GlobalOpt.cpp revision ab05d8fcf61f7b926cf3e08f111794c69ca60690
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseMap.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/STLExtras.h"
39#include <algorithm>
40using namespace llvm;
41
42STATISTIC(NumMarked    , "Number of globals marked constant");
43STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
44STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
45STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
46STATISTIC(NumDeleted   , "Number of globals deleted");
47STATISTIC(NumFnDeleted , "Number of functions deleted");
48STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
49STATISTIC(NumLocalized , "Number of globals localized");
50STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
51STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
52STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
53STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
54STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
55STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
56
57namespace {
58  struct GlobalOpt : public ModulePass {
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60    }
61    static char ID; // Pass identification, replacement for typeid
62    GlobalOpt() : ModulePass(&ID) {}
63
64    bool runOnModule(Module &M);
65
66  private:
67    GlobalVariable *FindGlobalCtors(Module &M);
68    bool OptimizeFunctions(Module &M);
69    bool OptimizeGlobalVars(Module &M);
70    bool OptimizeGlobalAliases(Module &M);
71    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
72    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
73  };
74}
75
76char GlobalOpt::ID = 0;
77static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
78
79ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
80
81namespace {
82
83/// GlobalStatus - As we analyze each global, keep track of some information
84/// about it.  If we find out that the address of the global is taken, none of
85/// this info will be accurate.
86struct GlobalStatus {
87  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
88  /// loaded it can be deleted.
89  bool isLoaded;
90
91  /// StoredType - Keep track of what stores to the global look like.
92  ///
93  enum StoredType {
94    /// NotStored - There is no store to this global.  It can thus be marked
95    /// constant.
96    NotStored,
97
98    /// isInitializerStored - This global is stored to, but the only thing
99    /// stored is the constant it was initialized with.  This is only tracked
100    /// for scalar globals.
101    isInitializerStored,
102
103    /// isStoredOnce - This global is stored to, but only its initializer and
104    /// one other value is ever stored to it.  If this global isStoredOnce, we
105    /// track the value stored to it in StoredOnceValue below.  This is only
106    /// tracked for scalar globals.
107    isStoredOnce,
108
109    /// isStored - This global is stored to by multiple values or something else
110    /// that we cannot track.
111    isStored
112  } StoredType;
113
114  /// StoredOnceValue - If only one value (besides the initializer constant) is
115  /// ever stored to this global, keep track of what value it is.
116  Value *StoredOnceValue;
117
118  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
119  /// null/false.  When the first accessing function is noticed, it is recorded.
120  /// When a second different accessing function is noticed,
121  /// HasMultipleAccessingFunctions is set to true.
122  const Function *AccessingFunction;
123  bool HasMultipleAccessingFunctions;
124
125  /// HasNonInstructionUser - Set to true if this global has a user that is not
126  /// an instruction (e.g. a constant expr or GV initializer).
127  bool HasNonInstructionUser;
128
129  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
130  bool HasPHIUser;
131
132  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
133                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
134                   HasNonInstructionUser(false), HasPHIUser(false) {}
135};
136
137}
138
139// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
140// by constants itself.  Note that constants cannot be cyclic, so this test is
141// pretty easy to implement recursively.
142//
143static bool SafeToDestroyConstant(const Constant *C) {
144  if (isa<GlobalValue>(C)) return false;
145
146  for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
147       ++UI)
148    if (const Constant *CU = dyn_cast<Constant>(*UI)) {
149      if (!SafeToDestroyConstant(CU)) return false;
150    } else
151      return false;
152  return true;
153}
154
155
156/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157/// structure.  If the global has its address taken, return true to indicate we
158/// can't do anything with it.
159///
160static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
161                          SmallPtrSet<const PHINode*, 16> &PHIUsers) {
162  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
163       ++UI)
164    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
165      GS.HasNonInstructionUser = true;
166
167      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
168
169    } else if (const Instruction *I = dyn_cast<Instruction>(*UI)) {
170      if (!GS.HasMultipleAccessingFunctions) {
171        const Function *F = I->getParent()->getParent();
172        if (GS.AccessingFunction == 0)
173          GS.AccessingFunction = F;
174        else if (GS.AccessingFunction != F)
175          GS.HasMultipleAccessingFunctions = true;
176      }
177      if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
178        GS.isLoaded = true;
179        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
180      } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
181        // Don't allow a store OF the address, only stores TO the address.
182        if (SI->getOperand(0) == V) return true;
183
184        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
185
186        // If this is a direct store to the global (i.e., the global is a scalar
187        // value, not an aggregate), keep more specific information about
188        // stores.
189        if (GS.StoredType != GlobalStatus::isStored) {
190          if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
191                                                           SI->getOperand(1))) {
192            Value *StoredVal = SI->getOperand(0);
193            if (StoredVal == GV->getInitializer()) {
194              if (GS.StoredType < GlobalStatus::isInitializerStored)
195                GS.StoredType = GlobalStatus::isInitializerStored;
196            } else if (isa<LoadInst>(StoredVal) &&
197                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
198              if (GS.StoredType < GlobalStatus::isInitializerStored)
199                GS.StoredType = GlobalStatus::isInitializerStored;
200            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
201              GS.StoredType = GlobalStatus::isStoredOnce;
202              GS.StoredOnceValue = StoredVal;
203            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
204                       GS.StoredOnceValue == StoredVal) {
205              // noop.
206            } else {
207              GS.StoredType = GlobalStatus::isStored;
208            }
209          } else {
210            GS.StoredType = GlobalStatus::isStored;
211          }
212        }
213      } else if (isa<GetElementPtrInst>(I)) {
214        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
215      } else if (isa<SelectInst>(I)) {
216        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
217      } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
218        // PHI nodes we can check just like select or GEP instructions, but we
219        // have to be careful about infinite recursion.
220        if (PHIUsers.insert(PN))  // Not already visited.
221          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
222        GS.HasPHIUser = true;
223      } else if (isa<CmpInst>(I)) {
224      } else if (isa<MemTransferInst>(I)) {
225        if (I->getOperand(1) == V)
226          GS.StoredType = GlobalStatus::isStored;
227        if (I->getOperand(2) == V)
228          GS.isLoaded = true;
229      } else if (isa<MemSetInst>(I)) {
230        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
231        GS.StoredType = GlobalStatus::isStored;
232      } else {
233        return true;  // Any other non-load instruction might take address!
234      }
235    } else if (const Constant *C = dyn_cast<Constant>(*UI)) {
236      GS.HasNonInstructionUser = true;
237      // We might have a dead and dangling constant hanging off of here.
238      if (!SafeToDestroyConstant(C))
239        return true;
240    } else {
241      GS.HasNonInstructionUser = true;
242      // Otherwise must be some other user.
243      return true;
244    }
245
246  return false;
247}
248
249static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
250  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
251  if (!CI) return 0;
252  unsigned IdxV = CI->getZExtValue();
253
254  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
255    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
256  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
257    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
258  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
259    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
260  } else if (isa<ConstantAggregateZero>(Agg)) {
261    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
262      if (IdxV < STy->getNumElements())
263        return Constant::getNullValue(STy->getElementType(IdxV));
264    } else if (const SequentialType *STy =
265               dyn_cast<SequentialType>(Agg->getType())) {
266      return Constant::getNullValue(STy->getElementType());
267    }
268  } else if (isa<UndefValue>(Agg)) {
269    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
270      if (IdxV < STy->getNumElements())
271        return UndefValue::get(STy->getElementType(IdxV));
272    } else if (const SequentialType *STy =
273               dyn_cast<SequentialType>(Agg->getType())) {
274      return UndefValue::get(STy->getElementType());
275    }
276  }
277  return 0;
278}
279
280
281/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
282/// users of the global, cleaning up the obvious ones.  This is largely just a
283/// quick scan over the use list to clean up the easy and obvious cruft.  This
284/// returns true if it made a change.
285static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
286  bool Changed = false;
287  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
288    User *U = *UI++;
289
290    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
291      if (Init) {
292        // Replace the load with the initializer.
293        LI->replaceAllUsesWith(Init);
294        LI->eraseFromParent();
295        Changed = true;
296      }
297    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
298      // Store must be unreachable or storing Init into the global.
299      SI->eraseFromParent();
300      Changed = true;
301    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
302      if (CE->getOpcode() == Instruction::GetElementPtr) {
303        Constant *SubInit = 0;
304        if (Init)
305          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
306        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
307      } else if (CE->getOpcode() == Instruction::BitCast &&
308                 CE->getType()->isPointerTy()) {
309        // Pointer cast, delete any stores and memsets to the global.
310        Changed |= CleanupConstantGlobalUsers(CE, 0);
311      }
312
313      if (CE->use_empty()) {
314        CE->destroyConstant();
315        Changed = true;
316      }
317    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
318      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
319      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
320      // and will invalidate our notion of what Init is.
321      Constant *SubInit = 0;
322      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
323        ConstantExpr *CE =
324          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
325        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
326          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
327      }
328      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
329
330      if (GEP->use_empty()) {
331        GEP->eraseFromParent();
332        Changed = true;
333      }
334    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
335      if (MI->getRawDest() == V) {
336        MI->eraseFromParent();
337        Changed = true;
338      }
339
340    } else if (Constant *C = dyn_cast<Constant>(U)) {
341      // If we have a chain of dead constantexprs or other things dangling from
342      // us, and if they are all dead, nuke them without remorse.
343      if (SafeToDestroyConstant(C)) {
344        C->destroyConstant();
345        // This could have invalidated UI, start over from scratch.
346        CleanupConstantGlobalUsers(V, Init);
347        return true;
348      }
349    }
350  }
351  return Changed;
352}
353
354/// isSafeSROAElementUse - Return true if the specified instruction is a safe
355/// user of a derived expression from a global that we want to SROA.
