GlobalOpt.cpp revision b91ea9d5ae92622ca2100feb19af1bc7e784abbd
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <map>
38#include <set>
39using namespace llvm;
40
41STATISTIC(NumMarked    , "Number of globals marked constant");
42STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
43STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
44STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
45STATISTIC(NumDeleted   , "Number of globals deleted");
46STATISTIC(NumFnDeleted , "Number of functions deleted");
47STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
48STATISTIC(NumLocalized , "Number of globals localized");
49STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
50STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
51STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
52STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
53
54namespace {
55  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
56    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
57      AU.addRequired<TargetData>();
58    }
59    static char ID; // Pass identification, replacement for typeid
60    GlobalOpt() : ModulePass((intptr_t)&ID) {}
61
62    bool runOnModule(Module &M);
63
64  private:
65    GlobalVariable *FindGlobalCtors(Module &M);
66    bool OptimizeFunctions(Module &M);
67    bool OptimizeGlobalVars(Module &M);
68    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
69    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
70  };
71}
72
73char GlobalOpt::ID = 0;
74static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
75
76ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
77
78namespace {
79
80/// GlobalStatus - As we analyze each global, keep track of some information
81/// about it.  If we find out that the address of the global is taken, none of
82/// this info will be accurate.
83struct VISIBILITY_HIDDEN GlobalStatus {
84  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
85  /// loaded it can be deleted.
86  bool isLoaded;
87
88  /// StoredType - Keep track of what stores to the global look like.
89  ///
90  enum StoredType {
91    /// NotStored - There is no store to this global.  It can thus be marked
92    /// constant.
93    NotStored,
94
95    /// isInitializerStored - This global is stored to, but the only thing
96    /// stored is the constant it was initialized with.  This is only tracked
97    /// for scalar globals.
98    isInitializerStored,
99
100    /// isStoredOnce - This global is stored to, but only its initializer and
101    /// one other value is ever stored to it.  If this global isStoredOnce, we
102    /// track the value stored to it in StoredOnceValue below.  This is only
103    /// tracked for scalar globals.
104    isStoredOnce,
105
106    /// isStored - This global is stored to by multiple values or something else
107    /// that we cannot track.
108    isStored
109  } StoredType;
110
111  /// StoredOnceValue - If only one value (besides the initializer constant) is
112  /// ever stored to this global, keep track of what value it is.
113  Value *StoredOnceValue;
114
115  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
116  /// null/false.  When the first accessing function is noticed, it is recorded.
117  /// When a second different accessing function is noticed,
118  /// HasMultipleAccessingFunctions is set to true.
119  Function *AccessingFunction;
120  bool HasMultipleAccessingFunctions;
121
122  /// HasNonInstructionUser - Set to true if this global has a user that is not
123  /// an instruction (e.g. a constant expr or GV initializer).
124  bool HasNonInstructionUser;
125
126  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
127  bool HasPHIUser;
128
129  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
130                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
131                   HasNonInstructionUser(false), HasPHIUser(false) {}
132};
133
134}
135
136/// ConstantIsDead - Return true if the specified constant is (transitively)
137/// dead.  The constant may be used by other constants (e.g. constant arrays and
138/// constant exprs) as long as they are dead, but it cannot be used by anything
139/// else.
140static bool ConstantIsDead(Constant *C) {
141  if (isa<GlobalValue>(C)) return false;
142
143  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
144    if (Constant *CU = dyn_cast<Constant>(*UI)) {
145      if (!ConstantIsDead(CU)) return false;
146    } else
147      return false;
148  return true;
149}
150
151
152/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
153/// structure.  If the global has its address taken, return true to indicate we
154/// can't do anything with it.
155///
156static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
157                          std::set<PHINode*> &PHIUsers) {
158  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
160      GS.HasNonInstructionUser = true;
161
162      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
163
164    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
165      if (!GS.HasMultipleAccessingFunctions) {
166        Function *F = I->getParent()->getParent();
167        if (GS.AccessingFunction == 0)
168          GS.AccessingFunction = F;
169        else if (GS.AccessingFunction != F)
170          GS.HasMultipleAccessingFunctions = true;
171      }
172      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
173        GS.isLoaded = true;
174        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
175      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
176        // Don't allow a store OF the address, only stores TO the address.
177        if (SI->getOperand(0) == V) return true;
178
179        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
180
181        // If this is a direct store to the global (i.e., the global is a scalar
182        // value, not an aggregate), keep more specific information about
183        // stores.
184        if (GS.StoredType != GlobalStatus::isStored) {
185          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
186            Value *StoredVal = SI->getOperand(0);
187            if (StoredVal == GV->getInitializer()) {
188              if (GS.StoredType < GlobalStatus::isInitializerStored)
189                GS.StoredType = GlobalStatus::isInitializerStored;
190            } else if (isa<LoadInst>(StoredVal) &&
191                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
192              // G = G
193              if (GS.StoredType < GlobalStatus::isInitializerStored)
194                GS.StoredType = GlobalStatus::isInitializerStored;
195            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
196              GS.StoredType = GlobalStatus::isStoredOnce;
197              GS.StoredOnceValue = StoredVal;
198            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
199                       GS.StoredOnceValue == StoredVal) {
200              // noop.
201            } else {
202              GS.StoredType = GlobalStatus::isStored;
203            }
204          } else {
205            GS.StoredType = GlobalStatus::isStored;
206          }
207        }
208      } else if (isa<GetElementPtrInst>(I)) {
209        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
210      } else if (isa<SelectInst>(I)) {
211        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
212      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
213        // PHI nodes we can check just like select or GEP instructions, but we
214        // have to be careful about infinite recursion.
215        if (PHIUsers.insert(PN).second)  // Not already visited.
216          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
217        GS.HasPHIUser = true;
218      } else if (isa<CmpInst>(I)) {
219      } else if (isa<MemCpyInst>(I) || isa<MemMoveInst>(I)) {
220        if (I->getOperand(1) == V)
221          GS.StoredType = GlobalStatus::isStored;
222        if (I->getOperand(2) == V)
223          GS.isLoaded = true;
224      } else if (isa<MemSetInst>(I)) {
225        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
226        GS.StoredType = GlobalStatus::isStored;
227      } else {
228        return true;  // Any other non-load instruction might take address!
229      }
230    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
231      GS.HasNonInstructionUser = true;
232      // We might have a dead and dangling constant hanging off of here.
233      if (!ConstantIsDead(C))
234        return true;
235    } else {
236      GS.HasNonInstructionUser = true;
237      // Otherwise must be some other user.
238      return true;
239    }
240
241  return false;
242}
243
244static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
245  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
246  if (!CI) return 0;
247  unsigned IdxV = CI->getZExtValue();
248
249  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
250    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
251  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
252    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
253  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
254    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
255  } else if (isa<ConstantAggregateZero>(Agg)) {
256    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
257      if (IdxV < STy->getNumElements())
258        return Constant::getNullValue(STy->getElementType(IdxV));
259    } else if (const SequentialType *STy =
260               dyn_cast<SequentialType>(Agg->getType())) {
261      return Constant::getNullValue(STy->getElementType());
262    }
263  } else if (isa<UndefValue>(Agg)) {
264    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
265      if (IdxV < STy->getNumElements())
266        return UndefValue::get(STy->getElementType(IdxV));
267    } else if (const SequentialType *STy =
268               dyn_cast<SequentialType>(Agg->getType())) {
269      return UndefValue::get(STy->getElementType());
270    }
271  }
272  return 0;
273}
274
275
276/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
277/// users of the global, cleaning up the obvious ones.  This is largely just a
278/// quick scan over the use list to clean up the easy and obvious cruft.  This
279/// returns true if it made a change.
280static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
281  bool Changed = false;
282  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
283    User *U = *UI++;
284
285    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
286      if (Init) {
287        // Replace the load with the initializer.
288        LI->replaceAllUsesWith(Init);
289        LI->eraseFromParent();
290        Changed = true;
291      }
292    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
293      // Store must be unreachable or storing Init into the global.
294      SI->eraseFromParent();
295      Changed = true;
296    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
297      if (CE->getOpcode() == Instruction::GetElementPtr) {
298        Constant *SubInit = 0;
299        if (Init)
300          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
301        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
302      } else if (CE->getOpcode() == Instruction::BitCast &&
303                 isa<PointerType>(CE->getType())) {
304        // Pointer cast, delete any stores and memsets to the global.
305        Changed |= CleanupConstantGlobalUsers(CE, 0);
306      }
307
308      if (CE->use_empty()) {
309        CE->destroyConstant();
310        Changed = true;
311      }
312    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
313      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
314      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
315      // and will invalidate our notion of what Init is.
316      Constant *SubInit = 0;
317      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
318        ConstantExpr *CE =
319          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
320        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
321          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
322      }
323      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
324
325      if (GEP->use_empty()) {
326        GEP->eraseFromParent();
327        Changed = true;
328      }
329    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
330      if (MI->getRawDest() == V) {
331        MI->eraseFromParent();
332        Changed = true;
333      }
334
335    } else if (Constant *C = dyn_cast<Constant>(U)) {
336      // If we have a chain of dead constantexprs or other things dangling from
337      // us, and if they are all dead, nuke them without remorse.
