GlobalOpt.cpp revision fa6a1cf1ed4282145269b12578f687b3869d6476
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass transforms simple global variables that never have their address
11// taken.  If obviously true, it marks read/write globals as constant, deletes
12// variables only stored to, etc.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "globalopt"
17#include "llvm/Transforms/IPO.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Module.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Support/CallSite.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumMarked    , "Number of globals marked constant");
44STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
45STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
46STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
47STATISTIC(NumDeleted   , "Number of globals deleted");
48STATISTIC(NumFnDeleted , "Number of functions deleted");
49STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
50STATISTIC(NumLocalized , "Number of globals localized");
51STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
52STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
53STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
54STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
55STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
56STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
57
58namespace {
59  struct VISIBILITY_HIDDEN GlobalOpt : public ModulePass {
60    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
61    }
62    static char ID; // Pass identification, replacement for typeid
63    GlobalOpt() : ModulePass(&ID) {}
64
65    bool runOnModule(Module &M);
66
67  private:
68    GlobalVariable *FindGlobalCtors(Module &M);
69    bool OptimizeFunctions(Module &M);
70    bool OptimizeGlobalVars(Module &M);
71    bool OptimizeGlobalAliases(Module &M);
72    bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
73    bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
74  };
75}
76
77char GlobalOpt::ID = 0;
78static RegisterPass<GlobalOpt> X("globalopt", "Global Variable Optimizer");
79
80ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
81
82namespace {
83
84/// GlobalStatus - As we analyze each global, keep track of some information
85/// about it.  If we find out that the address of the global is taken, none of
86/// this info will be accurate.
87struct VISIBILITY_HIDDEN GlobalStatus {
88  /// isLoaded - True if the global is ever loaded.  If the global isn't ever
89  /// loaded it can be deleted.
90  bool isLoaded;
91
92  /// StoredType - Keep track of what stores to the global look like.
93  ///
94  enum StoredType {
95    /// NotStored - There is no store to this global.  It can thus be marked
96    /// constant.
97    NotStored,
98
99    /// isInitializerStored - This global is stored to, but the only thing
100    /// stored is the constant it was initialized with.  This is only tracked
101    /// for scalar globals.
102    isInitializerStored,
103
104    /// isStoredOnce - This global is stored to, but only its initializer and
105    /// one other value is ever stored to it.  If this global isStoredOnce, we
106    /// track the value stored to it in StoredOnceValue below.  This is only
107    /// tracked for scalar globals.
108    isStoredOnce,
109
110    /// isStored - This global is stored to by multiple values or something else
111    /// that we cannot track.
112    isStored
113  } StoredType;
114
115  /// StoredOnceValue - If only one value (besides the initializer constant) is
116  /// ever stored to this global, keep track of what value it is.
117  Value *StoredOnceValue;
118
119  /// AccessingFunction/HasMultipleAccessingFunctions - These start out
120  /// null/false.  When the first accessing function is noticed, it is recorded.
121  /// When a second different accessing function is noticed,
122  /// HasMultipleAccessingFunctions is set to true.
123  Function *AccessingFunction;
124  bool HasMultipleAccessingFunctions;
125
126  /// HasNonInstructionUser - Set to true if this global has a user that is not
127  /// an instruction (e.g. a constant expr or GV initializer).
128  bool HasNonInstructionUser;
129
130  /// HasPHIUser - Set to true if this global has a user that is a PHI node.
131  bool HasPHIUser;
132
133  GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
134                   AccessingFunction(0), HasMultipleAccessingFunctions(false),
135                   HasNonInstructionUser(false), HasPHIUser(false) {}
136};
137
138}
139
140// SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
141// by constants itself.  Note that constants cannot be cyclic, so this test is
142// pretty easy to implement recursively.