356static bool isSafeSROAElementUse(Value *V) {
357  // We might have a dead and dangling constant hanging off of here.
358  if (Constant *C = dyn_cast<Constant>(V))
359    return SafeToDestroyConstant(C);
360
361  Instruction *I = dyn_cast<Instruction>(V);
362  if (!I) return false;
363
364  // Loads are ok.
365  if (isa<LoadInst>(I)) return true;
366
367  // Stores *to* the pointer are ok.
368  if (StoreInst *SI = dyn_cast<StoreInst>(I))
369    return SI->getOperand(0) != V;
370
371  // Otherwise, it must be a GEP.
372  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
373  if (GEPI == 0) return false;
374
375  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
376      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
377    return false;
378
379  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
380       I != E; ++I)
381    if (!isSafeSROAElementUse(*I))
382      return false;
383  return true;
384}
385
386
387/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
388/// Look at it and its uses and decide whether it is safe to SROA this global.
389///
390static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
391  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
392  if (!isa<GetElementPtrInst>(U) &&
393      (!isa<ConstantExpr>(U) ||
394       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
395    return false;
396
397  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
398  // don't like < 3 operand CE's, and we don't like non-constant integer
399  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
400  // value of C.
401  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
402      !cast<Constant>(U->getOperand(1))->isNullValue() ||
403      !isa<ConstantInt>(U->getOperand(2)))
404    return false;
405
406  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
407  ++GEPI;  // Skip over the pointer index.
408
409  // If this is a use of an array allocation, do a bit more checking for sanity.
410  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
411    uint64_t NumElements = AT->getNumElements();
412    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
413
414    // Check to make sure that index falls within the array.  If not,
415    // something funny is going on, so we won't do the optimization.
416    //
417    if (Idx->getZExtValue() >= NumElements)
418      return false;
419
420    // We cannot scalar repl this level of the array unless any array
421    // sub-indices are in-range constants.  In particular, consider:
422    // A[0][i].  We cannot know that the user isn't doing invalid things like
423    // allowing i to index an out-of-range subscript that accesses A[1].
424    //
425    // Scalar replacing *just* the outer index of the array is probably not
426    // going to be a win anyway, so just give up.
427    for (++GEPI; // Skip array index.
428         GEPI != E;
429         ++GEPI) {
430      uint64_t NumElements;
431      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
432        NumElements = SubArrayTy->getNumElements();
433      else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
434        NumElements = SubVectorTy->getNumElements();
435      else {
436        assert((*GEPI)->isStructTy() &&
437               "Indexed GEP type is not array, vector, or struct!");
438        continue;
439      }
440
441      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
442      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
443        return false;
444    }
445  }
446
447  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
448    if (!isSafeSROAElementUse(*I))
449      return false;
450  return true;
451}
452
453/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
454/// is safe for us to perform this transformation.
455///
456static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
457  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
458       UI != E; ++UI) {
459    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
460      return false;
461  }
462  return true;
463}
464
465
466/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
467/// variable.  This opens the door for other optimizations by exposing the
468/// behavior of the program in a more fine-grained way.  We have determined that
469/// this transformation is safe already.  We return the first global variable we
470/// insert so that the caller can reprocess it.
471static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
472  // Make sure this global only has simple uses that we can SRA.
473  if (!GlobalUsersSafeToSRA(GV))
474    return 0;
475
476  assert(GV->hasLocalLinkage() && !GV->isConstant());
477  Constant *Init = GV->getInitializer();
478  const Type *Ty = Init->getType();
479
480  std::vector<GlobalVariable*> NewGlobals;
481  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
482
483  // Get the alignment of the global, either explicit or target-specific.
484  unsigned StartAlignment = GV->getAlignment();
485  if (StartAlignment == 0)
486    StartAlignment = TD.getABITypeAlignment(GV->getType());
487
488  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
489    NewGlobals.reserve(STy->getNumElements());
490    const StructLayout &Layout = *TD.getStructLayout(STy);
491    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
492      Constant *In = getAggregateConstantElement(Init,
493                    ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
494      assert(In && "Couldn't get element of initializer?");
495      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
496                                               GlobalVariable::InternalLinkage,
497                                               In, GV->getName()+"."+Twine(i),
498                                               GV->isThreadLocal(),
499                                              GV->getType()->getAddressSpace());
500      Globals.insert(GV, NGV);
501      NewGlobals.push_back(NGV);
502
503      // Calculate the known alignment of the field.  If the original aggregate
504      // had 256 byte alignment for example, something might depend on that:
505      // propagate info to each field.
506      uint64_t FieldOffset = Layout.getElementOffset(i);
507      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
508      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
509        NGV->setAlignment(NewAlign);
510    }
511  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
512    unsigned NumElements = 0;
513    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
514      NumElements = ATy->getNumElements();
515    else
516      NumElements = cast<VectorType>(STy)->getNumElements();
517
518    if (NumElements > 16 && GV->hasNUsesOrMore(16))
519      return 0; // It's not worth it.
520    NewGlobals.reserve(NumElements);
521
522    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
523    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
524    for (unsigned i = 0, e = NumElements; i != e; ++i) {
525      Constant *In = getAggregateConstantElement(Init,
526                    ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
527      assert(In && "Couldn't get element of initializer?");
528
529      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
530                                               GlobalVariable::InternalLinkage,
531                                               In, GV->getName()+"."+Twine(i),
532                                               GV->isThreadLocal(),
533                                              GV->getType()->getAddressSpace());
534      Globals.insert(GV, NGV);
535      NewGlobals.push_back(NGV);
536
537      // Calculate the known alignment of the field.  If the original aggregate
538      // had 256 byte alignment for example, something might depend on that:
539      // propagate info to each field.
540      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
541      if (NewAlign > EltAlign)
542        NGV->setAlignment(NewAlign);
543    }
544  }
545
546  if (NewGlobals.empty())
547    return 0;
548
549  DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
550
551  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
552
553  // Loop over all of the uses of the global, replacing the constantexpr geps,
554  // with smaller constantexpr geps or direct references.
555  while (!GV->use_empty()) {
556    User *GEP = GV->use_back();
557    assert(((isa<ConstantExpr>(GEP) &&
558             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
559            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
560
561    // Ignore the 1th operand, which has to be zero or else the program is quite
562    // broken (undefined).  Get the 2nd operand, which is the structure or array
563    // index.
564    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
565    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
566
567    Value *NewPtr = NewGlobals[Val];
568
569    // Form a shorter GEP if needed.
570    if (GEP->getNumOperands() > 3) {
571      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
572        SmallVector<Constant*, 8> Idxs;
573        Idxs.push_back(NullInt);
574        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
575          Idxs.push_back(CE->getOperand(i));
576        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
577                                                &Idxs[0], Idxs.size());
578      } else {
579        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
580        SmallVector<Value*, 8> Idxs;
581        Idxs.push_back(NullInt);
582        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
583          Idxs.push_back(GEPI->getOperand(i));
584        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
585                                           GEPI->getName()+"."+Twine(Val),GEPI);
586      }
587    }
588    GEP->replaceAllUsesWith(NewPtr);
589
590    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
591      GEPI->eraseFromParent();
592    else
593      cast<ConstantExpr>(GEP)->destroyConstant();
594  }
595
596  // Delete the old global, now that it is dead.
597  Globals.erase(GV);
598  ++NumSRA;
599
600  // Loop over the new globals array deleting any globals that are obviously
601  // dead.  This can arise due to scalarization of a structure or an array that
602  // has elements that are dead.
603  unsigned FirstGlobal = 0;
604  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
605    if (NewGlobals[i]->use_empty()) {
606      Globals.erase(NewGlobals[i]);
607      if (FirstGlobal == i) ++FirstGlobal;
608    }
609
610  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
611}
612
613/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
614/// value will trap if the value is dynamically null.  PHIs keeps track of any
615/// phi nodes we've seen to avoid reprocessing them.
616static bool AllUsesOfValueWillTrapIfNull(const Value *V,
617                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
618  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
619       ++UI) {
620    const User *U = *UI;
621
622    if (isa<LoadInst>(U)) {
623      // Will trap.
624    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
625      if (SI->getOperand(0) == V) {
626        //cerr << "NONTRAPPING USE: " << *U;
627        return false;  // Storing the value.
628      }
629    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
630      if (CI->getCalledValue() != V) {
631        //cerr << "NONTRAPPING USE: " << *U;
632        return false;  // Not calling the ptr
633      }
634    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
635      if (II->getCalledValue() != V) {
636        //cerr << "NONTRAPPING USE: " << *U;
637        return false;  // Not calling the ptr
638      }
639    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
640      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
641    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
642      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
643    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
644      // If we've already seen this phi node, ignore it, it has already been
645      // checked.
646      if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
647        return false;
648    } else if (isa<ICmpInst>(U) &&
649               isa<ConstantPointerNull>(UI->getOperand(1))) {
650      // Ignore icmp X, null
651    } else {
652      //cerr << "NONTRAPPING USE: " << *U;
653      return false;
654    }
655  }
656  return true;
657}
658
659/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
660/// from GV will trap if the loaded value is null.  Note that this also permits
661/// comparisons of the loaded value against null, as a special case.
662static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
663  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
664       UI != E; ++UI) {
665    const User *U = *UI;
666
667    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
668      SmallPtrSet<const PHINode*, 8> PHIs;
669      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
670        return false;
671    } else if (isa<StoreInst>(U)) {
672      // Ignore stores to the global.
673    } else {
674      // We don't know or understand this user, bail out.