338      if (ConstantIsDead(C)) {
339        C->destroyConstant();
340        // This could have invalidated UI, start over from scratch.
341        CleanupConstantGlobalUsers(V, Init);
342        return true;
343      }
344    }
345  }
346  return Changed;
347}
348
349/// isSafeSROAElementUse - Return true if the specified instruction is a safe
350/// user of a derived expression from a global that we want to SROA.
351static bool isSafeSROAElementUse(Value *V) {
352  // We might have a dead and dangling constant hanging off of here.
353  if (Constant *C = dyn_cast<Constant>(V))
354    return ConstantIsDead(C);
355
356  Instruction *I = dyn_cast<Instruction>(V);
357  if (!I) return false;
358
359  // Loads are ok.
360  if (isa<LoadInst>(I)) return true;
361
362  // Stores *to* the pointer are ok.
363  if (StoreInst *SI = dyn_cast<StoreInst>(I))
364    return SI->getOperand(0) != V;
365
366  // Otherwise, it must be a GEP.
367  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
368  if (GEPI == 0) return false;
369
370  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
371      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
372    return false;
373
374  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
375       I != E; ++I)
376    if (!isSafeSROAElementUse(*I))
377      return false;
378  return true;
379}
380
381
382/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
383/// Look at it and its uses and decide whether it is safe to SROA this global.
384///
385static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
386  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
387  if (!isa<GetElementPtrInst>(U) &&
388      (!isa<ConstantExpr>(U) ||
389       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
390    return false;
391
392  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
393  // don't like < 3 operand CE's, and we don't like non-constant integer
394  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
395  // value of C.
396  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
397      !cast<Constant>(U->getOperand(1))->isNullValue() ||
398      !isa<ConstantInt>(U->getOperand(2)))
399    return false;
400
401  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
402  ++GEPI;  // Skip over the pointer index.
403
404  // If this is a use of an array allocation, do a bit more checking for sanity.
405  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
406    uint64_t NumElements = AT->getNumElements();
407    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
408
409    // Check to make sure that index falls within the array.  If not,
410    // something funny is going on, so we won't do the optimization.
411    //
412    if (Idx->getZExtValue() >= NumElements)
413      return false;
414
415    // We cannot scalar repl this level of the array unless any array
416    // sub-indices are in-range constants.  In particular, consider:
417    // A[0][i].  We cannot know that the user isn't doing invalid things like
418    // allowing i to index an out-of-range subscript that accesses A[1].
419    //
420    // Scalar replacing *just* the outer index of the array is probably not
421    // going to be a win anyway, so just give up.
422    for (++GEPI; // Skip array index.
423         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
424         ++GEPI) {
425      uint64_t NumElements;
426      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
427        NumElements = SubArrayTy->getNumElements();
428      else
429        NumElements = cast<VectorType>(*GEPI)->getNumElements();
430
431      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
432      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
433        return false;
434    }
435  }
436
437  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
438    if (!isSafeSROAElementUse(*I))
439      return false;
440  return true;
441}
442
443/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
444/// is safe for us to perform this transformation.
445///
446static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
447  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
448       UI != E; ++UI) {
449    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
450      return false;
451  }
452  return true;
453}
454
455
456/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
457/// variable.  This opens the door for other optimizations by exposing the
458/// behavior of the program in a more fine-grained way.  We have determined that
459/// this transformation is safe already.  We return the first global variable we
460/// insert so that the caller can reprocess it.
461static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
462  // Make sure this global only has simple uses that we can SRA.
463  if (!GlobalUsersSafeToSRA(GV))
464    return 0;
465
466  assert(GV->hasInternalLinkage() && !GV->isConstant());
467  Constant *Init = GV->getInitializer();
468  const Type *Ty = Init->getType();
469
470  std::vector<GlobalVariable*> NewGlobals;
471  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
472
473  // Get the alignment of the global, either explicit or target-specific.
474  unsigned StartAlignment = GV->getAlignment();
475  if (StartAlignment == 0)
476    StartAlignment = TD.getABITypeAlignment(GV->getType());
477
478  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
479    NewGlobals.reserve(STy->getNumElements());
480    const StructLayout &Layout = *TD.getStructLayout(STy);
481    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
482      Constant *In = getAggregateConstantElement(Init,
483                                            ConstantInt::get(Type::Int32Ty, i));
484      assert(In && "Couldn't get element of initializer?");
485      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
486                                               GlobalVariable::InternalLinkage,
487                                               In, GV->getName()+"."+utostr(i),
488                                               (Module *)NULL,
489                                               GV->isThreadLocal());
490      Globals.insert(GV, NGV);
491      NewGlobals.push_back(NGV);
492
493      // Calculate the known alignment of the field.  If the original aggregate
494      // had 256 byte alignment for example, something might depend on that:
495      // propagate info to each field.
496      uint64_t FieldOffset = Layout.getElementOffset(i);
497      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
498      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
499        NGV->setAlignment(NewAlign);
500    }
501  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
502    unsigned NumElements = 0;
503    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
504      NumElements = ATy->getNumElements();
505    else
506      NumElements = cast<VectorType>(STy)->getNumElements();
507
508    if (NumElements > 16 && GV->hasNUsesOrMore(16))
509      return 0; // It's not worth it.
510    NewGlobals.reserve(NumElements);
511
512    uint64_t EltSize = TD.getABITypeSize(STy->getElementType());
513    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
514    for (unsigned i = 0, e = NumElements; i != e; ++i) {
515      Constant *In = getAggregateConstantElement(Init,
516                                            ConstantInt::get(Type::Int32Ty, i));
517      assert(In && "Couldn't get element of initializer?");
518
519      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
520                                               GlobalVariable::InternalLinkage,
521                                               In, GV->getName()+"."+utostr(i),
522                                               (Module *)NULL,
523                                               GV->isThreadLocal());
524      Globals.insert(GV, NGV);
525      NewGlobals.push_back(NGV);
526
527      // Calculate the known alignment of the field.  If the original aggregate
528      // had 256 byte alignment for example, something might depend on that:
529      // propagate info to each field.
530      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
531      if (NewAlign > EltAlign)
532        NGV->setAlignment(NewAlign);
533    }
534  }
535
536  if (NewGlobals.empty())
537    return 0;
538
539  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
540
541  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
542
543  // Loop over all of the uses of the global, replacing the constantexpr geps,
544  // with smaller constantexpr geps or direct references.
545  while (!GV->use_empty()) {
546    User *GEP = GV->use_back();
547    assert(((isa<ConstantExpr>(GEP) &&
548             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
549            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
550
551    // Ignore the 1th operand, which has to be zero or else the program is quite
552    // broken (undefined).  Get the 2nd operand, which is the structure or array
553    // index.
554    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
555    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
556
557    Value *NewPtr = NewGlobals[Val];
558
559    // Form a shorter GEP if needed.
560    if (GEP->getNumOperands() > 3) {
561      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
562        SmallVector<Constant*, 8> Idxs;
563        Idxs.push_back(NullInt);
564        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
565          Idxs.push_back(CE->getOperand(i));
566        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
567                                                &Idxs[0], Idxs.size());
568      } else {
569        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
570        SmallVector<Value*, 8> Idxs;
571        Idxs.push_back(NullInt);
572        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
573          Idxs.push_back(GEPI->getOperand(i));
574        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
575                                           GEPI->getName()+"."+utostr(Val), GEPI);
576      }
577    }
578    GEP->replaceAllUsesWith(NewPtr);
579
580    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
581      GEPI->eraseFromParent();
582    else
583      cast<ConstantExpr>(GEP)->destroyConstant();
584  }
585
586  // Delete the old global, now that it is dead.
587  Globals.erase(GV);
588  ++NumSRA;
589
590  // Loop over the new globals array deleting any globals that are obviously
591  // dead.  This can arise due to scalarization of a structure or an array that
592  // has elements that are dead.
593  unsigned FirstGlobal = 0;
594  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
595    if (NewGlobals[i]->use_empty()) {
596      Globals.erase(NewGlobals[i]);
597      if (FirstGlobal == i) ++FirstGlobal;
598    }
599
600  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
601}
602
603/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
604/// value will trap if the value is dynamically null.  PHIs keeps track of any
605/// phi nodes we've seen to avoid reprocessing them.
606static bool AllUsesOfValueWillTrapIfNull(Value *V,
607                                         SmallPtrSet<PHINode*, 8> &PHIs) {
608  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
609    if (isa<LoadInst>(*UI)) {
610      // Will trap.
611    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
612      if (SI->getOperand(0) == V) {
613        //cerr << "NONTRAPPING USE: " << **UI;
614        return false;  // Storing the value.
