }
1990  return Result;
1991}
1992
1993/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1994/// specified array, returning the new global to use.
1995static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1996                                          const std::vector<Function*> &Ctors) {
1997  // If we made a change, reassemble the initializer list.
1998  Constant *CSVals[2];
1999  CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()), 65535);
2000  CSVals[1] = 0;
2001
2002  StructType *StructTy =
2003    cast <StructType>(
2004    cast<ArrayType>(GCL->getType()->getElementType())->getElementType());
2005
2006  // Create the new init list.
2007  std::vector<Constant*> CAList;
2008  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
2009    if (Ctors[i]) {
2010      CSVals[1] = Ctors[i];
2011    } else {
2012      Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
2013                                          false);
2014      PointerType *PFTy = PointerType::getUnqual(FTy);
2015      CSVals[1] = Constant::getNullValue(PFTy);
2016      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2017                                   0x7fffffff);
2018    }
2019    CAList.push_back(ConstantStruct::get(StructTy, CSVals));
2020  }
2021
2022  // Create the array initializer.
2023  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2024                                                   CAList.size()), CAList);
2025
2026  // If we didn't change the number of elements, don't create a new GV.
2027  if (CA->getType() == GCL->getInitializer()->getType()) {
2028    GCL->setInitializer(CA);
2029    return GCL;
2030  }
2031
2032  // Create the new global and insert it next to the existing list.
2033  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2034                                           GCL->getLinkage(), CA, "",
2035                                           GCL->isThreadLocal());
2036  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2037  NGV->takeName(GCL);
2038
2039  // Nuke the old list, replacing any uses with the new one.
2040  if (!GCL->use_empty()) {
2041    Constant *V = NGV;
2042    if (V->getType() != GCL->getType())
2043      V = ConstantExpr::getBitCast(V, GCL->getType());
2044    GCL->replaceAllUsesWith(V);
2045  }
2046  GCL->eraseFromParent();
2047
2048  if (Ctors.size())
2049    return NGV;
2050  else
2051    return 0;
2052}
2053
2054
2055static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
2056  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2057  Constant *R = ComputedValues[V];
2058  assert(R && "Reference to an uncomputed value!");
2059  return R;
2060}
2061
2062static inline bool
2063isSimpleEnoughValueToCommit(Constant *C,
2064                            SmallPtrSet<Constant*, 8> &SimpleConstants);
2065
2066
2067/// isSimpleEnoughValueToCommit - Return true if the specified constant can be
2068/// handled by the code generator.  We don't want to generate something like:
2069///   void *X = &X/42;
2070/// because the code generator doesn't have a relocation that can handle that.
2071///
2072/// This function should be called if C was not found (but just got inserted)
2073/// in SimpleConstants to avoid having to rescan the same constants all the
2074/// time.
2075static bool isSimpleEnoughValueToCommitHelper(Constant *C,
2076                                   SmallPtrSet<Constant*, 8> &SimpleConstants) {
2077  // Simple integer, undef, constant aggregate zero, global addresses, etc are
2078  // all supported.
2079  if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
2080      isa<GlobalValue>(C))
2081    return true;
2082
2083  // Aggregate values are safe if all their elements are.
2084  if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2085      isa<ConstantVector>(C)) {
2086    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
2087      Constant *Op = cast<Constant>(C->getOperand(i));
2088      if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
2089        return false;
2090    }
2091    return true;
2092  }
2093
2094  // We don't know exactly what relocations are allowed in constant expressions,
2095  // so we allow &global+constantoffset, which is safe and uniformly supported
2096  // across targets.
2097  ConstantExpr *CE = cast<ConstantExpr>(C);
2098  switch (CE->getOpcode()) {
2099  case Instruction::BitCast:
2100  case Instruction::IntToPtr:
2101  case Instruction::PtrToInt:
2102    // These casts are always fine if the casted value is.
2103    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2104
2105  // GEP is fine if it is simple + constant offset.
2106  case Instruction::GetElementPtr:
2107    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2108      if (!isa<ConstantInt>(CE->getOperand(i)))
2109        return false;
2110    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2111
2112  case Instruction::Add:
2113    // We allow simple+cst.
