GlobalOpt.cpp revision e49143534aa59881e9bdd826aebd7b8d6bd7408c
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Support/CallSite.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39using namespace llvm;
40
41STATISTIC(NumMarked    , "Number of globals marked constant");
42STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
43STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
44STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
45STATISTIC(NumDeleted   , "Number of globals deleted");
46STATISTIC(NumFnDeleted , "Number of functions deleted");
47STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
48STATISTIC(NumLocalized , "Number of globals localized");
49STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
50STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
51STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
52STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
53STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
54STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
55
56namespace {
57  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
58    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
59      AU.addRequired<TargetData>();
60    }
61    static char ID; // Pass identification, replacement for typeid
62    GlobalOpt() : ModulePass(&ID) {}
63
64    bool runOnModule(Module &M);
65
66  private:
67    GlobalVariable *FindGlobalCtors(Module &M);
68    bool OptimizeFunctions(Module &M);
69    bool OptimizeGlobalVars(Module &M);
70    bool OptimizeGlobalAliases(Module &M);
71    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
72    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
73  };
74}
75
76char GlobalOpt::ID = 0;
77static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
78
79ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
80
81namespace {
82
83/// GlobalStatus - As we analyze each global, keep track of some information
84/// about it.  If we find out that the address of the global is taken, none of
85/// this info will be accurate.
86struct VISIBILITY_HIDDEN GlobalStatus {
87  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
88  /// loaded it can be deleted.
89  bool isLoaded;
90
91  /// StoredType - Keep track of what stores to the global look like.
92  ///
93  enum StoredType {
94    /// NotStored - There is no store to this global.  It can thus be marked
95    /// constant.
96    NotStored,
97
98    /// isInitializerStored - This global is stored to, but the only thing
99    /// stored is the constant it was initialized with.  This is only tracked
100    /// for scalar globals.
101    isInitializerStored,
102
103    /// isStoredOnce - This global is stored to, but only its initializer and
104    /// one other value is ever stored to it.  If this global isStoredOnce, we
105    /// track the value stored to it in StoredOnceValue below.  This is only
106    /// tracked for scalar globals.
107    isStoredOnce,
108
109    /// isStored - This global is stored to by multiple values or something else
110    /// that we cannot track.
111    isStored
112  } StoredType;
113
114  /// StoredOnceValue - If only one value (besides the initializer constant) is
115  /// ever stored to this global, keep track of what value it is.
116  Value *StoredOnceValue;
117
118  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
119  /// null/false.  When the first accessing function is noticed, it is recorded.
120  /// When a second different accessing function is noticed,
121  /// HasMultipleAccessingFunctions is set to true.
122  Function *AccessingFunction;
123  bool HasMultipleAccessingFunctions;
124
125  /// HasNonInstructionUser - Set to true if this global has a user that is not
126  /// an instruction (e.g. a constant expr or GV initializer).
127  bool HasNonInstructionUser;
128
129  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
130  bool HasPHIUser;
131
132  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
133                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
134                   HasNonInstructionUser(false), HasPHIUser(false) {}
135};
136
137}
138
139// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
140// by constants itself.  Note that constants cannot be cyclic, so this test is
141// pretty easy to implement recursively.
142//
143static bool SafeToDestroyConstant(Constant *C) {
144  if (isa<GlobalValue>(C)) return false;
145
146  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
147    if (Constant *CU = dyn_cast<Constant>(*UI)) {
148      if (!SafeToDestroyConstant(CU)) return false;
149    } else
150      return false;
151  return true;
152}
153
154
155/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
156/// structure.  If the global has its address taken, return true to indicate we
157/// can't do anything with it.
158///
159static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
160                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
161  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
162    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
163      GS.HasNonInstructionUser = true;
164
165      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
166
167    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
168      if (!GS.HasMultipleAccessingFunctions) {
169        Function *F = I->getParent()->getParent();
170        if (GS.AccessingFunction == 0)
171          GS.AccessingFunction = F;
172        else if (GS.AccessingFunction != F)
173          GS.HasMultipleAccessingFunctions = true;
174      }
175      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
176        GS.isLoaded = true;
177        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
178      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
179        // Don't allow a store OF the address, only stores TO the address.
180        if (SI->getOperand(0) == V) return true;
181
182        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
183
184        // If this is a direct store to the global (i.e., the global is a scalar
185        // value, not an aggregate), keep more specific information about
186        // stores.
187        if (GS.StoredType != GlobalStatus::isStored) {
188          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
189            Value *StoredVal = SI->getOperand(0);
190            if (StoredVal == GV->getInitializer()) {
191              if (GS.StoredType < GlobalStatus::isInitializerStored)
192                GS.StoredType = GlobalStatus::isInitializerStored;
193            } else if (isa<LoadInst>(StoredVal) &&
194                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
195              // G = G
196              if (GS.StoredType < GlobalStatus::isInitializerStored)
197                GS.StoredType = GlobalStatus::isInitializerStored;
198            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
199              GS.StoredType = GlobalStatus::isStoredOnce;
200              GS.StoredOnceValue = StoredVal;
201            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
202                       GS.StoredOnceValue == StoredVal) {
203              // noop.
204            } else {
205              GS.StoredType = GlobalStatus::isStored;
206            }
207          } else {
208            GS.StoredType = GlobalStatus::isStored;
209          }
210        }
211      } else if (isa<GetElementPtrInst>(I)) {
212        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
213      } else if (isa<SelectInst>(I)) {
214        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
215      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
216        // PHI nodes we can check just like select or GEP instructions, but we
217        // have to be careful about infinite recursion.
218        if (PHIUsers.insert(PN))  // Not already visited.
219          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
220        GS.HasPHIUser = true;
221      } else if (isa<CmpInst>(I)) {
222      } else if (isa<MemTransferInst>(I)) {
223        if (I->getOperand(1) == V)
224          GS.StoredType = GlobalStatus::isStored;
225        if (I->getOperand(2) == V)
226          GS.isLoaded = true;
227      } else if (isa<MemSetInst>(I)) {
228        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
229        GS.StoredType = GlobalStatus::isStored;
230      } else {
231        return true;  // Any other non-load instruction might take address!
232      }
233    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
234      GS.HasNonInstructionUser = true;
235      // We might have a dead and dangling constant hanging off of here.
236      if (!SafeToDestroyConstant(C))
237        return true;
238    } else {
239      GS.HasNonInstructionUser = true;
240      // Otherwise must be some other user.
241      return true;
242    }
243
244  return false;
245}
246
247static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
248  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
249  if (!CI) return 0;
250  unsigned IdxV = CI->getZExtValue();
251
252  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
253    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
254  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
255    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
256  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
257    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
258  } else if (isa<ConstantAggregateZero>(Agg)) {
259    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
260      if (IdxV < STy->getNumElements())
261        return Constant::getNullValue(STy->getElementType(IdxV));
262    } else if (const SequentialType *STy =
263               dyn_cast<SequentialType>(Agg->getType())) {
264      return Constant::getNullValue(STy->getElementType());
265    }
266  } else if (isa<UndefValue>(Agg)) {
267    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
268      if (IdxV < STy->getNumElements())
269        return UndefValue::get(STy->getElementType(IdxV));
270    } else if (const SequentialType *STy =
271               dyn_cast<SequentialType>(Agg->getType())) {
272      return UndefValue::get(STy->getElementType());
273    }
274  }
275  return 0;
276}
277
278
279/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
280/// users of the global, cleaning up the obvious ones.  This is largely just a
281/// quick scan over the use list to clean up the easy and obvious cruft.  This
282/// returns true if it made a change.
283static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
284  bool Changed = false;
285  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
286    User *U = *UI++;
287
288    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
289      if (Init) {
290        // Replace the load with the initializer.
291        LI->replaceAllUsesWith(Init);
292        LI->eraseFromParent();
293        Changed = true;
294      }
295    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
296      // Store must be unreachable or storing Init into the global.
297      SI->eraseFromParent();
298      Changed = true;
299    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
300      if (CE->getOpcode() == Instruction::GetElementPtr) {
301        Constant *SubInit = 0;
302        if (Init)
303          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
304        Changed |= CleanupConstantGlobalUsers(CE, SubInit);
305      } else if (CE->getOpcode() == Instruction::BitCast &&
306                 isa<PointerType>(CE->getType())) {
307        // Pointer cast, delete any stores and memsets to the global.
308        Changed |= CleanupConstantGlobalUsers(CE, 0);
309      }
310
311      if (CE->use_empty()) {
312        CE->destroyConstant();
313        Changed = true;
314      }
315    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
316      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
317      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
318      // and will invalidate our notion of what Init is.
319      Constant *SubInit = 0;
320      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
321        ConstantExpr *CE =
322          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
323        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
324          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
325      }
326      Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
327
328      if (GEP->use_empty()) {
329        GEP->eraseFromParent();
330        Changed = true;
331      }
332    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
333      if (MI->getRawDest() == V) {
334        MI->eraseFromParent();
335        Changed = true;
336      }
337
338    } else if (Constant *C = dyn_cast<Constant>(U)) {
339      // If we have a chain of dead constantexprs or other things dangling from
340      // us, and if they are all dead, nuke them without remorse.
341      if (SafeToDestroyConstant(C)) {
342        C->destroyConstant();
343        // This could have invalidated UI, start over from scratch.
344        CleanupConstantGlobalUsers(V, Init);
345        return true;
346      }
347    }
348  }
349  return Changed;
350}
351
352/// isSafeSROAElementUse - Return true if the specified instruction is a safe
353/// user of a derived expression from a global that we want to SROA.
354static bool isSafeSROAElementUse(Value *V) {
355  // We might have a dead and dangling constant hanging off of here.