615      }
616    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
617      if (CI->getOperand(0) != V) {
618        //cerr << "NONTRAPPING USE: " << **UI;
619        return false;  // Not calling the ptr
620      }
621    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
622      if (II->getOperand(0) != V) {
623        //cerr << "NONTRAPPING USE: " << **UI;
624        return false;  // Not calling the ptr
625      }
626    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
627      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
628    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
629      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
630    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
631      // If we've already seen this phi node, ignore it, it has already been
632      // checked.
633      if (PHIs.insert(PN))
634        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
635    } else if (isa<ICmpInst>(*UI) &&
636               isa<ConstantPointerNull>(UI->getOperand(1))) {
637      // Ignore setcc X, null
638    } else {
639      //cerr << "NONTRAPPING USE: " << **UI;
640      return false;
641    }
642  return true;
643}
644
645/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
646/// from GV will trap if the loaded value is null.  Note that this also permits
647/// comparisons of the loaded value against null, as a special case.
648static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
649  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
650    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
651      SmallPtrSet<PHINode*, 8> PHIs;
652      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
653        return false;
654    } else if (isa<StoreInst>(*UI)) {
655      // Ignore stores to the global.
656    } else {
657      // We don't know or understand this user, bail out.
658      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
659      return false;
660    }
661
662  return true;
663}
664
665static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
666  bool Changed = false;
667  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
668    Instruction *I = cast<Instruction>(*UI++);
669    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
670      LI->setOperand(0, NewV);
671      Changed = true;
672    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
673      if (SI->getOperand(1) == V) {
674        SI->setOperand(1, NewV);
675        Changed = true;
676      }
677    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
678      if (I->getOperand(0) == V) {
679        // Calling through the pointer!  Turn into a direct call, but be careful
680        // that the pointer is not also being passed as an argument.
681        I->setOperand(0, NewV);
682        Changed = true;
683        bool PassedAsArg = false;
684        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
685          if (I->getOperand(i) == V) {
686            PassedAsArg = true;
687            I->setOperand(i, NewV);
688          }
689
690        if (PassedAsArg) {
691          // Being passed as an argument also.  Be careful to not invalidate UI!
692          UI = V->use_begin();
693        }
694      }
695    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
696      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
697                                ConstantExpr::getCast(CI->getOpcode(),
698                                                      NewV, CI->getType()));
699      if (CI->use_empty()) {
700        Changed = true;
701        CI->eraseFromParent();
702      }
703    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
704      // Should handle GEP here.
705      SmallVector<Constant*, 8> Idxs;
706      Idxs.reserve(GEPI->getNumOperands()-1);
707      for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
708        if (Constant *C = dyn_cast<Constant>(GEPI->getOperand(i)))
709          Idxs.push_back(C);
710        else
711          break;
712      if (Idxs.size() == GEPI->getNumOperands()-1)
713        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
714                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
715                                                               Idxs.size()));
716      if (GEPI->use_empty()) {
717        Changed = true;
718        GEPI->eraseFromParent();
719      }
720    }
721  }
722
723  return Changed;
724}
725
726
727/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
728/// value stored into it.  If there are uses of the loaded value that would trap
729/// if the loaded value is dynamically null, then we know that they cannot be
730/// reachable with a null optimize away the load.
731static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
732  std::vector<LoadInst*> Loads;
733  bool Changed = false;
734
735  // Replace all uses of loads with uses of uses of the stored value.
736  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end();
737       GUI != E; ++GUI)
738    if (LoadInst *LI = dyn_cast<LoadInst>(*GUI)) {
739      Loads.push_back(LI);
740      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
741    } else {
742      // If we get here we could have stores, selects, or phi nodes whose values
743      // are loaded.
744      assert((isa<StoreInst>(*GUI) || isa<PHINode>(*GUI) ||
745              isa<SelectInst>(*GUI) || isa<ConstantExpr>(*GUI)) &&
746             "Only expect load and stores!");
747    }
748
749  if (Changed) {
750    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
751    ++NumGlobUses;
752  }
753
754  // Delete all of the loads we can, keeping track of whether we nuked them all!
755  bool AllLoadsGone = true;
756  while (!Loads.empty()) {
757    LoadInst *L = Loads.back();
758    if (L->use_empty()) {
759      L->eraseFromParent();
760      Changed = true;
761    } else {
762      AllLoadsGone = false;
763    }
764    Loads.pop_back();
765  }
766
767  // If we nuked all of the loads, then none of the stores are needed either,
768  // nor is the global.
769  if (AllLoadsGone) {
770    DOUT << "  *** GLOBAL NOW DEAD!\n";
771    CleanupConstantGlobalUsers(GV, 0);
772    if (GV->use_empty()) {
773      GV->eraseFromParent();
774      ++NumDeleted;
775    }
776    Changed = true;
777  }
778  return Changed;
779}
780
781/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
782/// instructions that are foldable.
783static void ConstantPropUsersOf(Value *V) {
784  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
785    if (Instruction *I = dyn_cast<Instruction>(*UI++))
786      if (Constant *NewC = ConstantFoldInstruction(I)) {
787        I->replaceAllUsesWith(NewC);
788
789        // Advance UI to the next non-I use to avoid invalidating it!
790        // Instructions could multiply use V.
791        while (UI != E && *UI == I)
792          ++UI;
793        I->eraseFromParent();
794      }
795}
796
797/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
798/// variable, and transforms the program as if it always contained the result of
799/// the specified malloc.  Because it is always the result of the specified
800/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
801/// malloc into a global, and any loads of GV as uses of the new global.
802static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
803                                                     MallocInst *MI) {
804  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
805  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
806
807  if (NElements->getZExtValue() != 1) {
808    // If we have an array allocation, transform it to a single element
809    // allocation to make the code below simpler.
810    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
811                                 NElements->getZExtValue());
812    MallocInst *NewMI =
813      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
814                     MI->getAlignment(), MI->getName(), MI);
815    Value* Indices[2];
816    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
817    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
818                                              NewMI->getName()+".el0", MI);
819    MI->replaceAllUsesWith(NewGEP);
820    MI->eraseFromParent();
821    MI = NewMI;
822  }
823
824  // Create the new global variable.  The contents of the malloc'd memory is
825  // undefined, so initialize with an undef value.
826  Constant *Init = UndefValue::get(MI->getAllocatedType());
827  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
828                                             GlobalValue::InternalLinkage, Init,
829                                             GV->getName()+".body",
830                                             (Module *)NULL,
831                                             GV->isThreadLocal());
832  // FIXME: This new global should have the alignment returned by malloc.  Code
833  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
834  // this would only guarantee some lower alignment.
835  GV->getParent()->getGlobalList().insert(GV, NewGV);
836
837  // Anything that used the malloc now uses the global directly.
838  MI->replaceAllUsesWith(NewGV);
839
840  Constant *RepValue = NewGV;
841  if (NewGV->getType() != GV->getType()->getElementType())
842    RepValue = ConstantExpr::getBitCast(RepValue,
843                                        GV->getType()->getElementType());
844
845  // If there is a comparison against null, we will insert a global bool to
846  // keep track of whether the global was initialized yet or not.
847  GlobalVariable *InitBool =
848    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
849                       ConstantInt::getFalse(), GV->getName()+".init",
850                       (Module *)NULL, GV->isThreadLocal());
851  bool InitBoolUsed = false;
852
853  // Loop over all uses of GV, processing them in turn.
854  std::vector<StoreInst*> Stores;
855  while (!GV->use_empty())
856    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
857      while (!LI->use_empty()) {
858        Use &LoadUse = LI->use_begin().getUse();
859        if (!isa<ICmpInst>(LoadUse.getUser()))
860          LoadUse = RepValue;
861        else {
862          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
863          // Replace the cmp X, 0 with a use of the bool value.
864          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
865          InitBoolUsed = true;
866          switch (CI->getPredicate()) {
867          default: assert(0 && "Unknown ICmp Predicate!");
868          case ICmpInst::ICMP_ULT:
869          case ICmpInst::ICMP_SLT:
870            LV = ConstantInt::getFalse();   // X < null -> always false
871            break;
872          case ICmpInst::ICMP_ULE:
873          case ICmpInst::ICMP_SLE:
874          case ICmpInst::ICMP_EQ:
875            LV = BinaryOperator::createNot(LV, "notinit", CI);
876            break;
877          case ICmpInst::ICMP_NE:
878          case ICmpInst::ICMP_UGE:
879          case ICmpInst::ICMP_SGE:
880          case ICmpInst::ICMP_UGT:
881          case ICmpInst::ICMP_SGT:
882            break;  // no change.
883          }
884          CI->replaceAllUsesWith(LV);
885          CI->eraseFromParent();
886        }
887      }
888      LI->eraseFromParent();
889    } else {
890      StoreInst *SI = cast<StoreInst>(GV->use_back());
891      // The global is initialized when the store to it occurs.
892      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
893      SI->eraseFromParent();
894    }
895
896  // If the initialization boolean was used, insert it, otherwise delete it.
897  if (!InitBoolUsed) {
898    while (!InitBool->use_empty())  // Delete initializations
899      cast<Instruction>(InitBool->use_back())->eraseFromParent();
900    delete InitBool;
901  } else
902    GV->getParent()->getGlobalList().insert(GV, InitBool);
903
904
905  // Now the GV is dead, nuke it and the malloc.