2114    if (!isa<ConstantInt>(CE->getOperand(1)))
2115      return false;
2116    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
2117  }
2118  return false;
2119}
2120
2121static inline bool
2122isSimpleEnoughValueToCommit(Constant *C,
2123                            SmallPtrSet<Constant*, 8> &SimpleConstants) {
2124  // If we already checked this constant, we win.
2125  if (!SimpleConstants.insert(C)) return true;
2126  // Check the constant.
2127  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
2128}
2129
2130
2131/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2132/// enough for us to understand.  In particular, if it is a cast to anything
2133/// other than from one pointer type to another pointer type, we punt.
2134/// We basically just support direct accesses to globals and GEP's of
2135/// globals.  This should be kept up to date with CommitValueTo.
2136static bool isSimpleEnoughPointerToCommit(Constant *C) {
2137  // Conservatively, avoid aggregate types. This is because we don't
2138  // want to worry about them partially overlapping other stores.
2139  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2140    return false;
2141
2142  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2143    // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2144    // external globals.
2145    return GV->hasUniqueInitializer();
2146
2147  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2148    // Handle a constantexpr gep.
2149    if (CE->getOpcode() == Instruction::GetElementPtr &&
2150        isa<GlobalVariable>(CE->getOperand(0)) &&
2151        cast<GEPOperator>(CE)->isInBounds()) {
2152      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2153      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2154      // external globals.
2155      if (!GV->hasUniqueInitializer())
2156        return false;
2157
2158      // The first index must be zero.
2159      ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
2160      if (!CI || !CI->isZero()) return false;
2161
2162      // The remaining indices must be compile-time known integers within the
2163      // notional bounds of the corresponding static array types.
2164      if (!CE->isGEPWithNoNotionalOverIndexing())
2165        return false;
2166
2167      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2168
2169    // A constantexpr bitcast from a pointer to another pointer is a no-op,
2170    // and we know how to evaluate it by moving the bitcast from the pointer
2171    // operand to the value operand.
2172    } else if (CE->getOpcode() == Instruction::BitCast &&
2173               isa<GlobalVariable>(CE->getOperand(0))) {
2174      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
2175      // external globals.
2176      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
2177    }
2178  }
2179
2180  return false;
2181}
2182
2183/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2184/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2185/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2186static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2187                                   ConstantExpr *Addr, unsigned OpNo) {
2188  // Base case of the recursion.
2189  if (OpNo == Addr->getNumOperands()) {
2190    assert(Val->getType() == Init->getType() && "Type mismatch!");
2191    return Val;
2192  }
2193
2194  std::vector<Constant*> Elts;
2195  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2196
2197    // Break up the constant into its elements.
2198    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2199      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2200        Elts.push_back(cast<Constant>(*i));
2201    } else if (isa<ConstantAggregateZero>(Init)) {
2202      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2203        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2204    } else if (isa<UndefValue>(Init)) {
2205      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2206        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2207    } else {
2208      llvm_unreachable("This code is out of sync with "
2209             " ConstantFoldLoadThroughGEPConstantExpr");
2210    }
2211
2212    // Replace the element that we are supposed to.
2213    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2214    unsigned Idx = CU->getZExtValue();
2215    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2216    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2217
2218    // Return the modified struct.
2219    return ConstantStruct::get(STy, Elts);
2220  }
2221
2222  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2223  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2224
2225  uint64_t NumElts;
2226  if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2227    NumElts = ATy->getNumElements();
2228  else
2229    NumElts = cast<VectorType>(InitTy)->getNumElements();
2230
2231  // Break up the array into elements.