675      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
676      return false;
677    }
678  }
679  return true;
680}
681
682static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
683  bool Changed = false;
684  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
685    Instruction *I = cast<Instruction>(*UI++);
686    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
687      LI->setOperand(0, NewV);
688      Changed = true;
689    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
690      if (SI->getOperand(1) == V) {
691        SI->setOperand(1, NewV);
692        Changed = true;
693      }
694    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
695      CallSite CS(I);
696      if (CS.getCalledValue() == V) {
697        // Calling through the pointer!  Turn into a direct call, but be careful
698        // that the pointer is not also being passed as an argument.
699        CS.setCalledFunction(NewV);
700        Changed = true;
701        bool PassedAsArg = false;
702        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
703          if (CS.getArgument(i) == V) {
704            PassedAsArg = true;
705            CS.setArgument(i, NewV);
706          }
707
708        if (PassedAsArg) {
709          // Being passed as an argument also.  Be careful to not invalidate UI!
710          UI = V->use_begin();
711        }
712      }
713    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
714      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
715                                ConstantExpr::getCast(CI->getOpcode(),
716                                                      NewV, CI->getType()));
717      if (CI->use_empty()) {
718        Changed = true;
719        CI->eraseFromParent();
720      }
721    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
722      // Should handle GEP here.
723      SmallVector<Constant*, 8> Idxs;
724      Idxs.reserve(GEPI->getNumOperands()-1);
725      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
726           i != e; ++i)
727        if (Constant *C = dyn_cast<Constant>(*i))
728          Idxs.push_back(C);
729        else
730          break;
731      if (Idxs.size() == GEPI->getNumOperands()-1)
732        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
733                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
734                                                        Idxs.size()));
735      if (GEPI->use_empty()) {
736        Changed = true;
737        GEPI->eraseFromParent();
738      }
739    }
740  }
741
742  return Changed;
743}
744
745
746/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
747/// value stored into it.  If there are uses of the loaded value that would trap
748/// if the loaded value is dynamically null, then we know that they cannot be
749/// reachable with a null optimize away the load.
750static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
751  bool Changed = false;
752
753  // Keep track of whether we are able to remove all the uses of the global
754  // other than the store that defines it.
755  bool AllNonStoreUsesGone = true;
756
757  // Replace all uses of loads with uses of uses of the stored value.
758  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
759    User *GlobalUser = *GUI++;
760    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
761      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
762      // If we were able to delete all uses of the loads
763      if (LI->use_empty()) {
764        LI->eraseFromParent();
765        Changed = true;
766      } else {
767        AllNonStoreUsesGone = false;
768      }
769    } else if (isa<StoreInst>(GlobalUser)) {
770      // Ignore the store that stores "LV" to the global.
771      assert(GlobalUser->getOperand(1) == GV &&
772             "Must be storing *to* the global");
773    } else {
774      AllNonStoreUsesGone = false;
775
776      // If we get here we could have other crazy uses that are transitively
777      // loaded.
778      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
779              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
780    }
781  }
782
783  if (Changed) {
784    DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
785    ++NumGlobUses;
786  }
787
788  // If we nuked all of the loads, then none of the stores are needed either,
789  // nor is the global.
790  if (AllNonStoreUsesGone) {
791    DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
792    CleanupConstantGlobalUsers(GV, 0);
793    if (GV->use_empty()) {
794      GV->eraseFromParent();
795      ++NumDeleted;
796    }
797    Changed = true;
798  }
799  return Changed;
800}
801
802/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
803/// instructions that are foldable.
804static void ConstantPropUsersOf(Value *V) {
805  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
806    if (Instruction *I = dyn_cast<Instruction>(*UI++))
807      if (Constant *NewC = ConstantFoldInstruction(I)) {
808        I->replaceAllUsesWith(NewC);
809
810        // Advance UI to the next non-I use to avoid invalidating it!
811        // Instructions could multiply use V.
812        while (UI != E && *UI == I)
813          ++UI;
814        I->eraseFromParent();
815      }
816}
817
818/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
819/// variable, and transforms the program as if it always contained the result of
820/// the specified malloc.  Because it is always the result of the specified
821/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
822/// malloc into a global, and any loads of GV as uses of the new global.
823static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
824                                                     CallInst *CI,
825                                                     const Type *AllocTy,
826                                                     ConstantInt *NElements,
827                                                     TargetData* TD) {
828  DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
829
830  const Type *GlobalType;
831  if (NElements->getZExtValue() == 1)
832    GlobalType = AllocTy;
833  else
834    // If we have an array allocation, the global variable is of an array.
835    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
836
837  // Create the new global variable.  The contents of the malloc'd memory is
838  // undefined, so initialize with an undef value.
839  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
840                                             GlobalType, false,
841                                             GlobalValue::InternalLinkage,
842                                             UndefValue::get(GlobalType),
843                                             GV->getName()+".body",
844                                             GV,
845                                             GV->isThreadLocal());
846
847  // If there are bitcast users of the malloc (which is typical, usually we have
848  // a malloc + bitcast) then replace them with uses of the new global.  Update
849  // other users to use the global as well.
850  BitCastInst *TheBC = 0;
851  while (!CI->use_empty()) {
852    Instruction *User = cast<Instruction>(CI->use_back());
853    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
854      if (BCI->getType() == NewGV->getType()) {
855        BCI->replaceAllUsesWith(NewGV);
856        BCI->eraseFromParent();
857      } else {
858        BCI->setOperand(0, NewGV);
859      }
860    } else {
861      if (TheBC == 0)
862        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
863      User->replaceUsesOfWith(CI, TheBC);
864    }
865  }
866
867  Constant *RepValue = NewGV;
868  if (NewGV->getType() != GV->getType()->getElementType())
869    RepValue = ConstantExpr::getBitCast(RepValue,
870                                        GV->getType()->getElementType());
871
872  // If there is a comparison against null, we will insert a global bool to
873  // keep track of whether the global was initialized yet or not.
874  GlobalVariable *InitBool =
875    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
876                       GlobalValue::InternalLinkage,
877                       ConstantInt::getFalse(GV->getContext()),
878                       GV->getName()+".init", GV->isThreadLocal());
879  bool InitBoolUsed = false;
880
881  // Loop over all uses of GV, processing them in turn.
882  while (!GV->use_empty()) {
883    if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
884      // The global is initialized when the store to it occurs.
885      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
886      SI->eraseFromParent();
887      continue;
888    }
889
890    LoadInst *LI = cast<LoadInst>(GV->use_back());
891    while (!LI->use_empty()) {
892      Use &LoadUse = LI->use_begin().getUse();
893      if (!isa<ICmpInst>(LoadUse.getUser())) {
894        LoadUse = RepValue;
895        continue;
896      }
897
898      ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
899      // Replace the cmp X, 0 with a use of the bool value.
900      Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
901      InitBoolUsed = true;
902      switch (ICI->getPredicate()) {
903      default: llvm_unreachable("Unknown ICmp Predicate!");
904      case ICmpInst::ICMP_ULT:
905      case ICmpInst::ICMP_SLT:   // X < null -> always false
906        LV = ConstantInt::getFalse(GV->getContext());
907        break;
908      case ICmpInst::ICMP_ULE:
909      case ICmpInst::ICMP_SLE:
910      case ICmpInst::ICMP_EQ:
911        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
912        break;
913      case ICmpInst::ICMP_NE:
914      case ICmpInst::ICMP_UGE:
915      case ICmpInst::ICMP_SGE:
916      case ICmpInst::ICMP_UGT:
917      case ICmpInst::ICMP_SGT:
918        break;  // no change.
919      }
920      ICI->replaceAllUsesWith(LV);
921      ICI->eraseFromParent();
922    }
923    LI->eraseFromParent();
924  }
925
926  // If the initialization boolean was used, insert it, otherwise delete it.
927  if (!InitBoolUsed) {
928    while (!InitBool->use_empty())  // Delete initializations
929      cast<StoreInst>(InitBool->use_back())->eraseFromParent();
930    delete InitBool;
931  } else
932    GV->getParent()->getGlobalList().insert(GV, InitBool);
933
934  // Now the GV is dead, nuke it and the malloc..
935  GV->eraseFromParent();
936  CI->eraseFromParent();
937
938  // To further other optimizations, loop over all users of NewGV and try to
939  // constant prop them.  This will promote GEP instructions with constant
940  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
941  ConstantPropUsersOf(NewGV);
942  if (RepValue != NewGV)
943    ConstantPropUsersOf(RepValue);
944
945  return NewGV;
946}
947
948/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
949/// to make sure that there are no complex uses of V.  We permit simple things
950/// like dereferencing the pointer, but not storing through the address, unless
951/// it is to the specified global.
952static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
953                                                      const GlobalVariable *GV,
954                                         SmallPtrSet<const PHINode*, 8> &PHIs) {
955  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
956       UI != E; ++UI) {
957    const Instruction *Inst = cast<Instruction>(*UI);
958
959    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
960      continue; // Fine, ignore.
961    }
962
963    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
964      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
965        return false;  // Storing the pointer itself... bad.
966      continue; // Otherwise, storing through it, or storing into GV... fine.
967    }
968
969    // Must index into the array and into the struct.
970    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
971      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
972        return false;
973      continue;
974    }
975
976    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
977      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
978      // cycles.
979      if (PHIs.insert(PN))
980        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
981          return false;
982      continue;
983    }
984
985    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
986      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
987        return false;
988      continue;
989    }
990
991    return false;
992  }
993  return true;
994}
995
996/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
997/// somewhere.  Transform all uses of the allocation into loads from the
998/// global and uses of the resultant pointer.  Further, delete the store into
999/// GV.  This assumes that these value pass the
1000/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1001static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1002                                          GlobalVariable *GV) {
1003  while (!Alloc->use_empty()) {
1004    Instruction *U = cast<Instruction>(*Alloc->use_begin());
1005    Instruction *InsertPt = U;
1006    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1007      // If this is the store of the allocation into the global, remove it.