356  if (Constant *C = dyn_cast<Constant>(V))
357    return SafeToDestroyConstant(C);
358
359  Instruction *I = dyn_cast<Instruction>(V);
360  if (!I) return false;
361
362  // Loads are ok.
363  if (isa<LoadInst>(I)) return true;
364
365  // Stores *to* the pointer are ok.
366  if (StoreInst *SI = dyn_cast<StoreInst>(I))
367    return SI->getOperand(0) != V;
368
369  // Otherwise, it must be a GEP.
370  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
371  if (GEPI == 0) return false;
372
373  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
374      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
375    return false;
376
377  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
378       I != E; ++I)
379    if (!isSafeSROAElementUse(*I))
380      return false;
381  return true;
382}
383
384
385/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
386/// Look at it and its uses and decide whether it is safe to SROA this global.
387///
388static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
389  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
390  if (!isa<GetElementPtrInst>(U) &&
391      (!isa<ConstantExpr>(U) ||
392       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
393    return false;
394
395  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
396  // don't like < 3 operand CE's, and we don't like non-constant integer
397  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
398  // value of C.
399  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
400      !cast<Constant>(U->getOperand(1))->isNullValue() ||
401      !isa<ConstantInt>(U->getOperand(2)))
402    return false;
403
404  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
405  ++GEPI;  // Skip over the pointer index.
406
407  // If this is a use of an array allocation, do a bit more checking for sanity.
408  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
409    uint64_t NumElements = AT->getNumElements();
410    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
411
412    // Check to make sure that index falls within the array.  If not,
413    // something funny is going on, so we won't do the optimization.
414    //
415    if (Idx->getZExtValue() >= NumElements)
416      return false;
417
418    // We cannot scalar repl this level of the array unless any array
419    // sub-indices are in-range constants.  In particular, consider:
420    // A[0][i].  We cannot know that the user isn't doing invalid things like
421    // allowing i to index an out-of-range subscript that accesses A[1].
422    //
423    // Scalar replacing *just* the outer index of the array is probably not
424    // going to be a win anyway, so just give up.
425    for (++GEPI; // Skip array index.
426         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
427         ++GEPI) {
428      uint64_t NumElements;
429      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
430        NumElements = SubArrayTy->getNumElements();
431      else
432        NumElements = cast<VectorType>(*GEPI)->getNumElements();
433
434      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
435      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
436        return false;
437    }
438  }
439
440  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
441    if (!isSafeSROAElementUse(*I))
442      return false;
443  return true;
444}
445
446/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
447/// is safe for us to perform this transformation.
448///
449static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
450  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
451       UI != E; ++UI) {
452    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
453      return false;
454  }
455  return true;
456}
457
458
459/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
460/// variable.  This opens the door for other optimizations by exposing the
461/// behavior of the program in a more fine-grained way.  We have determined that
462/// this transformation is safe already.  We return the first global variable we
463/// insert so that the caller can reprocess it.
464static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
465  // Make sure this global only has simple uses that we can SRA.
466  if (!GlobalUsersSafeToSRA(GV))
467    return 0;
468
469  assert(GV->hasLocalLinkage() && !GV->isConstant());
470  Constant *Init = GV->getInitializer();
471  const Type *Ty = Init->getType();
472
473  std::vector<GlobalVariable*> NewGlobals;
474  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
475
476  // Get the alignment of the global, either explicit or target-specific.
477  unsigned StartAlignment = GV->getAlignment();
478  if (StartAlignment == 0)
479    StartAlignment = TD.getABITypeAlignment(GV->getType());
480
481  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
482    NewGlobals.reserve(STy->getNumElements());
483    const StructLayout &Layout = *TD.getStructLayout(STy);
484    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
485      Constant *In = getAggregateConstantElement(Init,
486                                            ConstantInt::get(Type::Int32Ty, i));
487      assert(In && "Couldn't get element of initializer?");
488      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
489                                               GlobalVariable::InternalLinkage,
490                                               In, GV->getName()+"."+utostr(i),
491                                               (Module *)NULL,
492                                               GV->isThreadLocal(),
493                                               GV->getType()->getAddressSpace());
494      Globals.insert(GV, NGV);
495      NewGlobals.push_back(NGV);
496
497      // Calculate the known alignment of the field.  If the original aggregate
498      // had 256 byte alignment for example, something might depend on that:
499      // propagate info to each field.
500      uint64_t FieldOffset = Layout.getElementOffset(i);
501      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
502      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
503        NGV->setAlignment(NewAlign);
504    }
505  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
506    unsigned NumElements = 0;
507    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
508      NumElements = ATy->getNumElements();
509    else
510      NumElements = cast<VectorType>(STy)->getNumElements();
511
512    if (NumElements > 16 && GV->hasNUsesOrMore(16))
513      return 0; // It's not worth it.
514    NewGlobals.reserve(NumElements);
515
516    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
517    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
518    for (unsigned i = 0, e = NumElements; i != e; ++i) {
519      Constant *In = getAggregateConstantElement(Init,
520                                            ConstantInt::get(Type::Int32Ty, i));
521      assert(In && "Couldn't get element of initializer?");
522
523      GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
524                                               GlobalVariable::InternalLinkage,
525                                               In, GV->getName()+"."+utostr(i),
526                                               (Module *)NULL,
527                                               GV->isThreadLocal(),
528                                               GV->getType()->getAddressSpace());
529      Globals.insert(GV, NGV);
530      NewGlobals.push_back(NGV);
531
532      // Calculate the known alignment of the field.  If the original aggregate
533      // had 256 byte alignment for example, something might depend on that:
534      // propagate info to each field.
535      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
536      if (NewAlign > EltAlign)
537        NGV->setAlignment(NewAlign);
538    }
539  }
540
541  if (NewGlobals.empty())
542    return 0;
543
544  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
545
546  Constant *NullInt = Constant::getNullValue(Type::Int32Ty);
547
548  // Loop over all of the uses of the global, replacing the constantexpr geps,
549  // with smaller constantexpr geps or direct references.
550  while (!GV->use_empty()) {
551    User *GEP = GV->use_back();
552    assert(((isa<ConstantExpr>(GEP) &&
553             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
554            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
555
556    // Ignore the 1th operand, which has to be zero or else the program is quite
557    // broken (undefined).  Get the 2nd operand, which is the structure or array
558    // index.
559    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
560    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
561
562    Value *NewPtr = NewGlobals[Val];
563
564    // Form a shorter GEP if needed.
565    if (GEP->getNumOperands() > 3) {
566      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
567        SmallVector<Constant*, 8> Idxs;
568        Idxs.push_back(NullInt);
569        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
570          Idxs.push_back(CE->getOperand(i));
571        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
572                                                &Idxs[0], Idxs.size());
573      } else {
574        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
575        SmallVector<Value*, 8> Idxs;
576        Idxs.push_back(NullInt);
577        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
578          Idxs.push_back(GEPI->getOperand(i));
579        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
580                                           GEPI->getName()+"."+utostr(Val), GEPI);
581      }
582    }
583    GEP->replaceAllUsesWith(NewPtr);
584
585    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
586      GEPI->eraseFromParent();
587    else
588      cast<ConstantExpr>(GEP)->destroyConstant();
589  }
590
591  // Delete the old global, now that it is dead.
592  Globals.erase(GV);
593  ++NumSRA;
594
595  // Loop over the new globals array deleting any globals that are obviously
596  // dead.  This can arise due to scalarization of a structure or an array that
597  // has elements that are dead.
598  unsigned FirstGlobal = 0;
599  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
600    if (NewGlobals[i]->use_empty()) {
601      Globals.erase(NewGlobals[i]);
602      if (FirstGlobal == i) ++FirstGlobal;
603    }
604
605  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
606}
607
608/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
609/// value will trap if the value is dynamically null.  PHIs keeps track of any
610/// phi nodes we've seen to avoid reprocessing them.
611static bool AllUsesOfValueWillTrapIfNull(Value *V,
612                                         SmallPtrSet<PHINode*, 8> &PHIs) {
613  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
614    if (isa<LoadInst>(*UI)) {
615      // Will trap.
616    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
617      if (SI->getOperand(0) == V) {
618        //cerr << "NONTRAPPING USE: " << **UI;
619        return false;  // Storing the value.
620      }
621    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
622      if (CI->getOperand(0) != V) {
623        //cerr << "NONTRAPPING USE: " << **UI;
624        return false;  // Not calling the ptr
625      }
626    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
627      if (II->getOperand(0) != V) {
628        //cerr << "NONTRAPPING USE: " << **UI;
629        return false;  // Not calling the ptr
630      }
631    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
632      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
633    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
634      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
635    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
636      // If we've already seen this phi node, ignore it, it has already been
637      // checked.
638      if (PHIs.insert(PN))
639        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
640    } else if (isa<ICmpInst>(*UI) &&
641               isa<ConstantPointerNull>(UI->getOperand(1))) {
642      // Ignore setcc X, null
643    } else {
644      //cerr << "NONTRAPPING USE: " << **UI;
645      return false;
646    }
647  return true;
648}
649
650/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
651/// from GV will trap if the loaded value is null.  Note that this also permits
652/// comparisons of the loaded value against null, as a special case.
653static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
654  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
655    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
656      SmallPtrSet<PHINode*, 8> PHIs;
657      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
658        return false;
659    } else if (isa<StoreInst>(*UI)) {
660      // Ignore stores to the global.
661    } else {
662      // We don't know or understand this user, bail out.