2232  if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2233    for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2234      Elts.push_back(cast<Constant>(*i));
2235  } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2236    for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2237      Elts.push_back(cast<Constant>(*i));
2238  } else if (isa<ConstantAggregateZero>(Init)) {
2239    Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2240  } else {
2241    assert(isa<UndefValue>(Init) && "This code is out of sync with "
2242           " ConstantFoldLoadThroughGEPConstantExpr");
2243    Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2244  }
2245
2246  assert(CI->getZExtValue() < NumElts);
2247  Elts[CI->getZExtValue()] =
2248    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2249
2250  if (Init->getType()->isArrayTy())
2251    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2252  return ConstantVector::get(Elts);
2253}
2254
2255/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2256/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2257static void CommitValueTo(Constant *Val, Constant *Addr) {
2258  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2259    assert(GV->hasInitializer());
2260    GV->setInitializer(Val);
2261    return;
2262  }
2263
2264  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2265  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2266  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2267}
2268
2269/// ComputeLoadResult - Return the value that would be computed by a load from
2270/// P after the stores reflected by 'memory' have been performed.  If we can't
2271/// decide, return null.
2272static Constant *ComputeLoadResult(Constant *P,
2273                                const DenseMap<Constant*, Constant*> &Memory) {
2274  // If this memory location has been recently stored, use the stored value: it
2275  // is the most up-to-date.
2276  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2277  if (I != Memory.end()) return I->second;
2278
2279  // Access it.
2280  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2281    if (GV->hasDefinitiveInitializer())
2282      return GV->getInitializer();
2283    return 0;
2284  }
2285
2286  // Handle a constantexpr getelementptr.
2287  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2288    if (CE->getOpcode() == Instruction::GetElementPtr &&
2289        isa<GlobalVariable>(CE->getOperand(0))) {
2290      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2291      if (GV->hasDefinitiveInitializer())
2292        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2293    }
2294
2295  return 0;  // don't know how to evaluate.
2296}
2297
2298/// EvaluateFunction - Evaluate a call to function F, returning true if
2299/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2300/// arguments for the function.
2301static bool EvaluateFunction(Function *F, Constant *&RetVal,
2302                             const SmallVectorImpl<Constant*> &ActualArgs,
2303                             std::vector<Function*> &CallStack,
2304                             DenseMap<Constant*, Constant*> &MutatedMemory,
2305                             std::vector<GlobalVariable*> &AllocaTmps,
2306                             SmallPtrSet<Constant*, 8> &SimpleConstants,
2307                             const TargetData *TD) {
2308  // Check to see if this function is already executing (recursion).  If so,
2309  // bail out.  TODO: we might want to accept limited recursion.
2310  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2311    return false;
2312
2313  CallStack.push_back(F);
2314
2315  /// Values - As we compute SSA register values, we store their contents here.
2316  DenseMap<Value*, Constant*> Values;
2317
2318  // Initialize arguments to the incoming values specified.
2319  unsigned ArgNo = 0;
2320  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2321       ++AI, ++ArgNo)
2322    Values[AI] = ActualArgs[ArgNo];
2323
2324  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2325  /// we can only evaluate any one basic block at most once.  This set keeps
2326  /// track of what we have executed so we can detect recursive cases etc.
2327  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2328
2329  // CurInst - The current instruction we're evaluating.
2330  BasicBlock::iterator CurInst = F->begin()->begin();
2331
2332  // This is the main evaluation loop.
2333  while (1) {
2334    Constant *InstResult = 0;
2335
2336    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2337      if (!SI->isSimple()) return false;  // no volatile/atomic accesses.
2338      Constant *Ptr = getVal(Values, SI->getOperand(1));
2339      if (!isSimpleEnoughPointerToCommit(Ptr))
2340        // If this is too complex for us to commit, reject it.
2341        return false;
2342
2343      Constant *Val = getVal(Values, SI->getOperand(0));
2344
2345      // If this might be too difficult for the backend to handle (e.g. the addr
2346      // of one global variable divided by another) then we can't commit it.
2347      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
2348        return false;
2349
2350      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
2351        if (CE->getOpcode() == Instruction::BitCast) {
2352          // If we're evaluating a store through a bitcast, then we need
2353          // to pull the bitcast off the pointer type and push it onto the
2354          // stored value.
2355          Ptr = CE->getOperand(0);
2356
2357          Type *NewTy=cast<PointerType>(Ptr->getType())->getElementType();
2358
2359          // In order to push the bitcast onto the stored value, a bitcast
2360          // from NewTy to Val's type must be legal.  If it's not, we can try
2361          // introspecting NewTy to find a legal conversion.