906  GV->eraseFromParent();
907  MI->eraseFromParent();
908
909  // To further other optimizations, loop over all users of NewGV and try to
910  // constant prop them.  This will promote GEP instructions with constant
911  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
912  ConstantPropUsersOf(NewGV);
913  if (RepValue != NewGV)
914    ConstantPropUsersOf(RepValue);
915
916  return NewGV;
917}
918
919/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
920/// to make sure that there are no complex uses of V.  We permit simple things
921/// like dereferencing the pointer, but not storing through the address, unless
922/// it is to the specified global.
923static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
924                                                      GlobalVariable *GV,
925                                              SmallPtrSet<PHINode*, 8> &PHIs) {
926  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
927    if (isa<LoadInst>(*UI) || isa<CmpInst>(*UI)) {
928      // Fine, ignore.
929    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
930      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
931        return false;  // Storing the pointer itself... bad.
932      // Otherwise, storing through it, or storing into GV... fine.
933    } else if (isa<GetElementPtrInst>(*UI)) {
934      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(cast<Instruction>(*UI),
935                                                     GV, PHIs))
936        return false;
937    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
938      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
939      // cycles.
940      if (PHIs.insert(PN))
941        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
942          return false;
943    } else {
944      return false;
945    }
946  return true;
947}
948
949/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
950/// somewhere.  Transform all uses of the allocation into loads from the
951/// global and uses of the resultant pointer.  Further, delete the store into
952/// GV.  This assumes that these value pass the
953/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
954static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
955                                          GlobalVariable *GV) {
956  while (!Alloc->use_empty()) {
957    Instruction *U = cast<Instruction>(*Alloc->use_begin());
958    Instruction *InsertPt = U;
959    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
960      // If this is the store of the allocation into the global, remove it.
961      if (SI->getOperand(1) == GV) {
962        SI->eraseFromParent();
963        continue;
964      }
965    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
966      // Insert the load in the corresponding predecessor, not right before the
967      // PHI.
968      unsigned PredNo = Alloc->use_begin().getOperandNo()/2;
969      InsertPt = PN->getIncomingBlock(PredNo)->getTerminator();
970    }
971
972    // Insert a load from the global, and use it instead of the malloc.
973    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
974    U->replaceUsesOfWith(Alloc, NL);
975  }
976}
977
978/// GlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
979/// GV are simple enough to perform HeapSRA, return true.
980static bool GlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
981                                                 MallocInst *MI) {
982  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
983       ++UI)
984    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
985      // We permit two users of the load: setcc comparing against the null
986      // pointer, and a getelementptr of a specific form.
987      for (Value::use_iterator UI = LI->use_begin(), E = LI->use_end(); UI != E;
988           ++UI) {
989        // Comparison against null is ok.
990        if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
991          if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
992            return false;
993          continue;
994        }
995
996        // getelementptr is also ok, but only a simple form.
997        if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
998          // Must index into the array and into the struct.
999          if (GEPI->getNumOperands() < 3)
1000            return false;
1001
1002          // Otherwise the GEP is ok.
1003          continue;
1004        }
1005
1006        if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
1007          // We have a phi of a load from the global.  We can only handle this
1008          // if the other PHI'd values are actually the same.  In this case,
1009          // the rewriter will just drop the phi entirely.
1010          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1011            Value *IV = PN->getIncomingValue(i);
1012            if (IV == LI) continue;  // Trivial the same.
1013
1014            // If the phi'd value is from the malloc that initializes the value,
1015            // we can xform it.
1016            if (IV == MI) continue;
1017
1018            // Otherwise, we don't know what it is.
1019            return false;
1020          }
1021          return true;
1022        }
1023
1024        // Otherwise we don't know what this is, not ok.
1025        return false;
1026      }
1027    }
1028  return true;
1029}
1030
1031/// GetHeapSROALoad - Return the load for the specified field of the HeapSROA'd
1032/// value, lazily creating it on demand.
1033static Value *GetHeapSROALoad(Instruction *Load, unsigned FieldNo,
1034                              const std::vector<GlobalVariable*> &FieldGlobals,
1035                              std::vector<Value *> &InsertedLoadsForPtr) {
1036  if (InsertedLoadsForPtr.size() <= FieldNo)
1037    InsertedLoadsForPtr.resize(FieldNo+1);
1038  if (InsertedLoadsForPtr[FieldNo] == 0)
1039    InsertedLoadsForPtr[FieldNo] = new LoadInst(FieldGlobals[FieldNo],
1040                                                Load->getName()+".f" +
1041                                                utostr(FieldNo), Load);
1042  return InsertedLoadsForPtr[FieldNo];
1043}
1044
1045/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1046/// the load, rewrite the derived value to use the HeapSRoA'd load.
1047static void RewriteHeapSROALoadUser(LoadInst *Load, Instruction *LoadUser,
1048                               const std::vector<GlobalVariable*> &FieldGlobals,
1049                                    std::vector<Value *> &InsertedLoadsForPtr) {
1050  // If this is a comparison against null, handle it.
1051  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1052    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1053    // If we have a setcc of the loaded pointer, we can use a setcc of any
1054    // field.
1055    Value *NPtr;
1056    if (InsertedLoadsForPtr.empty()) {
1057      NPtr = GetHeapSROALoad(Load, 0, FieldGlobals, InsertedLoadsForPtr);
1058    } else {
1059      NPtr = InsertedLoadsForPtr.back();
1060    }
1061
1062    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1063                              Constant::getNullValue(NPtr->getType()),
1064                              SCI->getName(), SCI);
1065    SCI->replaceAllUsesWith(New);
1066    SCI->eraseFromParent();
1067    return;
1068  }
1069
1070  // Handle 'getelementptr Ptr, Idx, uint FieldNo ...'
1071  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1072    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1073           && "Unexpected GEPI!");
1074
1075    // Load the pointer for this field.
1076    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1077    Value *NewPtr = GetHeapSROALoad(Load, FieldNo,
1078                                    FieldGlobals, InsertedLoadsForPtr);
1079
1080    // Create the new GEP idx vector.
1081    SmallVector<Value*, 8> GEPIdx;
1082    GEPIdx.push_back(GEPI->getOperand(1));
1083    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1084
1085    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1086                                             GEPIdx.begin(), GEPIdx.end(),
1087                                             GEPI->getName(), GEPI);
1088    GEPI->replaceAllUsesWith(NGEPI);
1089    GEPI->eraseFromParent();
1090    return;
1091  }
1092
1093  // Handle PHI nodes.  PHI nodes must be merging in the same values, plus
1094  // potentially the original malloc.  Insert phi nodes for each field, then
1095  // process uses of the PHI.
1096  PHINode *PN = cast<PHINode>(LoadUser);
1097  std::vector<Value *> PHIsForField;
1098  PHIsForField.resize(FieldGlobals.size());
1099  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1100    Value *LoadV = GetHeapSROALoad(Load, i, FieldGlobals, InsertedLoadsForPtr);
1101
1102    PHINode *FieldPN = PHINode::Create(LoadV->getType(),
1103                                       PN->getName()+"."+utostr(i), PN);
1104    // Fill in the predecessor values.
1105    for (unsigned pred = 0, e = PN->getNumIncomingValues(); pred != e; ++pred) {
1106      // Each predecessor either uses the load or the original malloc.
1107      Value *InVal = PN->getIncomingValue(pred);
1108      BasicBlock *BB = PN->getIncomingBlock(pred);
1109      Value *NewVal;
1110      if (isa<MallocInst>(InVal)) {
1111        // Insert a reload from the global in the predecessor.
1112        NewVal = GetHeapSROALoad(BB->getTerminator(), i, FieldGlobals,
1113                                 PHIsForField);
1114      } else {
1115        NewVal = InsertedLoadsForPtr[i];
1116      }
1117      FieldPN->addIncoming(NewVal, BB);
1118    }
1119    PHIsForField[i] = FieldPN;
1120  }
1121
1122  // Since PHIsForField specifies a phi for every input value, the lazy inserter
1123  // will never insert a load.
1124  while (!PN->use_empty())
1125    RewriteHeapSROALoadUser(Load, PN->use_back(), FieldGlobals, PHIsForField);
1126  PN->eraseFromParent();
1127}
1128
1129/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1130/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1131/// use FieldGlobals instead.  All uses of loaded values satisfy
1132/// GlobalLoadUsesSimpleEnoughForHeapSRA.
1133static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1134                             const std::vector<GlobalVariable*> &FieldGlobals) {
1135  std::vector<Value *> InsertedLoadsForPtr;
1136  //InsertedLoadsForPtr.resize(FieldGlobals.size());
1137  while (!Load->use_empty())
1138    RewriteHeapSROALoadUser(Load, Load->use_back(),
1139                            FieldGlobals, InsertedLoadsForPtr);
1140}
1141
1142/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1143/// it up into multiple allocations of arrays of the fields.