1008      if (SI->getOperand(1) == GV) {
1009        SI->eraseFromParent();
1010        continue;
1011      }
1012    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1013      // Insert the load in the corresponding predecessor, not right before the
1014      // PHI.
1015      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1016    } else if (isa<BitCastInst>(U)) {
1017      // Must be bitcast between the malloc and store to initialize the global.
1018      ReplaceUsesOfMallocWithGlobal(U, GV);
1019      U->eraseFromParent();
1020      continue;
1021    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1022      // If this is a "GEP bitcast" and the user is a store to the global, then
1023      // just process it as a bitcast.
1024      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1025        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1026          if (SI->getOperand(1) == GV) {
1027            // Must be bitcast GEP between the malloc and store to initialize
1028            // the global.
1029            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1030            GEPI->eraseFromParent();
1031            continue;
1032          }
1033    }
1034
1035    // Insert a load from the global, and use it instead of the malloc.
1036    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1037    U->replaceUsesOfWith(Alloc, NL);
1038  }
1039}
1040
1041/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1042/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1043/// that index through the array and struct field, icmps of null, and PHIs.
1044static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1045                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
1046                        SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
1047  // We permit two users of the load: setcc comparing against the null
1048  // pointer, and a getelementptr of a specific form.
1049  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
1050       ++UI) {
1051    const Instruction *User = cast<Instruction>(*UI);
1052
1053    // Comparison against null is ok.
1054    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1055      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1056        return false;
1057      continue;
1058    }
1059
1060    // getelementptr is also ok, but only a simple form.
1061    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1062      // Must index into the array and into the struct.
1063      if (GEPI->getNumOperands() < 3)
1064        return false;
1065
1066      // Otherwise the GEP is ok.
1067      continue;
1068    }
1069
1070    if (const PHINode *PN = dyn_cast<PHINode>(User)) {
1071      if (!LoadUsingPHIsPerLoad.insert(PN))
1072        // This means some phi nodes are dependent on each other.
1073        // Avoid infinite looping!
1074        return false;
1075      if (!LoadUsingPHIs.insert(PN))
1076        // If we have already analyzed this PHI, then it is safe.
1077        continue;
1078
1079      // Make sure all uses of the PHI are simple enough to transform.
1080      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1081                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1082        return false;
1083
1084      continue;
1085    }
1086
1087    // Otherwise we don't know what this is, not ok.
1088    return false;
1089  }
1090
1091  return true;
1092}
1093
1094
1095/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1096/// GV are simple enough to perform HeapSRA, return true.
1097static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1098                                                    Instruction *StoredVal) {
1099  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1100  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1101  for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
1102       UI != E; ++UI)
1103    if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1104      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1105                                          LoadUsingPHIsPerLoad))
1106        return false;
1107      LoadUsingPHIsPerLoad.clear();
1108    }
1109
1110  // If we reach here, we know that all uses of the loads and transitive uses
1111  // (through PHI nodes) are simple enough to transform.  However, we don't know
1112  // that all inputs the to the PHI nodes are in the same equivalence sets.
1113  // Check to verify that all operands of the PHIs are either PHIS that can be
1114  // transformed, loads from GV, or MI itself.
1115  for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
1116       , E = LoadUsingPHIs.end(); I != E; ++I) {
1117    const PHINode *PN = *I;
1118    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1119      Value *InVal = PN->getIncomingValue(op);
1120
1121      // PHI of the stored value itself is ok.
1122      if (InVal == StoredVal) continue;
1123
1124      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1125        // One of the PHIs in our set is (optimistically) ok.
1126        if (LoadUsingPHIs.count(InPN))
1127          continue;
1128        return false;
1129      }
1130
1131      // Load from GV is ok.
1132      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1133        if (LI->getOperand(0) == GV)
1134          continue;
1135
1136      // UNDEF? NULL?
1137
1138      // Anything else is rejected.
1139      return false;
1140    }
1141  }
1142
1143  return true;
1144}
1145
1146static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1147               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1148                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1149  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1150
1151  if (FieldNo >= FieldVals.size())
1152    FieldVals.resize(FieldNo+1);
1153
1154  // If we already have this value, just reuse the previously scalarized
1155  // version.
1156  if (Value *FieldVal = FieldVals[FieldNo])
1157    return FieldVal;
1158
1159  // Depending on what instruction this is, we have several cases.
1160  Value *Result;
1161  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1162    // This is a scalarized version of the load from the global.  Just create
1163    // a new Load of the scalarized global.
1164    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1165                                           InsertedScalarizedValues,
1166                                           PHIsToRewrite),
1167                          LI->getName()+".f"+Twine(FieldNo), LI);
1168  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1169    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1170    // field.
1171    const StructType *ST =
1172      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1173
1174    Result =
1175     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1176                     PN->getName()+".f"+Twine(FieldNo), PN);
1177    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1178  } else {
1179    llvm_unreachable("Unknown usable value");
1180    Result = 0;
1181  }
1182
1183  return FieldVals[FieldNo] = Result;
1184}
1185
1186/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1187/// the load, rewrite the derived value to use the HeapSRoA'd load.
1188static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1189             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1190                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1191  // If this is a comparison against null, handle it.
1192  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1193    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1194    // If we have a setcc of the loaded pointer, we can use a setcc of any
1195    // field.
1196    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1197                                   InsertedScalarizedValues, PHIsToRewrite);
1198
1199    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1200                              Constant::getNullValue(NPtr->getType()),
1201                              SCI->getName());
1202    SCI->replaceAllUsesWith(New);
1203    SCI->eraseFromParent();
1204    return;
1205  }
1206
1207  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1208  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1209    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1210           && "Unexpected GEPI!");
1211
1212    // Load the pointer for this field.
1213    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1214    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1215                                     InsertedScalarizedValues, PHIsToRewrite);
1216
1217    // Create the new GEP idx vector.
1218    SmallVector<Value*, 8> GEPIdx;
1219    GEPIdx.push_back(GEPI->getOperand(1));
1220    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1221
1222    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1223                                             GEPIdx.begin(), GEPIdx.end(),
1224                                             GEPI->getName(), GEPI);
1225    GEPI->replaceAllUsesWith(NGEPI);
1226    GEPI->eraseFromParent();
1227    return;
1228  }
1229
1230  // Recursively transform the users of PHI nodes.  This will lazily create the
1231  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1232  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1233  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1234  // already been seen first by another load, so its uses have already been
1235  // processed.
1236  PHINode *PN = cast<PHINode>(LoadUser);
1237  bool Inserted;
1238  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1239  tie(InsertPos, Inserted) =
1240    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1241  if (!Inserted) return;
1242
1243  // If this is the first time we've seen this PHI, recursively process all
1244  // users.
1245  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1246    Instruction *User = cast<Instruction>(*UI++);
1247    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1248  }
1249}
1250
1251/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1252/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1253/// use FieldGlobals instead.  All uses of loaded values satisfy
1254/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1255static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1256               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1257                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1258  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1259       UI != E; ) {
1260    Instruction *User = cast<Instruction>(*UI++);
1261    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1262  }
1263
1264  if (Load->use_empty()) {
1265    Load->eraseFromParent();
1266    InsertedScalarizedValues.erase(Load);
1267  }
1268}
1269
1270/// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
1271/// it up into multiple allocations of arrays of the fields.
1272static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1273                                            Value* NElems, TargetData *TD) {
1274  DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
1275  const Type* MAT = getMallocAllocatedType(CI);
1276  const StructType *STy = cast<StructType>(MAT);
1277
1278  // There is guaranteed to be at least one use of the malloc (storing
1279  // it into GV).  If there are other uses, change them to be uses of
1280  // the global to simplify later code.  This also deletes the store
1281  // into GV.
1282  ReplaceUsesOfMallocWithGlobal(CI, GV);
1283
1284  // Okay, at this point, there are no users of the malloc.  Insert N
1285  // new mallocs at the same place as CI, and N globals.
1286  std::vector<Value*> FieldGlobals;
1287  std::vector<Value*> FieldMallocs;
1288
1289  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1290    const Type *FieldTy = STy->getElementType(FieldNo);
1291    const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
1292
1293    GlobalVariable *NGV =
1294      new GlobalVariable(*GV->getParent(),
1295                         PFieldTy, false, GlobalValue::InternalLinkage,
1296                         Constant::getNullValue(PFieldTy),
1297                         GV->getName() + ".f" + Twine(FieldNo), GV,
1298                         GV->isThreadLocal());
1299    FieldGlobals.push_back(NGV);
1300
1301    unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
1302    if (const StructType *ST = dyn_cast<StructType>(FieldTy))
1303      TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
1304    const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1305    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1306                                        ConstantInt::get(IntPtrTy, TypeSize),
1307                                        NElems,
1308                                        CI->getName() + ".f" + Twine(FieldNo));
1309    FieldMallocs.push_back(NMI);
1310    new StoreInst(NMI, NGV, CI);
1311  }
1312
1313  // The tricky aspect of this transformation is handling the case when malloc
1314  // fails.  In the original code, malloc failing would set the result pointer
1315  // of malloc to null.  In this case, some mallocs could succeed and others
1316  // could fail.  As such, we emit code that looks like this:
1317  //    F0 = malloc(field0)
1318  //    F1 = malloc(field1)
1319  //    F2 = malloc(field2)
1320  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1321  //      if (F0) { free(F0); F0 = 0; }
1322  //      if (F1) { free(F1); F1 = 0; }
1323  //      if (F2) { free(F2); F2 = 0; }
1324  //    }
1325  // The malloc can also fail if its argument is too large.