2362          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
2363            // If NewTy is a struct, we can convert the pointer to the struct
2364            // into a pointer to its first member.
2365            // FIXME: This could be extended to support arrays as well.
2366            if (StructType *STy = dyn_cast<StructType>(NewTy)) {
2367              NewTy = STy->getTypeAtIndex(0U);
2368
2369              IntegerType *IdxTy =IntegerType::get(NewTy->getContext(), 32);
2370              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
2371              Constant * const IdxList[] = {IdxZero, IdxZero};
2372
2373              Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
2374
2375            // If we can't improve the situation by introspecting NewTy,
2376            // we have to give up.
2377            } else {
2378              return 0;
2379            }
2380          }
2381
2382          // If we found compatible types, go ahead and push the bitcast
2383          // onto the stored value.
2384          Val = ConstantExpr::getBitCast(Val, NewTy);
2385        }
2386
2387      MutatedMemory[Ptr] = Val;
2388    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2389      InstResult = ConstantExpr::get(BO->getOpcode(),
2390                                     getVal(Values, BO->getOperand(0)),
2391                                     getVal(Values, BO->getOperand(1)));
2392    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2393      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2394                                            getVal(Values, CI->getOperand(0)),
2395                                            getVal(Values, CI->getOperand(1)));
2396    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2397      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2398                                         getVal(Values, CI->getOperand(0)),
2399                                         CI->getType());
2400    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2401      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2402                                           getVal(Values, SI->getOperand(1)),
2403                                           getVal(Values, SI->getOperand(2)));
2404    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2405      Constant *P = getVal(Values, GEP->getOperand(0));
2406      SmallVector<Constant*, 8> GEPOps;
2407      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2408           i != e; ++i)
2409        GEPOps.push_back(getVal(Values, *i));
2410      InstResult =
2411        ConstantExpr::getGetElementPtr(P, GEPOps,
2412                                       cast<GEPOperator>(GEP)->isInBounds());
2413    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2414      if (!LI->isSimple()) return false;  // no volatile/atomic accesses.
2415      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2416                                     MutatedMemory);
2417      if (InstResult == 0) return false; // Could not evaluate load.
2418    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2419      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2420      Type *Ty = AI->getType()->getElementType();
2421      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2422                                              GlobalValue::InternalLinkage,
2423                                              UndefValue::get(Ty),
2424                                              AI->getName()));
2425      InstResult = AllocaTmps.back();
2426    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2427
2428      // Debug info can safely be ignored here.
2429      if (isa<DbgInfoIntrinsic>(CI)) {
2430        ++CurInst;
2431        continue;
2432      }
2433
2434      // Cannot handle inline asm.
2435      if (isa<InlineAsm>(CI->getCalledValue())) return false;
2436
2437      if (MemSetInst *MSI = dyn_cast<MemSetInst>(CI)) {
2438        if (MSI->isVolatile()) return false;
2439        Constant *Ptr = getVal(Values, MSI->getDest());
2440        Constant *Val = getVal(Values, MSI->getValue());
2441        Constant *DestVal = ComputeLoadResult(getVal(Values, Ptr),
2442                                              MutatedMemory);
2443        if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
2444          // This memset is a no-op.
2445          ++CurInst;
2446          continue;
2447        }
2448        return false;
2449      }
2450
2451      // Resolve function pointers.
2452      Function *Callee = dyn_cast<Function>(getVal(Values,
2453                                                   CI->getCalledValue()));
2454      if (!Callee) return false;  // Cannot resolve.
2455
2456      SmallVector<Constant*, 8> Formals;
2457      CallSite CS(CI);
2458      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
2459           i != e; ++i)
2460        Formals.push_back(getVal(Values, *i));
2461
2462      if (Callee->isDeclaration()) {
2463        // If this is a function we can constant fold, do it.
2464        if (Constant *C = ConstantFoldCall(Callee, Formals)) {
2465          InstResult = C;
2466        } else {
2467          return false;
2468        }
2469      } else {
2470        if (Callee->getFunctionType()->isVarArg())
2471          return false;
2472
2473        Constant *RetVal;
2474        // Execute the call, if successful, use the return value.