663      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
664      return false;
665    }
666
667  return true;
668}
669
670static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
671  bool Changed = false;
672  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
673    Instruction *I = cast<Instruction>(*UI++);
674    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
675      LI->setOperand(0, NewV);
676      Changed = true;
677    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
678      if (SI->getOperand(1) == V) {
679        SI->setOperand(1, NewV);
680        Changed = true;
681      }
682    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
683      if (I->getOperand(0) == V) {
684        // Calling through the pointer!  Turn into a direct call, but be careful
685        // that the pointer is not also being passed as an argument.
686        I->setOperand(0, NewV);
687        Changed = true;
688        bool PassedAsArg = false;
689        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
690          if (I->getOperand(i) == V) {
691            PassedAsArg = true;
692            I->setOperand(i, NewV);
693          }
694
695        if (PassedAsArg) {
696          // Being passed as an argument also.  Be careful to not invalidate UI!
697          UI = V->use_begin();
698        }
699      }
700    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
701      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
702                                ConstantExpr::getCast(CI->getOpcode(),
703                                                      NewV, CI->getType()));
704      if (CI->use_empty()) {
705        Changed = true;
706        CI->eraseFromParent();
707      }
708    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
709      // Should handle GEP here.
710      SmallVector<Constant*, 8> Idxs;
711      Idxs.reserve(GEPI->getNumOperands()-1);
712      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
713           i != e; ++i)
714        if (Constant *C = dyn_cast<Constant>(*i))
715          Idxs.push_back(C);
716        else
717          break;
718      if (Idxs.size() == GEPI->getNumOperands()-1)
719        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
720                                ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
721                                                               Idxs.size()));
722      if (GEPI->use_empty()) {
723        Changed = true;
724        GEPI->eraseFromParent();
725      }
726    }
727  }
728
729  return Changed;
730}
731
732
733/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
734/// value stored into it.  If there are uses of the loaded value that would trap
735/// if the loaded value is dynamically null, then we know that they cannot be
736/// reachable with a null optimize away the load.
737static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
738  bool Changed = false;
739
740  // Keep track of whether we are able to remove all the uses of the global
741  // other than the store that defines it.
742  bool AllNonStoreUsesGone = true;
743
744  // Replace all uses of loads with uses of uses of the stored value.
745  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
746    User *GlobalUser = *GUI++;
747    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
748      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
749      // If we were able to delete all uses of the loads
750      if (LI->use_empty()) {
751        LI->eraseFromParent();
752        Changed = true;
753      } else {
754        AllNonStoreUsesGone = false;
755      }
756    } else if (isa<StoreInst>(GlobalUser)) {
757      // Ignore the store that stores "LV" to the global.
758      assert(GlobalUser->getOperand(1) == GV &&
759             "Must be storing *to* the global");
760    } else {
761      AllNonStoreUsesGone = false;
762
763      // If we get here we could have other crazy uses that are transitively
764      // loaded.
765      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
766              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
767    }
768  }
769
770  if (Changed) {
771    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
772    ++NumGlobUses;
773  }
774
775  // If we nuked all of the loads, then none of the stores are needed either,
776  // nor is the global.
777  if (AllNonStoreUsesGone) {
778    DOUT << "  *** GLOBAL NOW DEAD!\n";
779    CleanupConstantGlobalUsers(GV, 0);
780    if (GV->use_empty()) {
781      GV->eraseFromParent();
782      ++NumDeleted;
783    }
784    Changed = true;
785  }
786  return Changed;
787}
788
789/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
790/// instructions that are foldable.
791static void ConstantPropUsersOf(Value *V) {
792  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
793    if (Instruction *I = dyn_cast<Instruction>(*UI++))
794      if (Constant *NewC = ConstantFoldInstruction(I)) {
795        I->replaceAllUsesWith(NewC);
796
797        // Advance UI to the next non-I use to avoid invalidating it!
798        // Instructions could multiply use V.
799        while (UI != E && *UI == I)
800          ++UI;
801        I->eraseFromParent();
802      }
803}
804
805/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
806/// variable, and transforms the program as if it always contained the result of
807/// the specified malloc.  Because it is always the result of the specified
808/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
809/// malloc into a global, and any loads of GV as uses of the new global.
810static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
811                                                     MallocInst *MI) {
812  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
813  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
814
815  if (NElements->getZExtValue() != 1) {
816    // If we have an array allocation, transform it to a single element
817    // allocation to make the code below simpler.
818    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
819                                 NElements->getZExtValue());
820    MallocInst *NewMI =
821      new MallocInst(NewTy, Constant::getNullValue(Type::Int32Ty),
822                     MI->getAlignment(), MI->getName(), MI);
823    Value* Indices[2];
824    Indices[0] = Indices[1] = Constant::getNullValue(Type::Int32Ty);
825    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
826                                              NewMI->getName()+".el0", MI);
827    MI->replaceAllUsesWith(NewGEP);
828    MI->eraseFromParent();
829    MI = NewMI;
830  }
831
832  // Create the new global variable.  The contents of the malloc'd memory is
833  // undefined, so initialize with an undef value.
834  Constant *Init = UndefValue::get(MI->getAllocatedType());
835  GlobalVariable *NewGV = new GlobalVariable(MI->getAllocatedType(), false,
836                                             GlobalValue::InternalLinkage, Init,
837                                             GV->getName()+".body",
838                                             (Module *)NULL,
839                                             GV->isThreadLocal());
840  // FIXME: This new global should have the alignment returned by malloc.  Code
841  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
842  // this would only guarantee some lower alignment.
843  GV->getParent()->getGlobalList().insert(GV, NewGV);
844
845  // Anything that used the malloc now uses the global directly.
846  MI->replaceAllUsesWith(NewGV);
847
848  Constant *RepValue = NewGV;
849  if (NewGV->getType() != GV->getType()->getElementType())
850    RepValue = ConstantExpr::getBitCast(RepValue,
851                                        GV->getType()->getElementType());
852
853  // If there is a comparison against null, we will insert a global bool to
854  // keep track of whether the global was initialized yet or not.
855  GlobalVariable *InitBool =
856    new GlobalVariable(Type::Int1Ty, false, GlobalValue::InternalLinkage,
857                       ConstantInt::getFalse(), GV->getName()+".init",
858                       (Module *)NULL, GV->isThreadLocal());
859  bool InitBoolUsed = false;
860
861  // Loop over all uses of GV, processing them in turn.
862  std::vector<StoreInst*> Stores;
863  while (!GV->use_empty())
864    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
865      while (!LI->use_empty()) {
866        Use &LoadUse = LI->use_begin().getUse();
867        if (!isa<ICmpInst>(LoadUse.getUser()))
868          LoadUse = RepValue;
869        else {
870          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
871          // Replace the cmp X, 0 with a use of the bool value.
872          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
873          InitBoolUsed = true;
874          switch (CI->getPredicate()) {
875          default: assert(0 && "Unknown ICmp Predicate!");
876          case ICmpInst::ICMP_ULT:
877          case ICmpInst::ICMP_SLT:
878            LV = ConstantInt::getFalse();   // X < null -> always false
879            break;
880          case ICmpInst::ICMP_ULE:
881          case ICmpInst::ICMP_SLE:
882          case ICmpInst::ICMP_EQ:
883            LV = BinaryOperator::CreateNot(LV, "notinit", CI);
884            break;
885          case ICmpInst::ICMP_NE:
886          case ICmpInst::ICMP_UGE:
887          case ICmpInst::ICMP_SGE:
888          case ICmpInst::ICMP_UGT:
889          case ICmpInst::ICMP_SGT:
890            break;  // no change.
891          }
892          CI->replaceAllUsesWith(LV);
893          CI->eraseFromParent();
894        }
895      }
896      LI->eraseFromParent();
897    } else {
898      StoreInst *SI = cast<StoreInst>(GV->use_back());
899      // The global is initialized when the store to it occurs.
900      new StoreInst(ConstantInt::getTrue(), InitBool, SI);
901      SI->eraseFromParent();
902    }
903
904  // If the initialization boolean was used, insert it, otherwise delete it.
905  if (!InitBoolUsed) {
906    while (!InitBool->use_empty())  // Delete initializations
907      cast<Instruction>(InitBool->use_back())->eraseFromParent();
908    delete InitBool;
909  } else
910    GV->getParent()->getGlobalList().insert(GV, InitBool);
911
912
913  // Now the GV is dead, nuke it and the malloc.
914  GV->eraseFromParent();
915  MI->eraseFromParent();
916
917  // To further other optimizations, loop over all users of NewGV and try to
918  // constant prop them.  This will promote GEP instructions with constant
919  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
920  ConstantPropUsersOf(NewGV);
921  if (RepValue != NewGV)
922    ConstantPropUsersOf(RepValue);
923
924  return NewGV;
925}
926
927/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
928/// to make sure that there are no complex uses of V.  We permit simple things
929/// like dereferencing the pointer, but not storing through the address, unless
930/// it is to the specified global.
931static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
932                                                      GlobalVariable *GV,
933                                              SmallPtrSet<PHINode*, 8> &PHIs) {
934  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
935    Instruction *Inst = cast<Instruction>(*UI);
936
937    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
938      continue; // Fine, ignore.
939    }
940
941    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
942      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
943        return false;  // Storing the pointer itself... bad.
944      continue; // Otherwise, storing through it, or storing into GV... fine.
945    }
946
947    if (isa<GetElementPtrInst>(Inst)) {
948      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
949        return false;
950      continue;
951    }
952
953    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
954      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
955      // cycles.