1326  Constant *ConstantZero = ConstantInt::get(CI->getOperand(1)->getType(), 0);
1327  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getOperand(1),
1328                                  ConstantZero, "isneg");
1329  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1330    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1331                             Constant::getNullValue(FieldMallocs[i]->getType()),
1332                               "isnull");
1333    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1334  }
1335
1336  // Split the basic block at the old malloc.
1337  BasicBlock *OrigBB = CI->getParent();
1338  BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
1339
1340  // Create the block to check the first condition.  Put all these blocks at the
1341  // end of the function as they are unlikely to be executed.
1342  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1343                                                "malloc_ret_null",
1344                                                OrigBB->getParent());
1345
1346  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1347  // branch on RunningOr.
1348  OrigBB->getTerminator()->eraseFromParent();
1349  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1350
1351  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1352  // pointer, because some may be null while others are not.
1353  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1354    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1355    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1356                              Constant::getNullValue(GVVal->getType()),
1357                              "tmp");
1358    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1359                                               OrigBB->getParent());
1360    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1361                                               OrigBB->getParent());
1362    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1363                                         Cmp, NullPtrBlock);
1364
1365    // Fill in FreeBlock.
1366    CallInst::CreateFree(GVVal, BI);
1367    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1368                  FreeBlock);
1369    BranchInst::Create(NextBlock, FreeBlock);
1370
1371    NullPtrBlock = NextBlock;
1372  }
1373
1374  BranchInst::Create(ContBB, NullPtrBlock);
1375
1376  // CI is no longer needed, remove it.
1377  CI->eraseFromParent();
1378
1379  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1380  /// update all uses of the load, keep track of what scalarized loads are
1381  /// inserted for a given load.
1382  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1383  InsertedScalarizedValues[GV] = FieldGlobals;
1384
1385  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1386
1387  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1388  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1389  // of the per-field globals instead.
1390  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1391    Instruction *User = cast<Instruction>(*UI++);
1392
1393    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1394      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1395      continue;
1396    }
1397
1398    // Must be a store of null.
1399    StoreInst *SI = cast<StoreInst>(User);
1400    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1401           "Unexpected heap-sra user!");
1402
1403    // Insert a store of null into each global.
1404    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1405      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1406      Constant *Null = Constant::getNullValue(PT->getElementType());
1407      new StoreInst(Null, FieldGlobals[i], SI);
1408    }
1409    // Erase the original store.
1410    SI->eraseFromParent();
1411  }
1412
1413  // While we have PHIs that are interesting to rewrite, do it.
1414  while (!PHIsToRewrite.empty()) {
1415    PHINode *PN = PHIsToRewrite.back().first;
1416    unsigned FieldNo = PHIsToRewrite.back().second;
1417    PHIsToRewrite.pop_back();
1418    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1419    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1420
1421    // Add all the incoming values.  This can materialize more phis.
1422    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1423      Value *InVal = PN->getIncomingValue(i);
1424      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1425                               PHIsToRewrite);
1426      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1427    }
1428  }
1429
1430  // Drop all inter-phi links and any loads that made it this far.
1431  for (DenseMap<Value*, std::vector<Value*> >::iterator
1432       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1433       I != E; ++I) {
1434    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1435      PN->dropAllReferences();
1436    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1437      LI->dropAllReferences();
1438  }
1439
1440  // Delete all the phis and loads now that inter-references are dead.
1441  for (DenseMap<Value*, std::vector<Value*> >::iterator
1442       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1443       I != E; ++I) {
1444    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1445      PN->eraseFromParent();
1446    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1447      LI->eraseFromParent();
1448  }
1449
1450  // The old global is now dead, remove it.
1451  GV->eraseFromParent();
1452
1453  ++NumHeapSRA;
1454  return cast<GlobalVariable>(FieldGlobals[0]);
1455}
1456
1457/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1458/// pointer global variable with a single value stored it that is a malloc or
1459/// cast of malloc.
1460static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1461                                               CallInst *CI,
1462                                               const Type *AllocTy,
1463                                               Module::global_iterator &GVI,
1464                                               TargetData *TD) {
1465  if (!TD)
1466    return false;
1467
1468  // If this is a malloc of an abstract type, don't touch it.
1469  if (!AllocTy->isSized())
1470    return false;
1471
1472  // We can't optimize this global unless all uses of it are *known* to be
1473  // of the malloc value, not of the null initializer value (consider a use
1474  // that compares the global's value against zero to see if the malloc has
1475  // been reached).  To do this, we check to see if all uses of the global
1476  // would trap if the global were null: this proves that they must all
1477  // happen after the malloc.
1478  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1479    return false;
1480
1481  // We can't optimize this if the malloc itself is used in a complex way,
1482  // for example, being stored into multiple globals.  This allows the
1483  // malloc to be stored into the specified global, loaded setcc'd, and
1484  // GEP'd.  These are all things we could transform to using the global
1485  // for.
1486  SmallPtrSet<const PHINode*, 8> PHIs;
1487  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1488    return false;
1489
1490  // If we have a global that is only initialized with a fixed size malloc,
1491  // transform the program to use global memory instead of malloc'd memory.
1492  // This eliminates dynamic allocation, avoids an indirection accessing the
1493  // data, and exposes the resultant global to further GlobalOpt.
1494  // We cannot optimize the malloc if we cannot determine malloc array size.
1495  Value *NElems = getMallocArraySize(CI, TD, true);
1496  if (!NElems)
1497    return false;
1498
1499  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1500    // Restrict this transformation to only working on small allocations
1501    // (2048 bytes currently), as we don't want to introduce a 16M global or
1502    // something.
1503    if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
1504      GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
1505      return true;
1506    }
1507
1508  // If the allocation is an array of structures, consider transforming this
1509  // into multiple malloc'd arrays, one for each field.  This is basically
1510  // SRoA for malloc'd memory.
1511
1512  // If this is an allocation of a fixed size array of structs, analyze as a
1513  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1514  if (NElems == ConstantInt::get(CI->getOperand(1)->getType(), 1))
1515    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1516      AllocTy = AT->getElementType();
1517
1518  const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1519  if (!AllocSTy)
1520    return false;
1521
1522  // This the structure has an unreasonable number of fields, leave it
1523  // alone.
1524  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1525      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1526
1527    // If this is a fixed size array, transform the Malloc to be an alloc of
1528    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1529    if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
1530      const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
1531      unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
1532      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1533      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1534      Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
1535                                                   AllocSize, NumElements,
1536                                                   CI->getName());
1537      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1538      CI->replaceAllUsesWith(Cast);
1539      CI->eraseFromParent();
1540      CI = dyn_cast<BitCastInst>(Malloc) ?
1541        extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
1542    }
1543
1544    GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
1545    return true;
1546  }
1547
1548  return false;
1549}
1550
1551// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1552// that only one value (besides its initializer) is ever stored to the global.
1553static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1554                                     Module::global_iterator &GVI,
1555                                     TargetData *TD) {
1556  // Ignore no-op GEPs and bitcasts.
1557  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1558
1559  // If we are dealing with a pointer global that is initialized to null and
1560  // only has one (non-null) value stored into it, then we can optimize any
1561  // users of the loaded value (often calls and loads) that would trap if the
1562  // value was null.
1563  if (GV->getInitializer()->getType()->isPointerTy() &&
1564      GV->getInitializer()->isNullValue()) {
1565    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1566      if (GV->getInitializer()->getType() != SOVC->getType())
1567        SOVC =
1568         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1569
1570      // Optimize away any trapping uses of the loaded value.
1571      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1572        return true;
1573    } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
1574      const Type* MallocType = getMallocAllocatedType(CI);
1575      if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1576                                                           GVI, TD))
1577        return true;
1578    }
1579  }
1580
1581  return false;
1582}
1583
1584/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1585/// two values ever stored into GV are its initializer and OtherVal.  See if we
1586/// can shrink the global into a boolean and select between the two values
1587/// whenever it is used.  This exposes the values to other scalar optimizations.
1588static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1589  const Type *GVElType = GV->getType()->getElementType();
1590
1591  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1592  // an FP value, pointer or vector, don't do this optimization because a select
1593  // between them is very expensive and unlikely to lead to later
1594  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1595  // where v1 and v2 both require constant pool loads, a big loss.
1596  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1597      GVElType->isFloatingPointTy() ||
1598      GVElType->isPointerTy() || GVElType->isVectorTy())
1599    return false;
1600
1601  // Walk the use list of the global seeing if all the uses are load or store.
1602  // If there is anything else, bail out.
1603  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1604    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1605      return false;
1606
1607  DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
1608
1609  // Create the new global, initializing it to false.
1610  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1611                                             false,
1612                                             GlobalValue::InternalLinkage,
1613                                        ConstantInt::getFalse(GV->getContext()),
1614                                             GV->getName()+".b",
1615                                             GV->isThreadLocal());
1616  GV->getParent()->getGlobalList().insert(GV, NewGV);
1617
1618  Constant *InitVal = GV->getInitializer();
1619  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1620         "No reason to shrink to bool!");
1621
1622  // If initialized to zero and storing one into the global, we can use a cast
1623  // instead of a select to synthesize the desired value.
1624  bool IsOneZero = false;
1625  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1626    IsOneZero = InitVal->isNullValue() && CI->isOne();
1627
1628  while (!GV->use_empty()) {
1629    Instruction *UI = cast<Instruction>(GV->use_back());
1630    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1631      // Change the store into a boolean store.
1632      bool StoringOther = SI->getOperand(0) == OtherVal;
1633      // Only do this if we weren't storing a loaded value.