2475        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2476                              MutatedMemory, AllocaTmps, SimpleConstants, TD))
2477          return false;
2478        InstResult = RetVal;
2479      }
2480    } else if (isa<TerminatorInst>(CurInst)) {
2481      BasicBlock *NewBB = 0;
2482      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2483        if (BI->isUnconditional()) {
2484          NewBB = BI->getSuccessor(0);
2485        } else {
2486          ConstantInt *Cond =
2487            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2488          if (!Cond) return false;  // Cannot determine.
2489
2490          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2491        }
2492      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2493        ConstantInt *Val =
2494          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2495        if (!Val) return false;  // Cannot determine.
2496        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2497      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2498        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2499        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2500          NewBB = BA->getBasicBlock();
2501        else
2502          return false;  // Cannot determine.
2503      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2504        if (RI->getNumOperands())
2505          RetVal = getVal(Values, RI->getOperand(0));
2506
2507        CallStack.pop_back();  // return from fn.
2508        return true;  // We succeeded at evaluating this ctor!
2509      } else {
2510        // invoke, unwind, resume, unreachable.
2511        return false;  // Cannot handle this terminator.
2512      }
2513
2514      // Okay, we succeeded in evaluating this control flow.  See if we have
2515      // executed the new block before.  If so, we have a looping function,
2516      // which we cannot evaluate in reasonable time.
2517      if (!ExecutedBlocks.insert(NewBB))
2518        return false;  // looped!
2519
2520      // Okay, we have never been in this block before.  Check to see if there
2521      // are any PHI nodes.  If so, evaluate them with information about where
2522      // we came from.
2523      BasicBlock *OldBB = CurInst->getParent();
2524      CurInst = NewBB->begin();
2525      PHINode *PN;
2526      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2527        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2528
2529      // Do NOT increment CurInst.  We know that the terminator had no value.
2530      continue;
2531    } else {
2532      // Did not know how to evaluate this!
2533      return false;
2534    }
2535
2536    if (!CurInst->use_empty()) {
2537      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
2538        InstResult = ConstantFoldConstantExpression(CE, TD);
2539
2540      Values[CurInst] = InstResult;
2541    }
2542
2543    // Advance program counter.
2544    ++CurInst;
2545  }
2546}
2547
2548/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2549/// we can.  Return true if we can, false otherwise.
2550static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
2551  /// MutatedMemory - For each store we execute, we update this map.  Loads
2552  /// check this to get the most up-to-date value.  If evaluation is successful,
2553  /// this state is committed to the process.
2554  DenseMap<Constant*, Constant*> MutatedMemory;
2555
2556  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2557  /// to represent its body.  This vector is needed so we can delete the
2558  /// temporary globals when we are done.
2559  std::vector<GlobalVariable*> AllocaTmps;
2560
2561  /// CallStack - This is used to detect recursion.  In pathological situations
2562  /// we could hit exponential behavior, but at least there is nothing
2563  /// unbounded.
2564  std::vector<Function*> CallStack;
2565
2566  /// SimpleConstants - These are constants we have checked and know to be
2567  /// simple enough to live in a static initializer of a global.
2568  SmallPtrSet<Constant*, 8> SimpleConstants;
2569
2570  // Call the function.
2571  Constant *RetValDummy;
2572  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2573                                      SmallVector<Constant*, 0>(), CallStack,
2574                                      MutatedMemory, AllocaTmps,
2575                                      SimpleConstants, TD);
2576
2577  if (EvalSuccess) {
2578    // We succeeded at evaluation: commit the result.
2579    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2580          << F->getName() << "' to " << MutatedMemory.size()
2581          << " stores.\n");
2582    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2583         E = MutatedMemory.end(); I != E; ++I)
2584      CommitValueTo(I->second, I->first);
2585  }
2586
2587  // At this point, we are done interpreting.  If we created any 'alloca'
2588  // temporaries, release them now.
2589  while (!AllocaTmps.empty()) {
2590    GlobalVariable *Tmp = AllocaTmps.back();
2591    AllocaTmps.pop_back();
2592
2593    // If there are still users of the alloca, the program is doing something
2594    // silly, e.g. storing the address of the alloca somewhere and using it
2595    // later.  Since this is undefined, we'll just make it be null.