1144static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1145  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1146  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1147
1148  // There is guaranteed to be at least one use of the malloc (storing
1149  // it into GV).  If there are other uses, change them to be uses of
1150  // the global to simplify later code.  This also deletes the store
1151  // into GV.
1152  ReplaceUsesOfMallocWithGlobal(MI, GV);
1153
1154  // Okay, at this point, there are no users of the malloc.  Insert N
1155  // new mallocs at the same place as MI, and N globals.
1156  std::vector<GlobalVariable*> FieldGlobals;
1157  std::vector<MallocInst*> FieldMallocs;
1158
1159  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1160    const Type *FieldTy = STy->getElementType(FieldNo);
1161    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1162
1163    GlobalVariable *NGV =
1164      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1165                         Constant::getNullValue(PFieldTy),
1166                         GV->getName() + ".f" + utostr(FieldNo), GV,
1167                         GV->isThreadLocal());
1168    FieldGlobals.push_back(NGV);
1169
1170    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1171                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1172    FieldMallocs.push_back(NMI);
1173    new StoreInst(NMI, NGV, MI);
1174  }
1175
1176  // The tricky aspect of this transformation is handling the case when malloc
1177  // fails.  In the original code, malloc failing would set the result pointer
1178  // of malloc to null.  In this case, some mallocs could succeed and others
1179  // could fail.  As such, we emit code that looks like this:
1180  //    F0 = malloc(field0)
1181  //    F1 = malloc(field1)
1182  //    F2 = malloc(field2)
1183  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1184  //      if (F0) { free(F0); F0 = 0; }
1185  //      if (F1) { free(F1); F1 = 0; }
1186  //      if (F2) { free(F2); F2 = 0; }
1187  //    }
1188  Value *RunningOr = 0;
1189  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1190    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1191                             Constant::getNullValue(FieldMallocs[i]->getType()),
1192                                  "isnull", MI);
1193    if (!RunningOr)
1194      RunningOr = Cond;   // First seteq
1195    else
1196      RunningOr = BinaryOperator::createOr(RunningOr, Cond, "tmp", MI);
1197  }
1198
1199  // Split the basic block at the old malloc.
1200  BasicBlock *OrigBB = MI->getParent();
1201  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1202
1203  // Create the block to check the first condition.  Put all these blocks at the
1204  // end of the function as they are unlikely to be executed.
1205  BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1206                                                OrigBB->getParent());
1207
1208  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1209  // branch on RunningOr.
1210  OrigBB->getTerminator()->eraseFromParent();
1211  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1212
1213  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1214  // pointer, because some may be null while others are not.
1215  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1216    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1217    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1218                              Constant::getNullValue(GVVal->getType()),
1219                              "tmp", NullPtrBlock);
1220    BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1221    BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1222    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1223
1224    // Fill in FreeBlock.
1225    new FreeInst(GVVal, FreeBlock);
1226    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1227                  FreeBlock);
1228    BranchInst::Create(NextBlock, FreeBlock);
1229
1230    NullPtrBlock = NextBlock;
1231  }
1232
1233  BranchInst::Create(ContBB, NullPtrBlock);
1234
1235  // MI is no longer needed, remove it.
1236  MI->eraseFromParent();
1237
1238
1239  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1240  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1241  // of the per-field globals instead.
1242  while (!GV->use_empty()) {
1243    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
1244      RewriteUsesOfLoadForHeapSRoA(LI, FieldGlobals);
1245      LI->eraseFromParent();
1246    } else {
1247      // Must be a store of null.
1248      StoreInst *SI = cast<StoreInst>(GV->use_back());
1249      assert(isa<Constant>(SI->getOperand(0)) &&
1250             cast<Constant>(SI->getOperand(0))->isNullValue() &&
1251             "Unexpected heap-sra user!");
1252
1253      // Insert a store of null into each global.
1254      for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1255        Constant *Null =
1256          Constant::getNullValue(FieldGlobals[i]->getType()->getElementType());
1257        new StoreInst(Null, FieldGlobals[i], SI);
1258      }
1259      // Erase the original store.
1260      SI->eraseFromParent();
1261    }
1262  }
1263
1264  // The old global is now dead, remove it.
1265  GV->eraseFromParent();
1266
1267  ++NumHeapSRA;
1268  return FieldGlobals[0];
1269}
1270
1271
1272// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1273// that only one value (besides its initializer) is ever stored to the global.
1274static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1275                                     Module::global_iterator &GVI,
1276                                     TargetData &TD) {
1277  if (CastInst *CI = dyn_cast<CastInst>(StoredOnceVal))
1278    StoredOnceVal = CI->getOperand(0);
1279  else if (GetElementPtrInst *GEPI =dyn_cast<GetElementPtrInst>(StoredOnceVal)){
1280    // "getelementptr Ptr, 0, 0, 0" is really just a cast.
1281    bool IsJustACast = true;
1282    for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
1283      if (!isa<Constant>(GEPI->getOperand(i)) ||
1284          !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
1285        IsJustACast = false;
1286        break;
1287      }
1288    if (IsJustACast)
1289      StoredOnceVal = GEPI->getOperand(0);
1290  }
1291
1292  // If we are dealing with a pointer global that is initialized to null and
1293  // only has one (non-null) value stored into it, then we can optimize any
1294  // users of the loaded value (often calls and loads) that would trap if the
1295  // value was null.
1296  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1297      GV->getInitializer()->isNullValue()) {
1298    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1299      if (GV->getInitializer()->getType() != SOVC->getType())
1300        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1301
1302      // Optimize away any trapping uses of the loaded value.
1303      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1304        return true;
1305    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1306      // If this is a malloc of an abstract type, don't touch it.
1307      if (!MI->getAllocatedType()->isSized())
1308        return false;
1309
1310      // We can't optimize this global unless all uses of it are *known* to be
1311      // of the malloc value, not of the null initializer value (consider a use
1312      // that compares the global's value against zero to see if the malloc has
1313      // been reached).  To do this, we check to see if all uses of the global
1314      // would trap if the global were null: this proves that they must all
1315      // happen after the malloc.
1316      if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1317        return false;
1318
1319      // We can't optimize this if the malloc itself is used in a complex way,
1320      // for example, being stored into multiple globals.  This allows the
1321      // malloc to be stored into the specified global, loaded setcc'd, and
1322      // GEP'd.  These are all things we could transform to using the global
1323      // for.
1324      {
1325        SmallPtrSet<PHINode*, 8> PHIs;
1326        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1327          return false;
1328      }
1329
1330
1331      // If we have a global that is only initialized with a fixed size malloc,
1332      // transform the program to use global memory instead of malloc'd memory.
1333      // This eliminates dynamic allocation, avoids an indirection accessing the
1334      // data, and exposes the resultant global to further GlobalOpt.
1335      if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1336        // Restrict this transformation to only working on small allocations
1337        // (2048 bytes currently), as we don't want to introduce a 16M global or
1338        // something.
1339        if (NElements->getZExtValue()*
1340                     TD.getABITypeSize(MI->getAllocatedType()) < 2048) {
1341          GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1342          return true;
1343        }
1344      }
1345
1346      // If the allocation is an array of structures, consider transforming this
1347      // into multiple malloc'd arrays, one for each field.  This is basically
1348      // SRoA for malloc'd memory.
1349      if (const StructType *AllocTy =
1350                  dyn_cast<StructType>(MI->getAllocatedType())) {
1351        // This the structure has an unreasonable number of fields, leave it
1352        // alone.
1353        if (AllocTy->getNumElements() <= 16 && AllocTy->getNumElements() > 0 &&
1354            GlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1355          GVI = PerformHeapAllocSRoA(GV, MI);
1356          return true;
1357        }
1358      }
1359    }
1360  }
1361
1362  return false;
1363}
1364
1365/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1366/// two values ever stored into GV are its initializer and OtherVal.  See if we
1367/// can shrink the global into a boolean and select between the two values
1368/// whenever it is used.  This exposes the values to other scalar optimizations.
1369static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1370  const Type *GVElType = GV->getType()->getElementType();
1371
1372  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1373  // an FP value or vector, don't do this optimization because a select between
1374  // them is very expensive and unlikely to lead to later simplification.
1375  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1376      isa<VectorType>(GVElType))
1377    return false;
1378
1379  // Walk the use list of the global seeing if all the uses are load or store.
1380  // If there is anything else, bail out.
1381  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1382    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1383      return false;
1384
1385  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1386
1387  // Create the new global, initializing it to false.
1388  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1389         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1390                                             GV->getName()+".b",
1391                                             (Module *)NULL,
1392                                             GV->isThreadLocal());
1393  GV->getParent()->getGlobalList().insert(GV, NewGV);
1394
1395  Constant *InitVal = GV->getInitializer();
1396  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1397
1398  // If initialized to zero and storing one into the global, we can use a cast
1399  // instead of a select to synthesize the desired value.
1400  bool IsOneZero = false;
1401  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1402    IsOneZero = InitVal->isNullValue() && CI->isOne();
1403
1404  while (!GV->use_empty()) {
1405    Instruction *UI = cast<Instruction>(GV->use_back());
1406    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1407      // Change the store into a boolean store.