1634      Value *StoreVal;
1635      if (StoringOther || SI->getOperand(0) == InitVal)
1636        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1637                                    StoringOther);
1638      else {
1639        // Otherwise, we are storing a previously loaded copy.  To do this,
1640        // change the copy from copying the original value to just copying the
1641        // bool.
1642        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1643
1644        // If we're already replaced the input, StoredVal will be a cast or
1645        // select instruction.  If not, it will be a load of the original
1646        // global.
1647        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1648          assert(LI->getOperand(0) == GV && "Not a copy!");
1649          // Insert a new load, to preserve the saved value.
1650          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1651        } else {
1652          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1653                 "This is not a form that we understand!");
1654          StoreVal = StoredVal->getOperand(0);
1655          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1656        }
1657      }
1658      new StoreInst(StoreVal, NewGV, SI);
1659    } else {
1660      // Change the load into a load of bool then a select.
1661      LoadInst *LI = cast<LoadInst>(UI);
1662      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1663      Value *NSI;
1664      if (IsOneZero)
1665        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1666      else
1667        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1668      NSI->takeName(LI);
1669      LI->replaceAllUsesWith(NSI);
1670    }
1671    UI->eraseFromParent();
1672  }
1673
1674  GV->eraseFromParent();
1675  return true;
1676}
1677
1678
1679/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1680/// it if possible.  If we make a change, return true.
1681bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1682                                      Module::global_iterator &GVI) {
1683  SmallPtrSet<const PHINode*, 16> PHIUsers;
1684  GlobalStatus GS;
1685  GV->removeDeadConstantUsers();
1686
1687  if (GV->use_empty()) {
1688    DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
1689    GV->eraseFromParent();
1690    ++NumDeleted;
1691    return true;
1692  }
1693
1694  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1695#if 0
1696    DEBUG(dbgs() << "Global: " << *GV);
1697    DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
1698    DEBUG(dbgs() << "  StoredType = ");
1699    switch (GS.StoredType) {
1700    case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
1701    case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
1702                                            break;
1703    case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
1704    case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
1705    }
1706    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1707      DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
1708    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1709      DEBUG(dbgs() << "  AccessingFunction = "
1710                   << GS.AccessingFunction->getName() << "\n");
1711    DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
1712                 << GS.HasMultipleAccessingFunctions << "\n");
1713    DEBUG(dbgs() << "  HasNonInstructionUser = "
1714                 << GS.HasNonInstructionUser<<"\n");
1715    DEBUG(dbgs() << "\n");
1716#endif
1717
1718    // If this is a first class global and has only one accessing function
1719    // and this function is main (which we know is not recursive we can make
1720    // this global a local variable) we replace the global with a local alloca
1721    // in this function.
1722    //
1723    // NOTE: It doesn't make sense to promote non single-value types since we
1724    // are just replacing static memory to stack memory.
1725    //
1726    // If the global is in different address space, don't bring it to stack.
1727    if (!GS.HasMultipleAccessingFunctions &&
1728        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1729        GV->getType()->getElementType()->isSingleValueType() &&
1730        GS.AccessingFunction->getName() == "main" &&
1731        GS.AccessingFunction->hasExternalLinkage() &&
1732        GV->getType()->getAddressSpace() == 0) {
1733      DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
1734      Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1735                                                     ->getEntryBlock().begin());
1736      const Type* ElemTy = GV->getType()->getElementType();
1737      // FIXME: Pass Global's alignment when globals have alignment
1738      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
1739      if (!isa<UndefValue>(GV->getInitializer()))
1740        new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1741
1742      GV->replaceAllUsesWith(Alloca);
1743      GV->eraseFromParent();
1744      ++NumLocalized;
1745      return true;
1746    }
1747
1748    // If the global is never loaded (but may be stored to), it is dead.
1749    // Delete it now.
1750    if (!GS.isLoaded) {
1751      DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
1752
1753      // Delete any stores we can find to the global.  We may not be able to
1754      // make it completely dead though.
1755      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1756
1757      // If the global is dead now, delete it.
1758      if (GV->use_empty()) {
1759        GV->eraseFromParent();
1760        ++NumDeleted;
1761        Changed = true;
1762      }
1763      return Changed;
1764
1765    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1766      DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
1767      GV->setConstant(true);
1768
1769      // Clean up any obviously simplifiable users now.
1770      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1771
1772      // If the global is dead now, just nuke it.
1773      if (GV->use_empty()) {
1774        DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
1775                     << "all users and delete global!\n");
1776        GV->eraseFromParent();
1777        ++NumDeleted;
1778      }
1779
1780      ++NumMarked;
1781      return true;
1782    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1783      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1784        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
1785          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1786          return true;
1787        }
1788    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1789      // If the initial value for the global was an undef value, and if only
1790      // one other value was stored into it, we can just change the
1791      // initializer to be the stored value, then delete all stores to the
1792      // global.  This allows us to mark it constant.
1793      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1794        if (isa<UndefValue>(GV->getInitializer())) {
1795          // Change the initial value here.
1796          GV->setInitializer(SOVConstant);
1797
1798          // Clean up any obviously simplifiable users now.
1799          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1800
1801          if (GV->use_empty()) {
1802            DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
1803                         << "simplify all users and delete global!\n");
1804            GV->eraseFromParent();
1805            ++NumDeleted;
1806          } else {
1807            GVI = GV;
1808          }
1809          ++NumSubstitute;
1810          return true;
1811        }
1812
1813      // Try to optimize globals based on the knowledge that only one value
1814      // (besides its initializer) is ever stored to the global.
1815      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1816                                   getAnalysisIfAvailable<TargetData>()))
1817        return true;
1818
1819      // Otherwise, if the global was not a boolean, we can shrink it to be a
1820      // boolean.
1821      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1822        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1823          ++NumShrunkToBool;
1824          return true;
1825        }
1826    }
1827  }
1828  return false;
1829}
1830
1831/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1832/// function, changing them to FastCC.
1833static void ChangeCalleesToFastCall(Function *F) {
1834  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1835    CallSite User(cast<Instruction>(*UI));
1836    User.setCallingConv(CallingConv::Fast);
1837  }
1838}
1839
1840static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1841  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1842    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1843      continue;
1844
1845    // There can be only one.
1846    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1847  }
1848
1849  return Attrs;
1850}
1851
1852static void RemoveNestAttribute(Function *F) {
1853  F->setAttributes(StripNest(F->getAttributes()));
1854  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1855    CallSite User(cast<Instruction>(*UI));
1856    User.setAttributes(StripNest(User.getAttributes()));
1857  }
1858}
1859
1860bool GlobalOpt::OptimizeFunctions(Module &M) {
1861  bool Changed = false;
1862  // Optimize functions.
1863  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1864    Function *F = FI++;
1865    // Functions without names cannot be referenced outside this module.
1866    if (!F->hasName() && !F->isDeclaration())
1867      F->setLinkage(GlobalValue::InternalLinkage);
1868    F->removeDeadConstantUsers();
1869    if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
1870      F->eraseFromParent();
1871      Changed = true;
1872      ++NumFnDeleted;
1873    } else if (F->hasLocalLinkage()) {
1874      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1875          !F->hasAddressTaken()) {
1876        // If this function has C calling conventions, is not a varargs
1877        // function, and is only called directly, promote it to use the Fast
1878        // calling convention.
1879        F->setCallingConv(CallingConv::Fast);
1880        ChangeCalleesToFastCall(F);
1881        ++NumFastCallFns;
1882        Changed = true;
1883      }
1884
1885      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1886          !F->hasAddressTaken()) {
1887        // The function is not used by a trampoline intrinsic, so it is safe
1888        // to remove the 'nest' attribute.
1889        RemoveNestAttribute(F);
1890        ++NumNestRemoved;
1891        Changed = true;
1892      }
1893    }
1894  }
1895  return Changed;
1896}
1897
1898bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1899  bool Changed = false;
1900  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1901       GVI != E; ) {
1902    GlobalVariable *GV = GVI++;
1903    // Global variables without names cannot be referenced outside this module.
1904    if (!GV->hasName() && !GV->isDeclaration())
1905      GV->setLinkage(GlobalValue::InternalLinkage);
1906    // Simplify the initializer.
1907    if (GV->hasInitializer())
1908      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
1909        TargetData *TD = getAnalysisIfAvailable<TargetData>();
1910        Constant *New = ConstantFoldConstantExpression(CE, TD);
1911        if (New && New != CE)
1912          GV->setInitializer(New);
1913      }
1914    // Do more involved optimizations if the global is internal.
1915    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1916        GV->hasInitializer())
1917      Changed |= ProcessInternalGlobal(GV, GVI);
1918  }
1919  return Changed;
1920}
1921
1922/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1923/// initializers have an init priority of 65535.
1924GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1925  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1926       I != E; ++I)
1927    if (I->getName() == "llvm.global_ctors") {
1928      // Found it, verify it's an array of { int, void()* }.
1929      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1930      if (!ATy) return 0;
1931      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1932      if (!STy || STy->getNumElements() != 2 ||
1933          !STy->getElementType(0)->isIntegerTy(32)) return 0;
1934      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1935      if (!PFTy) return 0;
1936      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1937      if (!FTy || !FTy->getReturnType()->isVoidTy() ||
1938          FTy->isVarArg() || FTy->getNumParams() != 0)
1939        return 0;
1940
1941      // Verify that the initializer is simple enough for us to handle.
1942      if (!I->hasDefinitiveInitializer()) return 0;
1943      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1944      if (!CA) return 0;
1945      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1946        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1947          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1948            continue;
1949
1950          // Must have a function or null ptr.
1951          if (!isa<Function>(CS->getOperand(1)))
1952            return 0;
1953
1954          // Init priority must be standard.