2596    if (!Tmp->use_empty())
2597      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2598    delete Tmp;
2599  }
2600
2601  return EvalSuccess;
2602}
2603
2604
2605
2606/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2607/// Return true if anything changed.
2608bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2609  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2610  bool MadeChange = false;
2611  if (Ctors.empty()) return false;
2612
2613  const TargetData *TD = getAnalysisIfAvailable<TargetData>();
2614  // Loop over global ctors, optimizing them when we can.
2615  for (unsigned i = 0; i != Ctors.size(); ++i) {
2616    Function *F = Ctors[i];
2617    // Found a null terminator in the middle of the list, prune off the rest of
2618    // the list.
2619    if (F == 0) {
2620      if (i != Ctors.size()-1) {
2621        Ctors.resize(i+1);
2622        MadeChange = true;
2623      }
2624      break;
2625    }
2626
2627    // We cannot simplify external ctor functions.
2628    if (F->empty()) continue;
2629
2630    // If we can evaluate the ctor at compile time, do.
2631    if (EvaluateStaticConstructor(F, TD)) {
2632      Ctors.erase(Ctors.begin()+i);
2633      MadeChange = true;
2634      --i;
2635      ++NumCtorsEvaluated;
2636      continue;
2637    }
2638  }
2639
2640  if (!MadeChange) return false;
2641
2642  GCL = InstallGlobalCtors(GCL, Ctors);
2643  return true;
2644}
2645
2646bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2647  bool Changed = false;
2648
2649  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2650       I != E;) {
2651    Module::alias_iterator J = I++;
2652    // Aliases without names cannot be referenced outside this module.
2653    if (!J->hasName() && !J->isDeclaration())
2654      J->setLinkage(GlobalValue::InternalLinkage);
2655    // If the aliasee may change at link time, nothing can be done - bail out.
2656    if (J->mayBeOverridden())
2657      continue;
2658
2659    Constant *Aliasee = J->getAliasee();
2660    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2661    Target->removeDeadConstantUsers();
2662    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2663
2664    // Make all users of the alias use the aliasee instead.
2665    if (!J->use_empty()) {
2666      J->replaceAllUsesWith(Aliasee);
2667      ++NumAliasesResolved;
2668      Changed = true;
2669    }
2670
2671    // If the alias is externally visible, we may still be able to simplify it.
2672    if (!J->hasLocalLinkage()) {
2673      // If the aliasee has internal linkage, give it the name and linkage
2674      // of the alias, and delete the alias.  This turns:
2675      //   define internal ... @f(...)
2676      //   @a = alias ... @f
2677      // into:
2678      //   define ... @a(...)
2679      if (!Target->hasLocalLinkage())
2680        continue;
2681
2682      // Do not perform the transform if multiple aliases potentially target the
2683      // aliasee. This check also ensures that it is safe to replace the section
2684      // and other attributes of the aliasee with those of the alias.
2685      if (!hasOneUse)
2686        continue;
2687
2688      // Give the aliasee the name, linkage and other attributes of the alias.
2689      Target->takeName(J);
2690      Target->setLinkage(J->getLinkage());
2691      Target->GlobalValue::copyAttributesFrom(J);
2692    }
2693
2694    // Delete the alias.
2695    M.getAliasList().erase(J);
2696    ++NumAliasesRemoved;
2697    Changed = true;
2698  }
2699
2700  return Changed;
2701}
2702
2703static Function *FindCXAAtExit(Module &M) {
2704  Function *Fn = M.getFunction("__cxa_atexit");
2705
2706  if (!Fn)
2707    return 0;
2708
2709  FunctionType *FTy = Fn->getFunctionType();
2710
2711  // Checking that the function has the right return type, the right number of
2712  // parameters and that they all have pointer types should be enough.
2713  if (!FTy->getReturnType()->isIntegerTy() ||
2714      FTy->getNumParams() != 3 ||
2715      !FTy->getParamType(0)->isPointerTy() ||
2716      !FTy->getParamType(1)->isPointerTy() ||
2717      !FTy->getParamType(2)->isPointerTy())
2718    return 0;
2719
2720  return Fn;
2721}
2722
2723/// cxxDtorIsEmpty - Returns whether the given function is an empty C++
2724/// destructor and can therefore be eliminated.