956      if (PHIs.insert(PN))
957        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
958          return false;
959      continue;
960    }
961
962    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
963      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
964        return false;
965      continue;
966    }
967
968    return false;
969  }
970  return true;
971}
972
973/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
974/// somewhere.  Transform all uses of the allocation into loads from the
975/// global and uses of the resultant pointer.  Further, delete the store into
976/// GV.  This assumes that these value pass the
977/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
978static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
979                                          GlobalVariable *GV) {
980  while (!Alloc->use_empty()) {
981    Instruction *U = cast<Instruction>(*Alloc->use_begin());
982    Instruction *InsertPt = U;
983    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
984      // If this is the store of the allocation into the global, remove it.
985      if (SI->getOperand(1) == GV) {
986        SI->eraseFromParent();
987        continue;
988      }
989    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
990      // Insert the load in the corresponding predecessor, not right before the
991      // PHI.
992      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
993    } else if (isa<BitCastInst>(U)) {
994      // Must be bitcast between the malloc and store to initialize the global.
995      ReplaceUsesOfMallocWithGlobal(U, GV);
996      U->eraseFromParent();
997      continue;
998    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
999      // If this is a "GEP bitcast" and the user is a store to the global, then
1000      // just process it as a bitcast.
1001      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1002        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1003          if (SI->getOperand(1) == GV) {
1004            // Must be bitcast GEP between the malloc and store to initialize
1005            // the global.
1006            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1007            GEPI->eraseFromParent();
1008            continue;
1009          }
1010    }
1011
1012    // Insert a load from the global, and use it instead of the malloc.
1013    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1014    U->replaceUsesOfWith(Alloc, NL);
1015  }
1016}
1017
1018/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1019/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1020/// that index through the array and struct field, icmps of null, and PHIs.
1021static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1022                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1023                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1024  // We permit two users of the load: setcc comparing against the null
1025  // pointer, and a getelementptr of a specific form.
1026  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1027    Instruction *User = cast<Instruction>(*UI);
1028
1029    // Comparison against null is ok.
1030    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1031      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1032        return false;
1033      continue;
1034    }
1035
1036    // getelementptr is also ok, but only a simple form.
1037    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1038      // Must index into the array and into the struct.
1039      if (GEPI->getNumOperands() < 3)
1040        return false;
1041
1042      // Otherwise the GEP is ok.
1043      continue;
1044    }
1045
1046    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1047      if (!LoadUsingPHIsPerLoad.insert(PN))
1048        // This means some phi nodes are dependent on each other.
1049        // Avoid infinite looping!
1050        return false;
1051      if (!LoadUsingPHIs.insert(PN))
1052        // If we have already analyzed this PHI, then it is safe.
1053        continue;
1054
1055      // Make sure all uses of the PHI are simple enough to transform.
1056      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1057                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1058        return false;
1059
1060      continue;
1061    }
1062
1063    // Otherwise we don't know what this is, not ok.
1064    return false;
1065  }
1066
1067  return true;
1068}
1069
1070
1071/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1072/// GV are simple enough to perform HeapSRA, return true.
1073static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1074                                                    MallocInst *MI) {
1075  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1076  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1077  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1078       ++UI)
1079    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1080      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1081                                          LoadUsingPHIsPerLoad))
1082        return false;
1083      LoadUsingPHIsPerLoad.clear();
1084    }
1085
1086  // If we reach here, we know that all uses of the loads and transitive uses
1087  // (through PHI nodes) are simple enough to transform.  However, we don't know
1088  // that all inputs the to the PHI nodes are in the same equivalence sets.
1089  // Check to verify that all operands of the PHIs are either PHIS that can be
1090  // transformed, loads from GV, or MI itself.
1091  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1092       E = LoadUsingPHIs.end(); I != E; ++I) {
1093    PHINode *PN = *I;
1094    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1095      Value *InVal = PN->getIncomingValue(op);
1096
1097      // PHI of the stored value itself is ok.
1098      if (InVal == MI) continue;
1099
1100      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1101        // One of the PHIs in our set is (optimistically) ok.
1102        if (LoadUsingPHIs.count(InPN))
1103          continue;
1104        return false;
1105      }
1106
1107      // Load from GV is ok.
1108      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1109        if (LI->getOperand(0) == GV)
1110          continue;
1111
1112      // UNDEF? NULL?
1113
1114      // Anything else is rejected.
1115      return false;
1116    }
1117  }
1118
1119  return true;
1120}
1121
1122static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1123               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1124                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1125  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1126
1127  if (FieldNo >= FieldVals.size())
1128    FieldVals.resize(FieldNo+1);
1129
1130  // If we already have this value, just reuse the previously scalarized
1131  // version.
1132  if (Value *FieldVal = FieldVals[FieldNo])
1133    return FieldVal;
1134
1135  // Depending on what instruction this is, we have several cases.
1136  Value *Result;
1137  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1138    // This is a scalarized version of the load from the global.  Just create
1139    // a new Load of the scalarized global.
1140    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1141                                           InsertedScalarizedValues,
1142                                           PHIsToRewrite),
1143                          LI->getName()+".f" + utostr(FieldNo), LI);
1144  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1145    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1146    // field.
1147    const StructType *ST =
1148      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1149
1150    Result =PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1151                            PN->getName()+".f"+utostr(FieldNo), PN);
1152    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1153  } else {
1154    assert(0 && "Unknown usable value");
1155    Result = 0;
1156  }
1157
1158  return FieldVals[FieldNo] = Result;
1159}
1160
1161/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1162/// the load, rewrite the derived value to use the HeapSRoA'd load.
1163static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1164             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1165                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1166  // If this is a comparison against null, handle it.
1167  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1168    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1169    // If we have a setcc of the loaded pointer, we can use a setcc of any
1170    // field.
1171    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1172                                   InsertedScalarizedValues, PHIsToRewrite);
1173
1174    Value *New = new ICmpInst(SCI->getPredicate(), NPtr,
1175                              Constant::getNullValue(NPtr->getType()),
1176                              SCI->getName(), SCI);
1177    SCI->replaceAllUsesWith(New);
1178    SCI->eraseFromParent();
1179    return;
1180  }
1181
1182  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1183  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1184    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1185           && "Unexpected GEPI!");
1186
1187    // Load the pointer for this field.
1188    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1189    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1190                                     InsertedScalarizedValues, PHIsToRewrite);
1191
1192    // Create the new GEP idx vector.
1193    SmallVector<Value*, 8> GEPIdx;
1194    GEPIdx.push_back(GEPI->getOperand(1));
1195    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1196
1197    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1198                                             GEPIdx.begin(), GEPIdx.end(),
1199                                             GEPI->getName(), GEPI);
1200    GEPI->replaceAllUsesWith(NGEPI);
1201    GEPI->eraseFromParent();
1202    return;
1203  }
1204
1205  // Recursively transform the users of PHI nodes.  This will lazily create the
1206  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1207  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1208  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1209  // already been seen first by another load, so its uses have already been
1210  // processed.
1211  PHINode *PN = cast<PHINode>(LoadUser);
1212  bool Inserted;
1213  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1214  tie(InsertPos, Inserted) =
1215    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1216  if (!Inserted) return;
1217
1218  // If this is the first time we've seen this PHI, recursively process all
1219  // users.
1220  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1221    Instruction *User = cast<Instruction>(*UI++);
1222    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1223  }
1224}
1225
1226/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1227/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1228/// use FieldGlobals instead.  All uses of loaded values satisfy
1229/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1230static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1231               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1232                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
1233  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1234       UI != E; ) {
1235    Instruction *User = cast<Instruction>(*UI++);
1236    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1237  }
1238
1239  if (Load->use_empty()) {
1240    Load->eraseFromParent();
1241    InsertedScalarizedValues.erase(Load);
1242  }
1243}
1244
1245/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1246/// it up into multiple allocations of arrays of the fields.
1247static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI){
1248  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1249  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1250
1251  // There is guaranteed to be at least one use of the malloc (storing
1252  // it into GV).  If there are other uses, change them to be uses of
1253  // the global to simplify later code.  This also deletes the store
1254  // into GV.
1255  ReplaceUsesOfMallocWithGlobal(MI, GV);
1256
1257  // Okay, at this point, there are no users of the malloc.  Insert N
1258  // new mallocs at the same place as MI, and N globals.
1259  std::vector<Value*> FieldGlobals;
1260  std::vector<MallocInst*> FieldMallocs;
1261
1262  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1263    const Type *FieldTy = STy->getElementType(FieldNo);
1264    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1265
1266    GlobalVariable *NGV =
1267      new GlobalVariable(PFieldTy, false, GlobalValue::InternalLinkage,
1268                         Constant::getNullValue(PFieldTy),
1269                         GV->getName() + ".f" + utostr(FieldNo), GV,
1270                         GV->isThreadLocal());
1271    FieldGlobals.push_back(NGV);
1272
1273    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1274                                     MI->getName() + ".f" + utostr(FieldNo),MI);
1275    FieldMallocs.push_back(NMI);
1276    new StoreInst(NMI, NGV, MI);
1277  }
1278
1279  // The tricky aspect of this transformation is handling the case when malloc
1280  // fails.  In the original code, malloc failing would set the result pointer
1281  // of malloc to null.  In this case, some mallocs could succeed and others
1282  // could fail.  As such, we emit code that looks like this:
1283  //    F0 = malloc(field0)
1284  //    F1 = malloc(field1)
1285  //    F2 = malloc(field2)
1286  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1287  //      if (F0) { free(F0); F0 = 0; }
1288  //      if (F1) { free(F1); F1 = 0; }
1289  //      if (F2) { free(F2); F2 = 0; }
1290  //    }
1291  Value *RunningOr = 0;
1292  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1293    Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, FieldMallocs[i],
1294                             Constant::getNullValue(FieldMallocs[i]->getType()),
1295                                  "isnull", MI);
1296    if (!RunningOr)
1297      RunningOr = Cond;   // First seteq
1298    else
1299      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1300  }
1301
1302  // Split the basic block at the old malloc.