1955          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1956          if (!CI || CI->getZExtValue() != 65535)
1957            return 0;
1958        } else {
1959          return 0;
1960        }
1961
1962      return I;
1963    }
1964  return 0;
1965}
1966
1967/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1968/// return a list of the functions and null terminator as a vector.
1969static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1970  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1971  std::vector<Function*> Result;
1972  Result.reserve(CA->getNumOperands());
1973  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1974    ConstantStruct *CS = cast<ConstantStruct>(*i);
1975    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1976  }
1977  return Result;
1978}
1979
1980/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1981/// specified array, returning the new global to use.
1982static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1983                                          const std::vector<Function*> &Ctors) {
1984  // If we made a change, reassemble the initializer list.
1985  std::vector<Constant*> CSVals;
1986  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
1987  CSVals.push_back(0);
1988
1989  // Create the new init list.
1990  std::vector<Constant*> CAList;
1991  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1992    if (Ctors[i]) {
1993      CSVals[1] = Ctors[i];
1994    } else {
1995      const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
1996                                          false);
1997      const PointerType *PFTy = PointerType::getUnqual(FTy);
1998      CSVals[1] = Constant::getNullValue(PFTy);
1999      CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
2000                                   2147483647);
2001    }
2002    CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
2003  }
2004
2005  // Create the array initializer.
2006  const Type *StructTy =
2007      cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
2008  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
2009                                                   CAList.size()), CAList);
2010
2011  // If we didn't change the number of elements, don't create a new GV.
2012  if (CA->getType() == GCL->getInitializer()->getType()) {
2013    GCL->setInitializer(CA);
2014    return GCL;
2015  }
2016
2017  // Create the new global and insert it next to the existing list.
2018  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
2019                                           GCL->getLinkage(), CA, "",
2020                                           GCL->isThreadLocal());
2021  GCL->getParent()->getGlobalList().insert(GCL, NGV);
2022  NGV->takeName(GCL);
2023
2024  // Nuke the old list, replacing any uses with the new one.
2025  if (!GCL->use_empty()) {
2026    Constant *V = NGV;
2027    if (V->getType() != GCL->getType())
2028      V = ConstantExpr::getBitCast(V, GCL->getType());
2029    GCL->replaceAllUsesWith(V);
2030  }
2031  GCL->eraseFromParent();
2032
2033  if (Ctors.size())
2034    return NGV;
2035  else
2036    return 0;
2037}
2038
2039
2040static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2041                        Value *V) {
2042  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2043  Constant *R = ComputedValues[V];
2044  assert(R && "Reference to an uncomputed value!");
2045  return R;
2046}
2047
2048/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2049/// enough for us to understand.  In particular, if it is a cast of something,
2050/// we punt.  We basically just support direct accesses to globals and GEP's of
2051/// globals.  This should be kept up to date with CommitValueTo.
2052static bool isSimpleEnoughPointerToCommit(Constant *C) {
2053  // Conservatively, avoid aggregate types. This is because we don't
2054  // want to worry about them partially overlapping other stores.
2055  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
2056    return false;
2057
2058  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2059    // Do not allow weak/linkonce/dllimport/dllexport linkage or
2060    // external globals.
2061    return GV->hasDefinitiveInitializer();
2062
2063  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2064    // Handle a constantexpr gep.
2065    if (CE->getOpcode() == Instruction::GetElementPtr &&
2066        isa<GlobalVariable>(CE->getOperand(0)) &&
2067        cast<GEPOperator>(CE)->isInBounds()) {
2068      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2069      // Do not allow weak/linkonce/dllimport/dllexport linkage or
2070      // external globals.
2071      if (!GV->hasDefinitiveInitializer())
2072        return false;
2073
2074      // The first index must be zero.
2075      ConstantInt *CI = dyn_cast<ConstantInt>(*next(CE->op_begin()));
2076      if (!CI || !CI->isZero()) return false;
2077
2078      // The remaining indices must be compile-time known integers within the
2079      // notional bounds of the corresponding static array types.
2080      if (!CE->isGEPWithNoNotionalOverIndexing())
2081        return false;
2082
2083      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2084    }
2085  return false;
2086}
2087
2088/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2089/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2090/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2091static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2092                                   ConstantExpr *Addr, unsigned OpNo) {
2093  // Base case of the recursion.
2094  if (OpNo == Addr->getNumOperands()) {
2095    assert(Val->getType() == Init->getType() && "Type mismatch!");
2096    return Val;
2097  }
2098
2099  std::vector<Constant*> Elts;
2100  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2101
2102    // Break up the constant into its elements.
2103    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2104      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2105        Elts.push_back(cast<Constant>(*i));
2106    } else if (isa<ConstantAggregateZero>(Init)) {
2107      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2108        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2109    } else if (isa<UndefValue>(Init)) {
2110      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2111        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2112    } else {
2113      llvm_unreachable("This code is out of sync with "
2114             " ConstantFoldLoadThroughGEPConstantExpr");
2115    }
2116
2117    // Replace the element that we are supposed to.
2118    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2119    unsigned Idx = CU->getZExtValue();
2120    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2121    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2122
2123    // Return the modified struct.
2124    return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
2125                               STy->isPacked());
2126  } else {
2127    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2128    const SequentialType *InitTy = cast<SequentialType>(Init->getType());
2129
2130    uint64_t NumElts;
2131    if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
2132      NumElts = ATy->getNumElements();
2133    else
2134      NumElts = cast<VectorType>(InitTy)->getNumElements();
2135
2136
2137    // Break up the array into elements.
2138    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2139      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2140        Elts.push_back(cast<Constant>(*i));
2141    } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
2142      for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
2143        Elts.push_back(cast<Constant>(*i));
2144    } else if (isa<ConstantAggregateZero>(Init)) {
2145      Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
2146    } else {
2147      assert(isa<UndefValue>(Init) && "This code is out of sync with "
2148             " ConstantFoldLoadThroughGEPConstantExpr");
2149      Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
2150    }
2151
2152    assert(CI->getZExtValue() < NumElts);
2153    Elts[CI->getZExtValue()] =
2154      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2155
2156    if (Init->getType()->isArrayTy())
2157      return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2158    else
2159      return ConstantVector::get(&Elts[0], Elts.size());
2160  }
2161}
2162
2163/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2164/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2165static void CommitValueTo(Constant *Val, Constant *Addr) {
2166  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2167    assert(GV->hasInitializer());
2168    GV->setInitializer(Val);
2169    return;
2170  }
2171
2172  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2173  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2174  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2175}
2176
2177/// ComputeLoadResult - Return the value that would be computed by a load from
2178/// P after the stores reflected by 'memory' have been performed.  If we can't
2179/// decide, return null.
2180static Constant *ComputeLoadResult(Constant *P,
2181                                const DenseMap<Constant*, Constant*> &Memory) {
2182  // If this memory location has been recently stored, use the stored value: it
2183  // is the most up-to-date.
2184  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2185  if (I != Memory.end()) return I->second;
2186
2187  // Access it.
2188  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2189    if (GV->hasDefinitiveInitializer())
2190      return GV->getInitializer();
2191    return 0;
2192  }
2193
2194  // Handle a constantexpr getelementptr.
2195  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2196    if (CE->getOpcode() == Instruction::GetElementPtr &&
2197        isa<GlobalVariable>(CE->getOperand(0))) {
2198      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2199      if (GV->hasDefinitiveInitializer())
2200        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2201    }
2202
2203  return 0;  // don't know how to evaluate.
2204}
2205
2206/// EvaluateFunction - Evaluate a call to function F, returning true if
2207/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2208/// arguments for the function.
2209static bool EvaluateFunction(Function *F, Constant *&RetVal,
2210                             const SmallVectorImpl<Constant*> &ActualArgs,
2211                             std::vector<Function*> &CallStack,
2212                             DenseMap<Constant*, Constant*> &MutatedMemory,
2213                             std::vector<GlobalVariable*> &AllocaTmps) {
2214  // Check to see if this function is already executing (recursion).  If so,
2215  // bail out.  TODO: we might want to accept limited recursion.
2216  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2217    return false;
2218
2219  CallStack.push_back(F);
2220
2221  /// Values - As we compute SSA register values, we store their contents here.
2222  DenseMap<Value*, Constant*> Values;
2223
2224  // Initialize arguments to the incoming values specified.
2225  unsigned ArgNo = 0;
2226  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2227       ++AI, ++ArgNo)
2228    Values[AI] = ActualArgs[ArgNo];
2229
2230  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2231  /// we can only evaluate any one basic block at most once.  This set keeps
2232  /// track of what we have executed so we can detect recursive cases etc.
2233  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2234
2235  // CurInst - The current instruction we're evaluating.
2236  BasicBlock::iterator CurInst = F->begin()->begin();
2237
2238  // This is the main evaluation loop.
2239  while (1) {
2240    Constant *InstResult = 0;
2241
2242    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2243      if (SI->isVolatile()) return false;  // no volatile accesses.
2244      Constant *Ptr = getVal(Values, SI->getOperand(1));
2245      if (!isSimpleEnoughPointerToCommit(Ptr))
2246        // If this is too complex for us to commit, reject it.
2247        return false;
2248      Constant *Val = getVal(Values, SI->getOperand(0));
2249      MutatedMemory[Ptr] = Val;
2250    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2251      InstResult = ConstantExpr::get(BO->getOpcode(),
2252                                     getVal(Values, BO->getOperand(0)),
2253                                     getVal(Values, BO->getOperand(1)));
2254    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2255      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2256                                            getVal(Values, CI->getOperand(0)),
2257                                            getVal(Values, CI->getOperand(1)));
2258    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2259      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2260                                         getVal(Values, CI->getOperand(0)),
2261                                         CI->getType());
2262    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2263      InstResult =
2264            ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2265                                           getVal(Values, SI->getOperand(1)),
2266                                           getVal(Values, SI->getOperand(2)));
2267    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2268      Constant *P = getVal(Values, GEP->getOperand(0));
2269      SmallVector<Constant*, 8> GEPOps;
2270      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2271           i != e; ++i)
2272        GEPOps.push_back(getVal(Values, *i));
2273      InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
2274          ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
2275          ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2276    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2277      if (LI->isVolatile()) return false;  // no volatile accesses.