1408      bool StoringOther = SI->getOperand(0) == OtherVal;
1409      // Only do this if we weren't storing a loaded value.
1410      Value *StoreVal;
1411      if (StoringOther || SI->getOperand(0) == InitVal)
1412        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1413      else {
1414        // Otherwise, we are storing a previously loaded copy.  To do this,
1415        // change the copy from copying the original value to just copying the
1416        // bool.
1417        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1418
1419        // If we're already replaced the input, StoredVal will be a cast or
1420        // select instruction.  If not, it will be a load of the original
1421        // global.
1422        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1423          assert(LI->getOperand(0) == GV && "Not a copy!");
1424          // Insert a new load, to preserve the saved value.
1425          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1426        } else {
1427          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1428                 "This is not a form that we understand!");
1429          StoreVal = StoredVal->getOperand(0);
1430          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1431        }
1432      }
1433      new StoreInst(StoreVal, NewGV, SI);
1434    } else {
1435      // Change the load into a load of bool then a select.
1436      LoadInst *LI = cast<LoadInst>(UI);
1437      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1438      Value *NSI;
1439      if (IsOneZero)
1440        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1441      else
1442        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1443      NSI->takeName(LI);
1444      LI->replaceAllUsesWith(NSI);
1445    }
1446    UI->eraseFromParent();
1447  }
1448
1449  GV->eraseFromParent();
1450  return true;
1451}
1452
1453
1454/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1455/// it if possible.  If we make a change, return true.
1456bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1457                                      Module::global_iterator &GVI) {
1458  std::set<PHINode*> PHIUsers;
1459  GlobalStatus GS;
1460  GV->removeDeadConstantUsers();
1461
1462  if (GV->use_empty()) {
1463    DOUT << "GLOBAL DEAD: " << *GV;
1464    GV->eraseFromParent();
1465    ++NumDeleted;
1466    return true;
1467  }
1468
1469  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1470#if 0
1471    cerr << "Global: " << *GV;
1472    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1473    cerr << "  StoredType = ";
1474    switch (GS.StoredType) {
1475    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1476    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1477    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1478    case GlobalStatus::isStored: cerr << "stored\n"; break;
1479    }
1480    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1481      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1482    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1483      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1484                << "\n";
1485    cerr << "  HasMultipleAccessingFunctions =  "
1486              << GS.HasMultipleAccessingFunctions << "\n";
1487    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1488    cerr << "\n";
1489#endif
1490
1491    // If this is a first class global and has only one accessing function
1492    // and this function is main (which we know is not recursive we can make
1493    // this global a local variable) we replace the global with a local alloca
1494    // in this function.
1495    //
1496    // NOTE: It doesn't make sense to promote non first class types since we
1497    // are just replacing static memory to stack memory.
1498    if (!GS.HasMultipleAccessingFunctions &&
1499        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1500        GV->getType()->getElementType()->isFirstClassType() &&
1501        GS.AccessingFunction->getName() == "main" &&
1502        GS.AccessingFunction->hasExternalLinkage()) {
1503      DOUT << "LOCALIZING GLOBAL: " << *GV;
1504      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1505      const Type* ElemTy = GV->getType()->getElementType();
1506      // FIXME: Pass Global's alignment when globals have alignment
1507      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1508      if (!isa<UndefValue>(GV->getInitializer()))
1509        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1510
1511      GV->replaceAllUsesWith(Alloca);
1512      GV->eraseFromParent();
1513      ++NumLocalized;
1514      return true;
1515    }
1516
1517    // If the global is never loaded (but may be stored to), it is dead.
1518    // Delete it now.
1519    if (!GS.isLoaded) {
1520      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1521
1522      // Delete any stores we can find to the global.  We may not be able to
1523      // make it completely dead though.
1524      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1525
1526      // If the global is dead now, delete it.
1527      if (GV->use_empty()) {
1528        GV->eraseFromParent();
1529        ++NumDeleted;
1530        Changed = true;
1531      }
1532      return Changed;
1533
1534    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1535      DOUT << "MARKING CONSTANT: " << *GV;
1536      GV->setConstant(true);
1537
1538      // Clean up any obviously simplifiable users now.
1539      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1540
1541      // If the global is dead now, just nuke it.
1542      if (GV->use_empty()) {
1543        DOUT << "   *** Marking constant allowed us to simplify "
1544             << "all users and delete global!\n";
1545        GV->eraseFromParent();
1546        ++NumDeleted;
1547      }
1548
1549      ++NumMarked;
1550      return true;
1551    } else if (!GV->getInitializer()->getType()->isFirstClassType()) {
1552      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1553                                                 getAnalysis<TargetData>())) {
1554        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1555        return true;
1556      }
1557    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1558      // If the initial value for the global was an undef value, and if only
1559      // one other value was stored into it, we can just change the
1560      // initializer to be an undef value, then delete all stores to the
1561      // global.  This allows us to mark it constant.
1562      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1563        if (isa<UndefValue>(GV->getInitializer())) {
1564          // Change the initial value here.
1565          GV->setInitializer(SOVConstant);
1566
1567          // Clean up any obviously simplifiable users now.
1568          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1569
1570          if (GV->use_empty()) {
1571            DOUT << "   *** Substituting initializer allowed us to "
1572                 << "simplify all users and delete global!\n";
1573            GV->eraseFromParent();
1574            ++NumDeleted;
1575          } else {
1576            GVI = GV;
1577          }
1578          ++NumSubstitute;
1579          return true;
1580        }
1581
1582      // Try to optimize globals based on the knowledge that only one value
1583      // (besides its initializer) is ever stored to the global.
1584      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1585                                   getAnalysis<TargetData>()))
1586        return true;
1587
1588      // Otherwise, if the global was not a boolean, we can shrink it to be a
1589      // boolean.
1590      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1591        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1592          ++NumShrunkToBool;
1593          return true;
1594        }
1595    }
1596  }
1597  return false;
1598}
1599
1600/// OnlyCalledDirectly - Return true if the specified function is only called
1601/// directly.  In other words, its address is never taken.
1602static bool OnlyCalledDirectly(Function *F) {
1603  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1604    Instruction *User = dyn_cast<Instruction>(*UI);
1605    if (!User) return false;
1606    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1607
1608    // See if the function address is passed as an argument.
1609    for (unsigned i = 1, e = User->getNumOperands(); i != e; ++i)
1610      if (User->getOperand(i) == F) return false;
1611  }
1612  return true;
1613}
1614
1615/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1616/// function, changing them to FastCC.
1617static void ChangeCalleesToFastCall(Function *F) {
1618  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1619    CallSite User(cast<Instruction>(*UI));
1620    User.setCallingConv(CallingConv::Fast);
1621  }
1622}
1623
1624static PAListPtr StripNest(const PAListPtr &Attrs) {
1625  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1626    if ((Attrs.getSlot(i).Attrs & ParamAttr::Nest) == 0)
1627      continue;
1628
1629    // There can be only one.
1630    return Attrs.removeAttr(Attrs.getSlot(i).Index, ParamAttr::Nest);
1631  }
1632
1633  return Attrs;
1634}
1635
1636static void RemoveNestAttribute(Function *F) {
1637  F->setParamAttrs(StripNest(F->getParamAttrs()));
1638  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1639    CallSite User(cast<Instruction>(*UI));
1640    User.setParamAttrs(StripNest(User.getParamAttrs()));
1641  }
1642}
1643
1644bool GlobalOpt::OptimizeFunctions(Module &M) {
1645  bool Changed = false;
1646  // Optimize functions.
1647  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1648    Function *F = FI++;
1649    F->removeDeadConstantUsers();
1650    if (F->use_empty() && (F->hasInternalLinkage() ||
1651                           F->hasLinkOnceLinkage())) {
1652      M.getFunctionList().erase(F);
1653      Changed = true;
1654      ++NumFnDeleted;
1655    } else if (F->hasInternalLinkage()) {
1656      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1657          OnlyCalledDirectly(F)) {
1658        // If this function has C calling conventions, is not a varargs
1659        // function, and is only called directly, promote it to use the Fast
1660        // calling convention.
1661        F->setCallingConv(CallingConv::Fast);
1662        ChangeCalleesToFastCall(F);
1663        ++NumFastCallFns;
1664        Changed = true;
1665      }
1666
1667      if (F->getParamAttrs().hasAttrSomewhere(ParamAttr::Nest) &&
1668          OnlyCalledDirectly(F)) {
1669        // The function is not used by a trampoline intrinsic, so it is safe
1670        // to remove the 'nest' attribute.
1671        RemoveNestAttribute(F);
1672        ++NumNestRemoved;
1673        Changed = true;
1674      }
1675    }
1676  }
1677  return Changed;
1678}
1679
1680bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1681  bool Changed = false;
1682  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1683       GVI != E; ) {
1684    GlobalVariable *GV = GVI++;
1685    if (!GV->isConstant() && GV->hasInternalLinkage() &&
1686        GV->hasInitializer())
1687      Changed |= ProcessInternalGlobal(GV, GVI);
1688  }
1689  return Changed;
1690}
1691
1692/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1693/// initializers have an init priority of 65535.