1303  BasicBlock *OrigBB = MI->getParent();
1304  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1305
1306  // Create the block to check the first condition.  Put all these blocks at the
1307  // end of the function as they are unlikely to be executed.
1308  BasicBlock *NullPtrBlock = BasicBlock::Create("malloc_ret_null",
1309                                                OrigBB->getParent());
1310
1311  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1312  // branch on RunningOr.
1313  OrigBB->getTerminator()->eraseFromParent();
1314  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1315
1316  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1317  // pointer, because some may be null while others are not.
1318  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1319    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1320    Value *Cmp = new ICmpInst(ICmpInst::ICMP_NE, GVVal,
1321                              Constant::getNullValue(GVVal->getType()),
1322                              "tmp", NullPtrBlock);
1323    BasicBlock *FreeBlock = BasicBlock::Create("free_it", OrigBB->getParent());
1324    BasicBlock *NextBlock = BasicBlock::Create("next", OrigBB->getParent());
1325    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1326
1327    // Fill in FreeBlock.
1328    new FreeInst(GVVal, FreeBlock);
1329    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1330                  FreeBlock);
1331    BranchInst::Create(NextBlock, FreeBlock);
1332
1333    NullPtrBlock = NextBlock;
1334  }
1335
1336  BranchInst::Create(ContBB, NullPtrBlock);
1337
1338  // MI is no longer needed, remove it.
1339  MI->eraseFromParent();
1340
1341  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1342  /// update all uses of the load, keep track of what scalarized loads are
1343  /// inserted for a given load.
1344  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1345  InsertedScalarizedValues[GV] = FieldGlobals;
1346
1347  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1348
1349  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1350  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1351  // of the per-field globals instead.
1352  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1353    Instruction *User = cast<Instruction>(*UI++);
1354
1355    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1356      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1357      continue;
1358    }
1359
1360    // Must be a store of null.
1361    StoreInst *SI = cast<StoreInst>(User);
1362    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1363           "Unexpected heap-sra user!");
1364
1365    // Insert a store of null into each global.
1366    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1367      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1368      Constant *Null = Constant::getNullValue(PT->getElementType());
1369      new StoreInst(Null, FieldGlobals[i], SI);
1370    }
1371    // Erase the original store.
1372    SI->eraseFromParent();
1373  }
1374
1375  // While we have PHIs that are interesting to rewrite, do it.
1376  while (!PHIsToRewrite.empty()) {
1377    PHINode *PN = PHIsToRewrite.back().first;
1378    unsigned FieldNo = PHIsToRewrite.back().second;
1379    PHIsToRewrite.pop_back();
1380    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1381    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1382
1383    // Add all the incoming values.  This can materialize more phis.
1384    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1385      Value *InVal = PN->getIncomingValue(i);
1386      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1387                               PHIsToRewrite);
1388      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1389    }
1390  }
1391
1392  // Drop all inter-phi links and any loads that made it this far.
1393  for (DenseMap<Value*, std::vector<Value*> >::iterator
1394       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1395       I != E; ++I) {
1396    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1397      PN->dropAllReferences();
1398    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1399      LI->dropAllReferences();
1400  }
1401
1402  // Delete all the phis and loads now that inter-references are dead.
1403  for (DenseMap<Value*, std::vector<Value*> >::iterator
1404       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1405       I != E; ++I) {
1406    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1407      PN->eraseFromParent();
1408    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1409      LI->eraseFromParent();
1410  }
1411
1412  // The old global is now dead, remove it.
1413  GV->eraseFromParent();
1414
1415  ++NumHeapSRA;
1416  return cast<GlobalVariable>(FieldGlobals[0]);
1417}
1418
1419/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1420/// pointer global variable with a single value stored it that is a malloc or
1421/// cast of malloc.
1422static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1423                                               MallocInst *MI,
1424                                               Module::global_iterator &GVI,
1425                                               TargetData &TD) {
1426  // If this is a malloc of an abstract type, don't touch it.
1427  if (!MI->getAllocatedType()->isSized())
1428    return false;
1429
1430  // We can't optimize this global unless all uses of it are *known* to be
1431  // of the malloc value, not of the null initializer value (consider a use
1432  // that compares the global's value against zero to see if the malloc has
1433  // been reached).  To do this, we check to see if all uses of the global
1434  // would trap if the global were null: this proves that they must all
1435  // happen after the malloc.
1436  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1437    return false;
1438
1439  // We can't optimize this if the malloc itself is used in a complex way,
1440  // for example, being stored into multiple globals.  This allows the
1441  // malloc to be stored into the specified global, loaded setcc'd, and
1442  // GEP'd.  These are all things we could transform to using the global
1443  // for.
1444  {
1445    SmallPtrSet<PHINode*, 8> PHIs;
1446    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1447      return false;
1448  }
1449
1450
1451  // If we have a global that is only initialized with a fixed size malloc,
1452  // transform the program to use global memory instead of malloc'd memory.
1453  // This eliminates dynamic allocation, avoids an indirection accessing the
1454  // data, and exposes the resultant global to further GlobalOpt.
1455  if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1456    // Restrict this transformation to only working on small allocations
1457    // (2048 bytes currently), as we don't want to introduce a 16M global or
1458    // something.
1459    if (NElements->getZExtValue()*
1460        TD.getTypeAllocSize(MI->getAllocatedType()) < 2048) {
1461      GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
1462      return true;
1463    }
1464  }
1465
1466  // If the allocation is an array of structures, consider transforming this
1467  // into multiple malloc'd arrays, one for each field.  This is basically
1468  // SRoA for malloc'd memory.
1469  const Type *AllocTy = MI->getAllocatedType();
1470
1471  // If this is an allocation of a fixed size array of structs, analyze as a
1472  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1473  if (!MI->isArrayAllocation())
1474    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1475      AllocTy = AT->getElementType();
1476
1477  if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1478    // This the structure has an unreasonable number of fields, leave it
1479    // alone.
1480    if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1481        AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1482
1483      // If this is a fixed size array, transform the Malloc to be an alloc of
1484      // structs.  malloc [100 x struct],1 -> malloc struct, 100
1485      if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
1486        MallocInst *NewMI =
1487          new MallocInst(AllocSTy,
1488                         ConstantInt::get(Type::Int32Ty, AT->getNumElements()),
1489                         "", MI);
1490        NewMI->takeName(MI);
1491        Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
1492        MI->replaceAllUsesWith(Cast);
1493        MI->eraseFromParent();
1494        MI = NewMI;
1495      }
1496
1497      GVI = PerformHeapAllocSRoA(GV, MI);
1498      return true;
1499    }
1500  }
1501
1502  return false;
1503}
1504
1505// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1506// that only one value (besides its initializer) is ever stored to the global.
1507static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1508                                     Module::global_iterator &GVI,
1509                                     TargetData &TD) {
1510  // Ignore no-op GEPs and bitcasts.
1511  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1512
1513  // If we are dealing with a pointer global that is initialized to null and
1514  // only has one (non-null) value stored into it, then we can optimize any
1515  // users of the loaded value (often calls and loads) that would trap if the
1516  // value was null.
1517  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1518      GV->getInitializer()->isNullValue()) {
1519    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1520      if (GV->getInitializer()->getType() != SOVC->getType())
1521        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1522
1523      // Optimize away any trapping uses of the loaded value.
1524      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
1525        return true;
1526    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1527      if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD))
1528        return true;
1529    }
1530  }
1531
1532  return false;
1533}
1534
1535/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1536/// two values ever stored into GV are its initializer and OtherVal.  See if we
1537/// can shrink the global into a boolean and select between the two values
1538/// whenever it is used.  This exposes the values to other scalar optimizations.
1539static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1540  const Type *GVElType = GV->getType()->getElementType();
1541
1542  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1543  // an FP value, pointer or vector, don't do this optimization because a select
1544  // between them is very expensive and unlikely to lead to later
1545  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1546  // where v1 and v2 both require constant pool loads, a big loss.
1547  if (GVElType == Type::Int1Ty || GVElType->isFloatingPoint() ||
1548      isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1549    return false;
1550
1551  // Walk the use list of the global seeing if all the uses are load or store.
1552  // If there is anything else, bail out.
1553  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1554    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1555      return false;
1556
1557  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1558
1559  // Create the new global, initializing it to false.
1560  GlobalVariable *NewGV = new GlobalVariable(Type::Int1Ty, false,
1561         GlobalValue::InternalLinkage, ConstantInt::getFalse(),
1562                                             GV->getName()+".b",
1563                                             (Module *)NULL,
1564                                             GV->isThreadLocal());
1565  GV->getParent()->getGlobalList().insert(GV, NewGV);
1566
1567  Constant *InitVal = GV->getInitializer();
1568  assert(InitVal->getType() != Type::Int1Ty && "No reason to shrink to bool!");
1569
1570  // If initialized to zero and storing one into the global, we can use a cast
1571  // instead of a select to synthesize the desired value.
1572  bool IsOneZero = false;
1573  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1574    IsOneZero = InitVal->isNullValue() && CI->isOne();
1575
1576  while (!GV->use_empty()) {
1577    Instruction *UI = cast<Instruction>(GV->use_back());
1578    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1579      // Change the store into a boolean store.
1580      bool StoringOther = SI->getOperand(0) == OtherVal;
1581      // Only do this if we weren't storing a loaded value.
1582      Value *StoreVal;
1583      if (StoringOther || SI->getOperand(0) == InitVal)
1584        StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
1585      else {
1586        // Otherwise, we are storing a previously loaded copy.  To do this,
1587        // change the copy from copying the original value to just copying the
1588        // bool.