2278      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2279                                     MutatedMemory);
2280      if (InstResult == 0) return false; // Could not evaluate load.
2281    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2282      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2283      const Type *Ty = AI->getType()->getElementType();
2284      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2285                                              GlobalValue::InternalLinkage,
2286                                              UndefValue::get(Ty),
2287                                              AI->getName()));
2288      InstResult = AllocaTmps.back();
2289    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2290
2291      // Debug info can safely be ignored here.
2292      if (isa<DbgInfoIntrinsic>(CI)) {
2293        ++CurInst;
2294        continue;
2295      }
2296
2297      // Cannot handle inline asm.
2298      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2299
2300      // Resolve function pointers.
2301      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2302      if (!Callee) return false;  // Cannot resolve.
2303
2304      SmallVector<Constant*, 8> Formals;
2305      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2306           i != e; ++i)
2307        Formals.push_back(getVal(Values, *i));
2308
2309      if (Callee->isDeclaration()) {
2310        // If this is a function we can constant fold, do it.
2311        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2312                                           Formals.size())) {
2313          InstResult = C;
2314        } else {
2315          return false;
2316        }
2317      } else {
2318        if (Callee->getFunctionType()->isVarArg())
2319          return false;
2320
2321        Constant *RetVal;
2322        // Execute the call, if successful, use the return value.
2323        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2324                              MutatedMemory, AllocaTmps))
2325          return false;
2326        InstResult = RetVal;
2327      }
2328    } else if (isa<TerminatorInst>(CurInst)) {
2329      BasicBlock *NewBB = 0;
2330      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2331        if (BI->isUnconditional()) {
2332          NewBB = BI->getSuccessor(0);
2333        } else {
2334          ConstantInt *Cond =
2335            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2336          if (!Cond) return false;  // Cannot determine.
2337
2338          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2339        }
2340      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2341        ConstantInt *Val =
2342          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2343        if (!Val) return false;  // Cannot determine.
2344        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2345      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
2346        Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
2347        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
2348          NewBB = BA->getBasicBlock();
2349        else
2350          return false;  // Cannot determine.
2351      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2352        if (RI->getNumOperands())
2353          RetVal = getVal(Values, RI->getOperand(0));
2354
2355        CallStack.pop_back();  // return from fn.
2356        return true;  // We succeeded at evaluating this ctor!
2357      } else {
2358        // invoke, unwind, unreachable.
2359        return false;  // Cannot handle this terminator.
2360      }
2361
2362      // Okay, we succeeded in evaluating this control flow.  See if we have
2363      // executed the new block before.  If so, we have a looping function,
2364      // which we cannot evaluate in reasonable time.
2365      if (!ExecutedBlocks.insert(NewBB))
2366        return false;  // looped!
2367
2368      // Okay, we have never been in this block before.  Check to see if there
2369      // are any PHI nodes.  If so, evaluate them with information about where
2370      // we came from.
2371      BasicBlock *OldBB = CurInst->getParent();
2372      CurInst = NewBB->begin();
2373      PHINode *PN;
2374      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2375        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2376
2377      // Do NOT increment CurInst.  We know that the terminator had no value.
2378      continue;
2379    } else {
2380      // Did not know how to evaluate this!
2381      return false;
2382    }
2383
2384    if (!CurInst->use_empty())
2385      Values[CurInst] = InstResult;
2386
2387    // Advance program counter.
2388    ++CurInst;
2389  }
2390}
2391
2392/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2393/// we can.  Return true if we can, false otherwise.
2394static bool EvaluateStaticConstructor(Function *F) {
2395  /// MutatedMemory - For each store we execute, we update this map.  Loads
2396  /// check this to get the most up-to-date value.  If evaluation is successful,
2397  /// this state is committed to the process.
2398  DenseMap<Constant*, Constant*> MutatedMemory;
2399
2400  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2401  /// to represent its body.  This vector is needed so we can delete the
2402  /// temporary globals when we are done.
2403  std::vector<GlobalVariable*> AllocaTmps;
2404
2405  /// CallStack - This is used to detect recursion.  In pathological situations
2406  /// we could hit exponential behavior, but at least there is nothing
2407  /// unbounded.
2408  std::vector<Function*> CallStack;
2409
2410  // Call the function.
2411  Constant *RetValDummy;
2412  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2413                                      SmallVector<Constant*, 0>(), CallStack,
2414                                      MutatedMemory, AllocaTmps);
2415  if (EvalSuccess) {
2416    // We succeeded at evaluation: commit the result.
2417    DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2418          << F->getName() << "' to " << MutatedMemory.size()
2419          << " stores.\n");
2420    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2421         E = MutatedMemory.end(); I != E; ++I)
2422      CommitValueTo(I->second, I->first);
2423  }
2424
2425  // At this point, we are done interpreting.  If we created any 'alloca'
2426  // temporaries, release them now.
2427  while (!AllocaTmps.empty()) {
2428    GlobalVariable *Tmp = AllocaTmps.back();
2429    AllocaTmps.pop_back();
2430
2431    // If there are still users of the alloca, the program is doing something
2432    // silly, e.g. storing the address of the alloca somewhere and using it
2433    // later.  Since this is undefined, we'll just make it be null.
2434    if (!Tmp->use_empty())
2435      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2436    delete Tmp;
2437  }
2438
2439  return EvalSuccess;
2440}
2441
2442
2443
2444/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2445/// Return true if anything changed.
2446bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2447  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2448  bool MadeChange = false;
2449  if (Ctors.empty()) return false;
2450
2451  // Loop over global ctors, optimizing them when we can.
2452  for (unsigned i = 0; i != Ctors.size(); ++i) {
2453    Function *F = Ctors[i];
2454    // Found a null terminator in the middle of the list, prune off the rest of
2455    // the list.
2456    if (F == 0) {
2457      if (i != Ctors.size()-1) {
2458        Ctors.resize(i+1);
2459        MadeChange = true;
2460      }
2461      break;
2462    }
2463
2464    // We cannot simplify external ctor functions.
2465    if (F->empty()) continue;
2466
2467    // If we can evaluate the ctor at compile time, do.
2468    if (EvaluateStaticConstructor(F)) {
2469      Ctors.erase(Ctors.begin()+i);
2470      MadeChange = true;
2471      --i;
2472      ++NumCtorsEvaluated;
2473      continue;
2474    }
2475  }
2476
2477  if (!MadeChange) return false;
2478
2479  GCL = InstallGlobalCtors(GCL, Ctors);
2480  return true;
2481}
2482
2483bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2484  bool Changed = false;
2485
2486  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2487       I != E;) {
2488    Module::alias_iterator J = I++;
2489    // Aliases without names cannot be referenced outside this module.
2490    if (!J->hasName() && !J->isDeclaration())
2491      J->setLinkage(GlobalValue::InternalLinkage);
2492    // If the aliasee may change at link time, nothing can be done - bail out.
2493    if (J->mayBeOverridden())
2494      continue;
2495
2496    Constant *Aliasee = J->getAliasee();
2497    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2498    Target->removeDeadConstantUsers();
2499    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2500
2501    // Make all users of the alias use the aliasee instead.
2502    if (!J->use_empty()) {
2503      J->replaceAllUsesWith(Aliasee);
2504      ++NumAliasesResolved;
2505      Changed = true;
2506    }
2507
2508    // If the alias is externally visible, we may still be able to simplify it.
2509    if (!J->hasLocalLinkage()) {
2510      // If the aliasee has internal linkage, give it the name and linkage
2511      // of the alias, and delete the alias.  This turns:
2512      //   define internal ... @f(...)
2513      //   @a = alias ... @f
2514      // into:
2515      //   define ... @a(...)
2516      if (!Target->hasLocalLinkage())
2517        continue;
2518
2519      // Do not perform the transform if multiple aliases potentially target the
2520      // aliasee. This check also ensures that it is safe to replace the section
2521      // and other attributes of the aliasee with those of the alias.
2522      if (!hasOneUse)
2523        continue;
2524
2525      // Give the aliasee the name, linkage and other attributes of the alias.
2526      Target->takeName(J);
2527      Target->setLinkage(J->getLinkage());
2528      Target->GlobalValue::copyAttributesFrom(J);
2529    }
2530
2531    // Delete the alias.
2532    M.getAliasList().erase(J);
2533    ++NumAliasesRemoved;
2534    Changed = true;
2535  }
2536
2537  return Changed;
2538}
2539
2540bool GlobalOpt::runOnModule(Module &M) {
2541  bool Changed = false;
2542
2543  // Try to find the llvm.globalctors list.
2544  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2545
2546  bool LocalChange = true;
2547  while (LocalChange) {
2548    LocalChange = false;
2549
2550    // Delete functions that are trivially dead, ccc -> fastcc
2551    LocalChange |= OptimizeFunctions(M);
2552
2553    // Optimize global_ctors list.
2554    if (GlobalCtors)
2555      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2556
2557    // Optimize non-address-taken globals.
2558    LocalChange |= OptimizeGlobalVars(M);
2559
2560    // Resolve aliases, when possible.
2561    LocalChange |= OptimizeGlobalAliases(M);
2562    Changed |= LocalChange;
2563  }
2564
2565  // TODO: Move all global ctors functions to the end of the module for code
2566  // layout.
2567
2568  return Changed;
2569}
2570