1694GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1695  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1696       I != E; ++I)
1697    if (I->getName() == "llvm.global_ctors") {
1698      // Found it, verify it's an array of { int, void()* }.
1699      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1700      if (!ATy) return 0;
1701      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1702      if (!STy || STy->getNumElements() != 2 ||
1703          STy->getElementType(0) != Type::Int32Ty) return 0;
1704      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1705      if (!PFTy) return 0;
1706      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1707      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1708          FTy->getNumParams() != 0)
1709        return 0;
1710
1711      // Verify that the initializer is simple enough for us to handle.
1712      if (!I->hasInitializer()) return 0;
1713      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1714      if (!CA) return 0;
1715      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1716        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(CA->getOperand(i))) {
1717          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1718            continue;
1719
1720          // Must have a function or null ptr.
1721          if (!isa<Function>(CS->getOperand(1)))
1722            return 0;
1723
1724          // Init priority must be standard.
1725          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1726          if (!CI || CI->getZExtValue() != 65535)
1727            return 0;
1728        } else {
1729          return 0;
1730        }
1731
1732      return I;
1733    }
1734  return 0;
1735}
1736
1737/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1738/// return a list of the functions and null terminator as a vector.
1739static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1740  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1741  std::vector<Function*> Result;
1742  Result.reserve(CA->getNumOperands());
1743  for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1744    ConstantStruct *CS = cast<ConstantStruct>(CA->getOperand(i));
1745    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1746  }
1747  return Result;
1748}
1749
1750/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1751/// specified array, returning the new global to use.
1752static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1753                                          const std::vector<Function*> &Ctors) {
1754  // If we made a change, reassemble the initializer list.
1755  std::vector<Constant*> CSVals;
1756  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1757  CSVals.push_back(0);
1758
1759  // Create the new init list.
1760  std::vector<Constant*> CAList;
1761  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1762    if (Ctors[i]) {
1763      CSVals[1] = Ctors[i];
1764    } else {
1765      const Type *FTy = FunctionType::get(Type::VoidTy,
1766                                          std::vector<const Type*>(), false);
1767      const PointerType *PFTy = PointerType::getUnqual(FTy);
1768      CSVals[1] = Constant::getNullValue(PFTy);
1769      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1770    }
1771    CAList.push_back(ConstantStruct::get(CSVals));
1772  }
1773
1774  // Create the array initializer.
1775  const Type *StructTy =
1776    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1777  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1778                                    CAList);
1779
1780  // If we didn't change the number of elements, don't create a new GV.
1781  if (CA->getType() == GCL->getInitializer()->getType()) {
1782    GCL->setInitializer(CA);
1783    return GCL;
1784  }
1785
1786  // Create the new global and insert it next to the existing list.
1787  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1788                                           GCL->getLinkage(), CA, "",
1789                                           (Module *)NULL,
1790                                           GCL->isThreadLocal());
1791  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1792  NGV->takeName(GCL);
1793
1794  // Nuke the old list, replacing any uses with the new one.
1795  if (!GCL->use_empty()) {
1796    Constant *V = NGV;
1797    if (V->getType() != GCL->getType())
1798      V = ConstantExpr::getBitCast(V, GCL->getType());
1799    GCL->replaceAllUsesWith(V);
1800  }
1801  GCL->eraseFromParent();
1802
1803  if (Ctors.size())
1804    return NGV;
1805  else
1806    return 0;
1807}
1808
1809
1810static Constant *getVal(std::map<Value*, Constant*> &ComputedValues,
1811                        Value *V) {
1812  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1813  Constant *R = ComputedValues[V];
1814  assert(R && "Reference to an uncomputed value!");
1815  return R;
1816}
1817
1818/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1819/// enough for us to understand.  In particular, if it is a cast of something,
1820/// we punt.  We basically just support direct accesses to globals and GEP's of
1821/// globals.  This should be kept up to date with CommitValueTo.
1822static bool isSimpleEnoughPointerToCommit(Constant *C) {
1823  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
1824    if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1825      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1826    return !GV->isDeclaration();  // reject external globals.
1827  }
1828  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
1829    // Handle a constantexpr gep.
1830    if (CE->getOpcode() == Instruction::GetElementPtr &&
1831        isa<GlobalVariable>(CE->getOperand(0))) {
1832      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1833      if (!GV->hasExternalLinkage() && !GV->hasInternalLinkage())
1834        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
1835      return GV->hasInitializer() &&
1836             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1837    }
1838  return false;
1839}
1840
1841/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
1842/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
1843/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
1844static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
1845                                   ConstantExpr *Addr, unsigned OpNo) {
1846  // Base case of the recursion.
1847  if (OpNo == Addr->getNumOperands()) {
1848    assert(Val->getType() == Init->getType() && "Type mismatch!");
1849    return Val;
1850  }
1851
1852  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
1853    std::vector<Constant*> Elts;
1854
1855    // Break up the constant into its elements.
1856    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
1857      for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
1858        Elts.push_back(CS->getOperand(i));
1859    } else if (isa<ConstantAggregateZero>(Init)) {
1860      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1861        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
1862    } else if (isa<UndefValue>(Init)) {
1863      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1864        Elts.push_back(UndefValue::get(STy->getElementType(i)));
1865    } else {
1866      assert(0 && "This code is out of sync with "
1867             " ConstantFoldLoadThroughGEPConstantExpr");
1868    }
1869
1870    // Replace the element that we are supposed to.
1871    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
1872    unsigned Idx = CU->getZExtValue();
1873    assert(Idx < STy->getNumElements() && "Struct index out of range!");
1874    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
1875
1876    // Return the modified struct.
1877    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
1878  } else {
1879    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
1880    const ArrayType *ATy = cast<ArrayType>(Init->getType());
1881
1882    // Break up the array into elements.
1883    std::vector<Constant*> Elts;
1884    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
1885      for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1886        Elts.push_back(CA->getOperand(i));
1887    } else if (isa<ConstantAggregateZero>(Init)) {
1888      Constant *Elt = Constant::getNullValue(ATy->getElementType());
1889      Elts.assign(ATy->getNumElements(), Elt);
1890    } else if (isa<UndefValue>(Init)) {
1891      Constant *Elt = UndefValue::get(ATy->getElementType());
1892      Elts.assign(ATy->getNumElements(), Elt);
1893    } else {
1894      assert(0 && "This code is out of sync with "
1895             " ConstantFoldLoadThroughGEPConstantExpr");
1896    }
1897
1898    assert(CI->getZExtValue() < ATy->getNumElements());
1899    Elts[CI->getZExtValue()] =
1900      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
1901    return ConstantArray::get(ATy, Elts);
1902  }
1903}
1904
1905/// CommitValueTo - We have decided that Addr (which satisfies the predicate
1906/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
1907static void CommitValueTo(Constant *Val, Constant *Addr) {
1908  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
1909    assert(GV->hasInitializer());
1910    GV->setInitializer(Val);
1911    return;
1912  }
1913
1914  ConstantExpr *CE = cast<ConstantExpr>(Addr);
1915  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1916
1917  Constant *Init = GV->getInitializer();
1918  Init = EvaluateStoreInto(Init, Val, CE, 2);
1919  GV->setInitializer(Init);
1920}
1921
1922/// ComputeLoadResult - Return the value that would be computed by a load from
1923/// P after the stores reflected by 'memory' have been performed.  If we can't
1924/// decide, return null.
1925static Constant *ComputeLoadResult(Constant *P,
1926                                const std::map<Constant*, Constant*> &Memory) {
1927  // If this memory location has been recently stored, use the stored value: it
1928  // is the most up-to-date.
1929  std::map<Constant*, Constant*>::const_iterator I = Memory.find(P);
1930  if (I != Memory.end()) return I->second;
1931
1932  // Access it.
1933  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
1934    if (GV->hasInitializer())
1935      return GV->getInitializer();
1936    return 0;
1937  }
1938
1939  // Handle a constantexpr getelementptr.
1940  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
1941    if (CE->getOpcode() == Instruction::GetElementPtr &&
1942        isa<GlobalVariable>(CE->getOperand(0))) {
1943      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
1944      if (GV->hasInitializer())
1945        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
1946    }
1947
1948  return 0;  // don't know how to evaluate.
1949}
1950
1951/// EvaluateFunction - Evaluate a call to function F, returning true if
1952/// successful, false if we can't evaluate it.  ActualArgs contains the formal
1953/// arguments for the function.
1954static bool EvaluateFunction(Function *F, Constant *&RetVal,
1955                             const std::vector<Constant*> &ActualArgs,
1956                             std::vector<Function*> &CallStack,
1957                             std::map<Constant*, Constant*> &MutatedMemory,
1958                             std::vector<GlobalVariable*> &AllocaTmps) {
1959  // Check to see if this function is already executing (recursion).  If so,
1960  // bail out.  TODO: we might want to accept limited recursion.