1589        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1590
1591        // If we're already replaced the input, StoredVal will be a cast or
1592        // select instruction.  If not, it will be a load of the original
1593        // global.
1594        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1595          assert(LI->getOperand(0) == GV && "Not a copy!");
1596          // Insert a new load, to preserve the saved value.
1597          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1598        } else {
1599          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1600                 "This is not a form that we understand!");
1601          StoreVal = StoredVal->getOperand(0);
1602          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1603        }
1604      }
1605      new StoreInst(StoreVal, NewGV, SI);
1606    } else {
1607      // Change the load into a load of bool then a select.
1608      LoadInst *LI = cast<LoadInst>(UI);
1609      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1610      Value *NSI;
1611      if (IsOneZero)
1612        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1613      else
1614        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1615      NSI->takeName(LI);
1616      LI->replaceAllUsesWith(NSI);
1617    }
1618    UI->eraseFromParent();
1619  }
1620
1621  GV->eraseFromParent();
1622  return true;
1623}
1624
1625
1626/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1627/// it if possible.  If we make a change, return true.
1628bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1629                                      Module::global_iterator &GVI) {
1630  SmallPtrSet<PHINode*, 16> PHIUsers;
1631  GlobalStatus GS;
1632  GV->removeDeadConstantUsers();
1633
1634  if (GV->use_empty()) {
1635    DOUT << "GLOBAL DEAD: " << *GV;
1636    GV->eraseFromParent();
1637    ++NumDeleted;
1638    return true;
1639  }
1640
1641  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1642#if 0
1643    cerr << "Global: " << *GV;
1644    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1645    cerr << "  StoredType = ";
1646    switch (GS.StoredType) {
1647    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1648    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1649    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1650    case GlobalStatus::isStored: cerr << "stored\n"; break;
1651    }
1652    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1653      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1654    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1655      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1656                << "\n";
1657    cerr << "  HasMultipleAccessingFunctions =  "
1658              << GS.HasMultipleAccessingFunctions << "\n";
1659    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1660    cerr << "\n";
1661#endif
1662
1663    // If this is a first class global and has only one accessing function
1664    // and this function is main (which we know is not recursive we can make
1665    // this global a local variable) we replace the global with a local alloca
1666    // in this function.
1667    //
1668    // NOTE: It doesn't make sense to promote non single-value types since we
1669    // are just replacing static memory to stack memory.
1670    if (!GS.HasMultipleAccessingFunctions &&
1671        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1672        GV->getType()->getElementType()->isSingleValueType() &&
1673        GS.AccessingFunction->getName() == "main" &&
1674        GS.AccessingFunction->hasExternalLinkage()) {
1675      DOUT << "LOCALIZING GLOBAL: " << *GV;
1676      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1677      const Type* ElemTy = GV->getType()->getElementType();
1678      // FIXME: Pass Global's alignment when globals have alignment
1679      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1680      if (!isa<UndefValue>(GV->getInitializer()))
1681        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1682
1683      GV->replaceAllUsesWith(Alloca);
1684      GV->eraseFromParent();
1685      ++NumLocalized;
1686      return true;
1687    }
1688
1689    // If the global is never loaded (but may be stored to), it is dead.
1690    // Delete it now.
1691    if (!GS.isLoaded) {
1692      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1693
1694      // Delete any stores we can find to the global.  We may not be able to
1695      // make it completely dead though.
1696      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
1697
1698      // If the global is dead now, delete it.
1699      if (GV->use_empty()) {
1700        GV->eraseFromParent();
1701        ++NumDeleted;
1702        Changed = true;
1703      }
1704      return Changed;
1705
1706    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1707      DOUT << "MARKING CONSTANT: " << *GV;
1708      GV->setConstant(true);
1709
1710      // Clean up any obviously simplifiable users now.
1711      CleanupConstantGlobalUsers(GV, GV->getInitializer());
1712
1713      // If the global is dead now, just nuke it.
1714      if (GV->use_empty()) {
1715        DOUT << "   *** Marking constant allowed us to simplify "
1716             << "all users and delete global!\n";
1717        GV->eraseFromParent();
1718        ++NumDeleted;
1719      }
1720
1721      ++NumMarked;
1722      return true;
1723    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1724      if (GlobalVariable *FirstNewGV = SRAGlobal(GV,
1725                                                 getAnalysis<TargetData>())) {
1726        GVI = FirstNewGV;  // Don't skip the newly produced globals!
1727        return true;
1728      }
1729    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1730      // If the initial value for the global was an undef value, and if only
1731      // one other value was stored into it, we can just change the
1732      // initializer to be the stored value, then delete all stores to the
1733      // global.  This allows us to mark it constant.
1734      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1735        if (isa<UndefValue>(GV->getInitializer())) {
1736          // Change the initial value here.
1737          GV->setInitializer(SOVConstant);
1738
1739          // Clean up any obviously simplifiable users now.
1740          CleanupConstantGlobalUsers(GV, GV->getInitializer());
1741
1742          if (GV->use_empty()) {
1743            DOUT << "   *** Substituting initializer allowed us to "
1744                 << "simplify all users and delete global!\n";
1745            GV->eraseFromParent();
1746            ++NumDeleted;
1747          } else {
1748            GVI = GV;
1749          }
1750          ++NumSubstitute;
1751          return true;
1752        }
1753
1754      // Try to optimize globals based on the knowledge that only one value
1755      // (besides its initializer) is ever stored to the global.
1756      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1757                                   getAnalysis<TargetData>()))
1758        return true;
1759
1760      // Otherwise, if the global was not a boolean, we can shrink it to be a
1761      // boolean.
1762      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1763        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1764          ++NumShrunkToBool;
1765          return true;
1766        }
1767    }
1768  }
1769  return false;
1770}
1771
1772/// OnlyCalledDirectly - Return true if the specified function is only called
1773/// directly.  In other words, its address is never taken.
1774static bool OnlyCalledDirectly(Function *F) {
1775  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1776    Instruction *User = dyn_cast<Instruction>(*UI);
1777    if (!User) return false;
1778    if (!isa<CallInst>(User) && !isa<InvokeInst>(User)) return false;
1779
1780    // See if the function address is passed as an argument.
1781    for (User::op_iterator i = User->op_begin() + 1, e = User->op_end();
1782         i != e; ++i)
1783      if (*i == F) return false;
1784  }
1785  return true;
1786}
1787
1788/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1789/// function, changing them to FastCC.
1790static void ChangeCalleesToFastCall(Function *F) {
1791  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1792    CallSite User(cast<Instruction>(*UI));
1793    User.setCallingConv(CallingConv::Fast);
1794  }
1795}
1796
1797static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1798  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1799    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1800      continue;
1801
1802    // There can be only one.
1803    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1804  }
1805
1806  return Attrs;
1807}
1808
1809static void RemoveNestAttribute(Function *F) {
1810  F->setAttributes(StripNest(F->getAttributes()));
1811  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1812    CallSite User(cast<Instruction>(*UI));
1813    User.setAttributes(StripNest(User.getAttributes()));
1814  }
1815}
1816
1817bool GlobalOpt::OptimizeFunctions(Module &M) {
1818  bool Changed = false;
1819  // Optimize functions.
1820  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1821    Function *F = FI++;
1822    // Functions without names cannot be referenced outside this module.
1823    if (!F->hasName() && !F->isDeclaration())
1824      F->setLinkage(GlobalValue::InternalLinkage);
1825    F->removeDeadConstantUsers();
1826    if (F->use_empty() && (F->hasLocalLinkage() ||
1827                           F->hasLinkOnceLinkage())) {
1828      M.getFunctionList().erase(F);
1829      Changed = true;
1830      ++NumFnDeleted;
1831    } else if (F->hasLocalLinkage()) {
1832      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1833          OnlyCalledDirectly(F)) {
1834        // If this function has C calling conventions, is not a varargs
1835        // function, and is only called directly, promote it to use the Fast
1836        // calling convention.
1837        F->setCallingConv(CallingConv::Fast);
1838        ChangeCalleesToFastCall(F);
1839        ++NumFastCallFns;
1840        Changed = true;
1841      }
1842
1843      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1844          OnlyCalledDirectly(F)) {
1845        // The function is not used by a trampoline intrinsic, so it is safe
1846        // to remove the 'nest' attribute.
1847        RemoveNestAttribute(F);
1848        ++NumNestRemoved;
1849        Changed = true;
1850      }
1851    }
1852  }
1853  return Changed;
1854}
1855
1856bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1857  bool Changed = false;
1858  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1859       GVI != E; ) {
1860    GlobalVariable *GV = GVI++;
1861    // Global variables without names cannot be referenced outside this module.
1862    if (!GV->hasName() && !GV->isDeclaration())
1863      GV->setLinkage(GlobalValue::InternalLinkage);
1864    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1865        GV->hasInitializer())
1866      Changed |= ProcessInternalGlobal(GV, GVI);
1867  }
1868  return Changed;
1869}
1870
1871/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1872/// initializers have an init priority of 65535.
1873GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1874  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1875       I != E; ++I)
1876    if (I->getName() == "llvm.global_ctors") {
1877      // Found it, verify it's an array of { int, void()* }.
1878      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1879      if (!ATy) return 0;
1880      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1881      if (!STy || STy->getNumElements() != 2 ||
1882          STy->getElementType(0) != Type::Int32Ty) return 0;
1883      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1884      if (!PFTy) return 0;
1885      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1886      if (!FTy || FTy->getReturnType() != Type::VoidTy || FTy->isVarArg() ||
1887          FTy->getNumParams() != 0)
1888        return 0;
1889
1890      // Verify that the initializer is simple enough for us to handle.