2725/// Note that we assume that other optimization passes have already simplified
2726/// the code so we only look for a function with a single basic block, where
2727/// the only allowed instructions are 'ret' or 'call' to empty C++ dtor.
2728static bool cxxDtorIsEmpty(const Function &Fn,
2729                           SmallPtrSet<const Function *, 8> &CalledFunctions) {
2730  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2731  // nounwind, but that doesn't seem worth doing.
2732  if (Fn.isDeclaration())
2733    return false;
2734
2735  if (++Fn.begin() != Fn.end())
2736    return false;
2737
2738  const BasicBlock &EntryBlock = Fn.getEntryBlock();
2739  for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
2740       I != E; ++I) {
2741    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2742      // Ignore debug intrinsics.
2743      if (isa<DbgInfoIntrinsic>(CI))
2744        continue;
2745
2746      const Function *CalledFn = CI->getCalledFunction();
2747
2748      if (!CalledFn)
2749        return false;
2750
2751      SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
2752
2753      // Don't treat recursive functions as empty.
2754      if (!NewCalledFunctions.insert(CalledFn))
2755        return false;
2756
2757      if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
2758        return false;
2759    } else if (isa<ReturnInst>(*I))
2760      return true;
2761    else
2762      return false;
2763  }
2764
2765  return false;
2766}
2767
2768bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2769  /// Itanium C++ ABI p3.3.5:
2770  ///
2771  ///   After constructing a global (or local static) object, that will require
2772  ///   destruction on exit, a termination function is registered as follows:
2773  ///
2774  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2775  ///
2776  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2777  ///   call f(p) when DSO d is unloaded, before all such termination calls
2778  ///   registered before this one. It returns zero if registration is
2779  ///   successful, nonzero on failure.
2780
2781  // This pass will look for calls to __cxa_atexit where the function is trivial
2782  // and remove them.
2783  bool Changed = false;
2784
2785  for (Function::use_iterator I = CXAAtExitFn->use_begin(),
2786       E = CXAAtExitFn->use_end(); I != E;) {
2787    // We're only interested in calls. Theoretically, we could handle invoke
2788    // instructions as well, but neither llvm-gcc nor clang generate invokes
2789    // to __cxa_atexit.
2790    CallInst *CI = dyn_cast<CallInst>(*I++);
2791    if (!CI)
2792      continue;
2793
2794    Function *DtorFn =
2795      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2796    if (!DtorFn)
2797      continue;
2798
2799    SmallPtrSet<const Function *, 8> CalledFunctions;
2800    if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
2801      continue;
2802
2803    // Just remove the call.
2804    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2805    CI->eraseFromParent();
2806
2807    ++NumCXXDtorsRemoved;
2808
2809    Changed |= true;
2810  }
2811
2812  return Changed;
2813}
2814
2815bool GlobalOpt::runOnModule(Module &M) {
2816  bool Changed = false;
2817
2818  // Try to find the llvm.globalctors list.
2819  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2820
2821  Function *CXAAtExitFn = FindCXAAtExit(M);
2822
2823  bool LocalChange = true;
2824  while (LocalChange) {
2825    LocalChange = false;
2826
2827    // Delete functions that are trivially dead, ccc -> fastcc
2828    LocalChange |= OptimizeFunctions(M);
2829
2830    // Optimize global_ctors list.
2831    if (GlobalCtors)
2832      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2833
2834    // Optimize non-address-taken globals.
2835    LocalChange |= OptimizeGlobalVars(M);
2836
2837    // Resolve aliases, when possible.
2838    LocalChange |= OptimizeGlobalAliases(M);
2839
2840    // Try to remove trivial global destructors.
2841    if (CXAAtExitFn)
2842      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2843
2844    Changed |= LocalChange;
2845  }
2846
2847  // TODO: Move all global ctors functions to the end of the module for code
2848  // layout.
2849
2850  return Changed;
2851}
2852