1961  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
1962    return false;
1963
1964  CallStack.push_back(F);
1965
1966  /// Values - As we compute SSA register values, we store their contents here.
1967  std::map<Value*, Constant*> Values;
1968
1969  // Initialize arguments to the incoming values specified.
1970  unsigned ArgNo = 0;
1971  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1972       ++AI, ++ArgNo)
1973    Values[AI] = ActualArgs[ArgNo];
1974
1975  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
1976  /// we can only evaluate any one basic block at most once.  This set keeps
1977  /// track of what we have executed so we can detect recursive cases etc.
1978  std::set<BasicBlock*> ExecutedBlocks;
1979
1980  // CurInst - The current instruction we're evaluating.
1981  BasicBlock::iterator CurInst = F->begin()->begin();
1982
1983  // This is the main evaluation loop.
1984  while (1) {
1985    Constant *InstResult = 0;
1986
1987    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
1988      if (SI->isVolatile()) return false;  // no volatile accesses.
1989      Constant *Ptr = getVal(Values, SI->getOperand(1));
1990      if (!isSimpleEnoughPointerToCommit(Ptr))
1991        // If this is too complex for us to commit, reject it.
1992        return false;
1993      Constant *Val = getVal(Values, SI->getOperand(0));
1994      MutatedMemory[Ptr] = Val;
1995    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
1996      InstResult = ConstantExpr::get(BO->getOpcode(),
1997                                     getVal(Values, BO->getOperand(0)),
1998                                     getVal(Values, BO->getOperand(1)));
1999    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2000      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2001                                            getVal(Values, CI->getOperand(0)),
2002                                            getVal(Values, CI->getOperand(1)));
2003    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2004      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2005                                         getVal(Values, CI->getOperand(0)),
2006                                         CI->getType());
2007    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2008      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2009                                           getVal(Values, SI->getOperand(1)),
2010                                           getVal(Values, SI->getOperand(2)));
2011    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2012      Constant *P = getVal(Values, GEP->getOperand(0));
2013      SmallVector<Constant*, 8> GEPOps;
2014      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
2015        GEPOps.push_back(getVal(Values, GEP->getOperand(i)));
2016      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2017    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2018      if (LI->isVolatile()) return false;  // no volatile accesses.
2019      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2020                                     MutatedMemory);
2021      if (InstResult == 0) return false; // Could not evaluate load.
2022    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2023      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2024      const Type *Ty = AI->getType()->getElementType();
2025      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2026                                              GlobalValue::InternalLinkage,
2027                                              UndefValue::get(Ty),
2028                                              AI->getName()));
2029      InstResult = AllocaTmps.back();
2030    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2031      // Cannot handle inline asm.
2032      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2033
2034      // Resolve function pointers.
2035      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2036      if (!Callee) return false;  // Cannot resolve.
2037
2038      std::vector<Constant*> Formals;
2039      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
2040        Formals.push_back(getVal(Values, CI->getOperand(i)));
2041
2042      if (Callee->isDeclaration()) {
2043        // If this is a function we can constant fold, do it.
2044        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2045                                           Formals.size())) {
2046          InstResult = C;
2047        } else {
2048          return false;
2049        }
2050      } else {
2051        if (Callee->getFunctionType()->isVarArg())
2052          return false;
2053
2054        Constant *RetVal;
2055
2056        // Execute the call, if successful, use the return value.
2057        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2058                              MutatedMemory, AllocaTmps))
2059          return false;
2060        InstResult = RetVal;
2061      }
2062    } else if (isa<TerminatorInst>(CurInst)) {
2063      BasicBlock *NewBB = 0;
2064      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2065        if (BI->isUnconditional()) {
2066          NewBB = BI->getSuccessor(0);
2067        } else {
2068          ConstantInt *Cond =
2069            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2070          if (!Cond) return false;  // Cannot determine.
2071
2072          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2073        }
2074      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2075        ConstantInt *Val =
2076          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2077        if (!Val) return false;  // Cannot determine.
2078        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2079      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2080        if (RI->getNumOperands())
2081          RetVal = getVal(Values, RI->getOperand(0));
2082
2083        CallStack.pop_back();  // return from fn.
2084        return true;  // We succeeded at evaluating this ctor!
2085      } else {
2086        // invoke, unwind, unreachable.
2087        return false;  // Cannot handle this terminator.
2088      }
2089
2090      // Okay, we succeeded in evaluating this control flow.  See if we have
2091      // executed the new block before.  If so, we have a looping function,
2092      // which we cannot evaluate in reasonable time.
2093      if (!ExecutedBlocks.insert(NewBB).second)
2094        return false;  // looped!
2095
2096      // Okay, we have never been in this block before.  Check to see if there
2097      // are any PHI nodes.  If so, evaluate them with information about where
2098      // we came from.
2099      BasicBlock *OldBB = CurInst->getParent();
2100      CurInst = NewBB->begin();
2101      PHINode *PN;
2102      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2103        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2104
2105      // Do NOT increment CurInst.  We know that the terminator had no value.
2106      continue;
2107    } else {
2108      // Did not know how to evaluate this!
2109      return false;
2110    }
2111
2112    if (!CurInst->use_empty())
2113      Values[CurInst] = InstResult;
2114
2115    // Advance program counter.
2116    ++CurInst;
2117  }
2118}
2119
2120/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2121/// we can.  Return true if we can, false otherwise.
2122static bool EvaluateStaticConstructor(Function *F) {
2123  /// MutatedMemory - For each store we execute, we update this map.  Loads
2124  /// check this to get the most up-to-date value.  If evaluation is successful,
2125  /// this state is committed to the process.
2126  std::map<Constant*, Constant*> MutatedMemory;
2127
2128  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2129  /// to represent its body.  This vector is needed so we can delete the
2130  /// temporary globals when we are done.
2131  std::vector<GlobalVariable*> AllocaTmps;
2132
2133  /// CallStack - This is used to detect recursion.  In pathological situations
2134  /// we could hit exponential behavior, but at least there is nothing
2135  /// unbounded.
2136  std::vector<Function*> CallStack;
2137
2138  // Call the function.
2139  Constant *RetValDummy;
2140  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2141                                       CallStack, MutatedMemory, AllocaTmps);
2142  if (EvalSuccess) {
2143    // We succeeded at evaluation: commit the result.
2144    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2145         << F->getName() << "' to " << MutatedMemory.size()
2146         << " stores.\n";
2147    for (std::map<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2148         E = MutatedMemory.end(); I != E; ++I)
2149      CommitValueTo(I->second, I->first);
2150  }
2151
2152  // At this point, we are done interpreting.  If we created any 'alloca'
2153  // temporaries, release them now.
2154  while (!AllocaTmps.empty()) {
2155    GlobalVariable *Tmp = AllocaTmps.back();
2156    AllocaTmps.pop_back();
2157
2158    // If there are still users of the alloca, the program is doing something
2159    // silly, e.g. storing the address of the alloca somewhere and using it
2160    // later.  Since this is undefined, we'll just make it be null.
2161    if (!Tmp->use_empty())
2162      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2163    delete Tmp;
2164  }
2165
2166  return EvalSuccess;
2167}
2168
2169
2170
2171/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2172/// Return true if anything changed.
2173bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2174  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2175  bool MadeChange = false;
2176  if (Ctors.empty()) return false;
2177
2178  // Loop over global ctors, optimizing them when we can.
2179  for (unsigned i = 0; i != Ctors.size(); ++i) {
2180    Function *F = Ctors[i];
2181    // Found a null terminator in the middle of the list, prune off the rest of
2182    // the list.
2183    if (F == 0) {
2184      if (i != Ctors.size()-1) {
2185        Ctors.resize(i+1);
2186        MadeChange = true;
2187      }
2188      break;
2189    }
2190
2191    // We cannot simplify external ctor functions.
2192    if (F->empty()) continue;
2193
2194    // If we can evaluate the ctor at compile time, do.
2195    if (EvaluateStaticConstructor(F)) {
2196      Ctors.erase(Ctors.begin()+i);
2197      MadeChange = true;
2198      --i;
2199      ++NumCtorsEvaluated;
2200      continue;
2201    }
2202  }
2203
2204  if (!MadeChange) return false;
2205
2206  GCL = InstallGlobalCtors(GCL, Ctors);
2207  return true;
2208}
2209
2210
2211bool GlobalOpt::runOnModule(Module &M) {
2212  bool Changed = false;
2213
2214  // Try to find the llvm.globalctors list.
2215  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2216
2217  bool LocalChange = true;
2218  while (LocalChange) {
2219    LocalChange = false;
2220
2221    // Delete functions that are trivially dead, ccc -> fastcc
2222    LocalChange |= OptimizeFunctions(M);
2223
2224    // Optimize global_ctors list.
2225    if (GlobalCtors)
2226      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2227
2228    // Optimize non-address-taken globals.
2229    LocalChange |= OptimizeGlobalVars(M);
2230    Changed |= LocalChange;
2231  }
2232
2233  // TODO: Move all global ctors functions to the end of the module for code
2234  // layout.
2235
2236  return Changed;
2237}
2238