1891      if (!I->hasInitializer()) return 0;
1892      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1893      if (!CA) return 0;
1894      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1895        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1896          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1897            continue;
1898
1899          // Must have a function or null ptr.
1900          if (!isa<Function>(CS->getOperand(1)))
1901            return 0;
1902
1903          // Init priority must be standard.
1904          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1905          if (!CI || CI->getZExtValue() != 65535)
1906            return 0;
1907        } else {
1908          return 0;
1909        }
1910
1911      return I;
1912    }
1913  return 0;
1914}
1915
1916/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1917/// return a list of the functions and null terminator as a vector.
1918static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1919  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1920  std::vector<Function*> Result;
1921  Result.reserve(CA->getNumOperands());
1922  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1923    ConstantStruct *CS = cast<ConstantStruct>(*i);
1924    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1925  }
1926  return Result;
1927}
1928
1929/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1930/// specified array, returning the new global to use.
1931static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1932                                          const std::vector<Function*> &Ctors) {
1933  // If we made a change, reassemble the initializer list.
1934  std::vector<Constant*> CSVals;
1935  CSVals.push_back(ConstantInt::get(Type::Int32Ty, 65535));
1936  CSVals.push_back(0);
1937
1938  // Create the new init list.
1939  std::vector<Constant*> CAList;
1940  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1941    if (Ctors[i]) {
1942      CSVals[1] = Ctors[i];
1943    } else {
1944      const Type *FTy = FunctionType::get(Type::VoidTy,
1945                                          std::vector<const Type*>(), false);
1946      const PointerType *PFTy = PointerType::getUnqual(FTy);
1947      CSVals[1] = Constant::getNullValue(PFTy);
1948      CSVals[0] = ConstantInt::get(Type::Int32Ty, 2147483647);
1949    }
1950    CAList.push_back(ConstantStruct::get(CSVals));
1951  }
1952
1953  // Create the array initializer.
1954  const Type *StructTy =
1955    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1956  Constant *CA = ConstantArray::get(ArrayType::get(StructTy, CAList.size()),
1957                                    CAList);
1958
1959  // If we didn't change the number of elements, don't create a new GV.
1960  if (CA->getType() == GCL->getInitializer()->getType()) {
1961    GCL->setInitializer(CA);
1962    return GCL;
1963  }
1964
1965  // Create the new global and insert it next to the existing list.
1966  GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
1967                                           GCL->getLinkage(), CA, "",
1968                                           (Module *)NULL,
1969                                           GCL->isThreadLocal());
1970  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1971  NGV->takeName(GCL);
1972
1973  // Nuke the old list, replacing any uses with the new one.
1974  if (!GCL->use_empty()) {
1975    Constant *V = NGV;
1976    if (V->getType() != GCL->getType())
1977      V = ConstantExpr::getBitCast(V, GCL->getType());
1978    GCL->replaceAllUsesWith(V);
1979  }
1980  GCL->eraseFromParent();
1981
1982  if (Ctors.size())
1983    return NGV;
1984  else
1985    return 0;
1986}
1987
1988
1989static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
1990                        Value *V) {
1991  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
1992  Constant *R = ComputedValues[V];
1993  assert(R && "Reference to an uncomputed value!");
1994  return R;
1995}
1996
1997/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
1998/// enough for us to understand.  In particular, if it is a cast of something,
1999/// we punt.  We basically just support direct accesses to globals and GEP's of
2000/// globals.  This should be kept up to date with CommitValueTo.
2001static bool isSimpleEnoughPointerToCommit(Constant *C) {
2002  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
2003    if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2004      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2005    return !GV->isDeclaration();  // reject external globals.
2006  }
2007  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2008    // Handle a constantexpr gep.
2009    if (CE->getOpcode() == Instruction::GetElementPtr &&
2010        isa<GlobalVariable>(CE->getOperand(0))) {
2011      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2012      if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2013        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2014      return GV->hasInitializer() &&
2015             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2016    }
2017  return false;
2018}
2019
2020/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2021/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2022/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2023static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2024                                   ConstantExpr *Addr, unsigned OpNo) {
2025  // Base case of the recursion.
2026  if (OpNo == Addr->getNumOperands()) {
2027    assert(Val->getType() == Init->getType() && "Type mismatch!");
2028    return Val;
2029  }
2030
2031  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2032    std::vector<Constant*> Elts;
2033
2034    // Break up the constant into its elements.
2035    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2036      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2037        Elts.push_back(cast<Constant>(*i));
2038    } else if (isa<ConstantAggregateZero>(Init)) {
2039      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2040        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2041    } else if (isa<UndefValue>(Init)) {
2042      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2043        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2044    } else {
2045      assert(0 && "This code is out of sync with "
2046             " ConstantFoldLoadThroughGEPConstantExpr");
2047    }
2048
2049    // Replace the element that we are supposed to.
2050    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2051    unsigned Idx = CU->getZExtValue();
2052    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2053    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2054
2055    // Return the modified struct.
2056    return ConstantStruct::get(&Elts[0], Elts.size(), STy->isPacked());
2057  } else {
2058    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2059    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2060
2061    // Break up the array into elements.
2062    std::vector<Constant*> Elts;
2063    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2064      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2065        Elts.push_back(cast<Constant>(*i));
2066    } else if (isa<ConstantAggregateZero>(Init)) {
2067      Constant *Elt = Constant::getNullValue(ATy->getElementType());
2068      Elts.assign(ATy->getNumElements(), Elt);
2069    } else if (isa<UndefValue>(Init)) {
2070      Constant *Elt = UndefValue::get(ATy->getElementType());
2071      Elts.assign(ATy->getNumElements(), Elt);
2072    } else {
2073      assert(0 && "This code is out of sync with "
2074             " ConstantFoldLoadThroughGEPConstantExpr");
2075    }
2076
2077    assert(CI->getZExtValue() < ATy->getNumElements());
2078    Elts[CI->getZExtValue()] =
2079      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2080    return ConstantArray::get(ATy, Elts);
2081  }
2082}
2083
2084/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2085/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2086static void CommitValueTo(Constant *Val, Constant *Addr) {
2087  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2088    assert(GV->hasInitializer());
2089    GV->setInitializer(Val);
2090    return;
2091  }
2092
2093  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2094  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2095
2096  Constant *Init = GV->getInitializer();
2097  Init = EvaluateStoreInto(Init, Val, CE, 2);
2098  GV->setInitializer(Init);
2099}
2100
2101/// ComputeLoadResult - Return the value that would be computed by a load from
2102/// P after the stores reflected by 'memory' have been performed.  If we can't
2103/// decide, return null.
2104static Constant *ComputeLoadResult(Constant *P,
2105                                const DenseMap<Constant*, Constant*> &Memory) {
2106  // If this memory location has been recently stored, use the stored value: it
2107  // is the most up-to-date.
2108  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2109  if (I != Memory.end()) return I->second;
2110
2111  // Access it.
2112  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2113    if (GV->hasInitializer())
2114      return GV->getInitializer();
2115    return 0;
2116  }
2117
2118  // Handle a constantexpr getelementptr.
2119  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2120    if (CE->getOpcode() == Instruction::GetElementPtr &&
2121        isa<GlobalVariable>(CE->getOperand(0))) {
2122      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2123      if (GV->hasInitializer())
2124        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
2125    }
2126
2127  return 0;  // don't know how to evaluate.
2128}
2129
2130/// EvaluateFunction - Evaluate a call to function F, returning true if
2131/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2132/// arguments for the function.
2133static bool EvaluateFunction(Function *F, Constant *&RetVal,
2134                             const std::vector<Constant*> &ActualArgs,
2135                             std::vector<Function*> &CallStack,
2136                             DenseMap<Constant*, Constant*> &MutatedMemory,
2137                             std::vector<GlobalVariable*> &AllocaTmps) {
2138  // Check to see if this function is already executing (recursion).  If so,
2139  // bail out.  TODO: we might want to accept limited recursion.
2140  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2141    return false;
2142
2143  CallStack.push_back(F);
2144
2145  /// Values - As we compute SSA register values, we store their contents here.
2146  DenseMap<Value*, Constant*> Values;
2147
2148  // Initialize arguments to the incoming values specified.
2149  unsigned ArgNo = 0;
2150  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2151       ++AI, ++ArgNo)
2152    Values[AI] = ActualArgs[ArgNo];
2153
2154  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2155  /// we can only evaluate any one basic block at most once.  This set keeps
2156  /// track of what we have executed so we can detect recursive cases etc.
2157  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2158
2159  // CurInst - The current instruction we're evaluating.
2160  BasicBlock::iterator CurInst = F->begin()->begin();
2161
2162  // This is the main evaluation loop.
2163  while (1) {
2164    Constant *InstResult = 0;
2165
2166    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2167      if (SI->isVolatile()) return false;  // no volatile accesses.
2168      Constant *Ptr = getVal(Values, SI->getOperand(1));
2169      if (!isSimpleEnoughPointerToCommit(Ptr))
2170        // If this is too complex for us to commit, reject it.
2171        return false;
2172      Constant *Val = getVal(Values, SI->getOperand(0));
2173      MutatedMemory[Ptr] = Val;
2174    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2175      InstResult = ConstantExpr::get(BO->getOpcode(),
2176                                     getVal(Values, BO->getOperand(0)),
2177                                     getVal(Values, BO->getOperand(1)));
2178    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2179      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2180                                            getVal(Values, CI->getOperand(0)),
2181                                            getVal(Values, CI->getOperand(1)));
2182    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2183      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2184                                         getVal(Values, CI->getOperand(0)),
2185                                         CI->getType());
2186    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2187      InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2188                                           getVal(Values, SI->getOperand(1)),
2189                                           getVal(Values, SI->getOperand(2)));
2190    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2191      Constant *P = getVal(Values, GEP->getOperand(0));
2192      SmallVector<Constant*, 8> GEPOps;
2193      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2194           i != e; ++i)
2195        GEPOps.push_back(getVal(Values, *i));
2196      InstResult = ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2197    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2198      if (LI->isVolatile()) return false;  // no volatile accesses.
2199      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2200                                     MutatedMemory);
2201      if (InstResult == 0) return false; // Could not evaluate load.
2202    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2203      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2204      const Type *Ty = AI->getType()->getElementType();
2205      AllocaTmps.push_back(new GlobalVariable(Ty, false,
2206                                              GlobalValue::InternalLinkage,
2207                                              UndefValue::get(Ty),
2208                                              AI->getName()));
2209      InstResult = AllocaTmps.back();
2210    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2211
2212      // Debug info can safely be ignored here.
2213      if (isa<DbgInfoIntrinsic>(CI)) {
2214        ++CurInst;
2215        continue;
2216      }
2217
2218      // Cannot handle inline asm.
2219      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2220
2221      // Resolve function pointers.
2222      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2223      if (!Callee) return false;  // Cannot resolve.
2224
2225      std::vector<Constant*> Formals;
2226      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2227           i != e; ++i)
2228        Formals.push_back(getVal(Values, *i));
2229
2230      if (Callee->isDeclaration()) {
2231        // If this is a function we can constant fold, do it.
2232        if (Constant *C = ConstantFoldCall(Callee, &Formals[0],
2233                                           Formals.size())) {
2234          InstResult = C;
2235        } else {
2236          return false;
2237        }
2238      } else {
2239        if (Callee->getFunctionType()->isVarArg())
2240          return false;
2241
2242        Constant *RetVal;
2243        // Execute the call, if successful, use the return value.
2244        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2245                              MutatedMemory, AllocaTmps))
2246          return false;
2247        InstResult = RetVal;
2248      }
2249    } else if (isa<TerminatorInst>(CurInst)) {
2250      BasicBlock *NewBB = 0;
2251      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2252        if (BI->isUnconditional()) {
2253          NewBB = BI->getSuccessor(0);
2254        } else {
2255          ConstantInt *Cond =
2256            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2257          if (!Cond) return false;  // Cannot determine.
2258
2259          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2260        }
2261      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2262        ConstantInt *Val =
2263          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2264        if (!Val) return false;  // Cannot determine.
2265        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2266      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2267        if (RI->getNumOperands())
2268          RetVal = getVal(Values, RI->getOperand(0));
2269
2270        CallStack.pop_back();  // return from fn.
2271        return true;  // We succeeded at evaluating this ctor!
2272      } else {
2273        // invoke, unwind, unreachable.
2274        return false;  // Cannot handle this terminator.
2275      }
2276
2277      // Okay, we succeeded in evaluating this control flow.  See if we have
2278      // executed the new block before.  If so, we have a looping function,
2279      // which we cannot evaluate in reasonable time.
2280      if (!ExecutedBlocks.insert(NewBB))
2281        return false;  // looped!
2282
2283      // Okay, we have never been in this block before.  Check to see if there
2284      // are any PHI nodes.  If so, evaluate them with information about where
2285      // we came from.
2286      BasicBlock *OldBB = CurInst->getParent();
2287      CurInst = NewBB->begin();
2288      PHINode *PN;
2289      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2290        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2291
2292      // Do NOT increment CurInst.  We know that the terminator had no value.
2293      continue;
2294    } else {
2295      // Did not know how to evaluate this!
2296      return false;
2297    }
2298
2299    if (!CurInst->use_empty())
2300      Values[CurInst] = InstResult;
2301
2302    // Advance program counter.
2303    ++CurInst;
2304  }
2305}
2306
2307/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2308/// we can.  Return true if we can, false otherwise.
2309static bool EvaluateStaticConstructor(Function *F) {
2310  /// MutatedMemory - For each store we execute, we update this map.  Loads
2311  /// check this to get the most up-to-date value.  If evaluation is successful,
2312  /// this state is committed to the process.
2313  DenseMap<Constant*, Constant*> MutatedMemory;
2314
2315  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2316  /// to represent its body.  This vector is needed so we can delete the
2317  /// temporary globals when we are done.
2318  std::vector<GlobalVariable*> AllocaTmps;
2319
2320  /// CallStack - This is used to detect recursion.  In pathological situations
2321  /// we could hit exponential behavior, but at least there is nothing
2322  /// unbounded.
2323  std::vector<Function*> CallStack;
2324
2325  // Call the function.
2326  Constant *RetValDummy;
2327  bool EvalSuccess = EvaluateFunction(F, RetValDummy, std::vector<Constant*>(),
2328                                       CallStack, MutatedMemory, AllocaTmps);
2329  if (EvalSuccess) {
2330    // We succeeded at evaluation: commit the result.
2331    DOUT << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2332         << F->getName() << "' to " << MutatedMemory.size()
2333         << " stores.\n";
2334    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2335         E = MutatedMemory.end(); I != E; ++I)
2336      CommitValueTo(I->second, I->first);
2337  }
2338
2339  // At this point, we are done interpreting.  If we created any 'alloca'
2340  // temporaries, release them now.
2341  while (!AllocaTmps.empty()) {
2342    GlobalVariable *Tmp = AllocaTmps.back();
2343    AllocaTmps.pop_back();
2344
2345    // If there are still users of the alloca, the program is doing something
2346    // silly, e.g. storing the address of the alloca somewhere and using it
2347    // later.  Since this is undefined, we'll just make it be null.
2348    if (!Tmp->use_empty())
2349      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2350    delete Tmp;
2351  }
2352
2353  return EvalSuccess;
2354}
2355
2356
2357
2358/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2359/// Return true if anything changed.
2360bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2361  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2362  bool MadeChange = false;
2363  if (Ctors.empty()) return false;
2364
2365  // Loop over global ctors, optimizing them when we can.
2366  for (unsigned i = 0; i != Ctors.size(); ++i) {
2367    Function *F = Ctors[i];
2368    // Found a null terminator in the middle of the list, prune off the rest of
2369    // the list.
2370    if (F == 0) {
2371      if (i != Ctors.size()-1) {
2372        Ctors.resize(i+1);
2373        MadeChange = true;
2374      }
2375      break;
2376    }
2377
2378    // We cannot simplify external ctor functions.
2379    if (F->empty()) continue;
2380
2381    // If we can evaluate the ctor at compile time, do.
2382    if (EvaluateStaticConstructor(F)) {
2383      Ctors.erase(Ctors.begin()+i);
2384      MadeChange = true;
2385      --i;
2386      ++NumCtorsEvaluated;
2387      continue;
2388    }
2389  }
2390
2391  if (!MadeChange) return false;
2392
2393  GCL = InstallGlobalCtors(GCL, Ctors);
2394  return true;
2395}
2396
2397bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2398  bool Changed = false;
2399
2400  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2401       I != E;) {
2402    Module::alias_iterator J = I++;
2403    // Aliases without names cannot be referenced outside this module.
2404    if (!J->hasName() && !J->isDeclaration())
2405      J->setLinkage(GlobalValue::InternalLinkage);
2406    // If the aliasee may change at link time, nothing can be done - bail out.
2407    if (J->mayBeOverridden())
2408      continue;
2409
2410    Constant *Aliasee = J->getAliasee();
2411    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2412    Target->removeDeadConstantUsers();
2413    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2414
2415    // Make all users of the alias use the aliasee instead.
2416    if (!J->use_empty()) {
2417      J->replaceAllUsesWith(Aliasee);
2418      ++NumAliasesResolved;
2419      Changed = true;
2420    }
2421
2422    // If the aliasee has internal linkage, give it the name and linkage
2423    // of the alias, and delete the alias.  This turns:
2424    //   define internal ... @f(...)
2425    //   @a = alias ... @f
2426    // into:
2427    //   define ... @a(...)
2428    if (!Target->hasLocalLinkage())
2429      continue;
2430
2431    // The transform is only useful if the alias does not have internal linkage.
2432    if (J->hasLocalLinkage())
2433      continue;
2434
2435    // Do not perform the transform if multiple aliases potentially target the
2436    // aliasee.  This check also ensures that it is safe to replace the section
2437    // and other attributes of the aliasee with those of the alias.
2438    if (!hasOneUse)
2439      continue;
2440
2441    // Give the aliasee the name, linkage and other attributes of the alias.
2442    Target->takeName(J);
2443    Target->setLinkage(J->getLinkage());
2444    Target->GlobalValue::copyAttributesFrom(J);
2445
2446    // Delete the alias.
2447    M.getAliasList().erase(J);
2448    ++NumAliasesRemoved;
2449    Changed = true;
2450  }
2451
2452  return Changed;
2453}
2454
2455bool GlobalOpt::runOnModule(Module &M) {
2456  bool Changed = false;
2457
2458  // Try to find the llvm.globalctors list.
2459  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2460
2461  bool LocalChange = true;
2462  while (LocalChange) {
2463    LocalChange = false;
2464
2465    // Delete functions that are trivially dead, ccc -> fastcc
2466    LocalChange |= OptimizeFunctions(M);
2467
2468    // Optimize global_ctors list.
2469    if (GlobalCtors)
2470      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2471
2472    // Optimize non-address-taken globals.
2473    LocalChange |= OptimizeGlobalVars(M);
2474
2475    // Resolve aliases, when possible.
2476    LocalChange |= OptimizeGlobalAliases(M);
2477    Changed |= LocalChange;
2478  }
2479
2480  // TODO: Move all global ctors functions to the end of the module for code
2481  // layout.
2482
2483  return Changed;
2484}
2485