143//
144static bool SafeToDestroyConstant(Constant *C) {
145  if (isa<GlobalValue>(C)) return false;
146
147  for (Value::use_iterator UI = C->use_begin(), E = C->use_end(); UI != E; ++UI)
148    if (Constant *CU = dyn_cast<Constant>(*UI)) {
149      if (!SafeToDestroyConstant(CU)) return false;
150    } else
151      return false;
152  return true;
153}
154
155
156/// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
157/// structure.  If the global has its address taken, return true to indicate we
158/// can't do anything with it.
159///
160static bool AnalyzeGlobal(Value *V, GlobalStatus &GS,
161                          SmallPtrSet<PHINode*, 16> &PHIUsers) {
162  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
163    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
164      GS.HasNonInstructionUser = true;
165
166      if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
167
168    } else if (Instruction *I = dyn_cast<Instruction>(*UI)) {
169      if (!GS.HasMultipleAccessingFunctions) {
170        Function *F = I->getParent()->getParent();
171        if (GS.AccessingFunction == 0)
172          GS.AccessingFunction = F;
173        else if (GS.AccessingFunction != F)
174          GS.HasMultipleAccessingFunctions = true;
175      }
176      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
177        GS.isLoaded = true;
178        if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
179      } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
180        // Don't allow a store OF the address, only stores TO the address.
181        if (SI->getOperand(0) == V) return true;
182
183        if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
184
185        // If this is a direct store to the global (i.e., the global is a scalar
186        // value, not an aggregate), keep more specific information about
187        // stores.
188        if (GS.StoredType != GlobalStatus::isStored) {
189          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(SI->getOperand(1))){
190            Value *StoredVal = SI->getOperand(0);
191            if (StoredVal == GV->getInitializer()) {
192              if (GS.StoredType < GlobalStatus::isInitializerStored)
193                GS.StoredType = GlobalStatus::isInitializerStored;
194            } else if (isa<LoadInst>(StoredVal) &&
195                       cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
196              // G = G
197              if (GS.StoredType < GlobalStatus::isInitializerStored)
198                GS.StoredType = GlobalStatus::isInitializerStored;
199            } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
200              GS.StoredType = GlobalStatus::isStoredOnce;
201              GS.StoredOnceValue = StoredVal;
202            } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
203                       GS.StoredOnceValue == StoredVal) {
204              // noop.
205            } else {
206              GS.StoredType = GlobalStatus::isStored;
207            }
208          } else {
209            GS.StoredType = GlobalStatus::isStored;
210          }
211        }
212      } else if (isa<GetElementPtrInst>(I)) {
213        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
214      } else if (isa<SelectInst>(I)) {
215        if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
216      } else if (PHINode *PN = dyn_cast<PHINode>(I)) {
217        // PHI nodes we can check just like select or GEP instructions, but we
218        // have to be careful about infinite recursion.
219        if (PHIUsers.insert(PN))  // Not already visited.
220          if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
221        GS.HasPHIUser = true;
222      } else if (isa<CmpInst>(I)) {
223      } else if (isa<MemTransferInst>(I)) {
224        if (I->getOperand(1) == V)
225          GS.StoredType = GlobalStatus::isStored;
226        if (I->getOperand(2) == V)
227          GS.isLoaded = true;
228      } else if (isa<MemSetInst>(I)) {
229        assert(I->getOperand(1) == V && "Memset only takes one pointer!");
230        GS.StoredType = GlobalStatus::isStored;
231      } else {
232        return true;  // Any other non-load instruction might take address!
233      }
234    } else if (Constant *C = dyn_cast<Constant>(*UI)) {
235      GS.HasNonInstructionUser = true;
236      // We might have a dead and dangling constant hanging off of here.
237      if (!SafeToDestroyConstant(C))
238        return true;
239    } else {
240      GS.HasNonInstructionUser = true;
241      // Otherwise must be some other user.
242      return true;
243    }
244
245  return false;
246}
247
248static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx,
249                                             LLVMContext &Context) {
250  ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
251  if (!CI) return 0;
252  unsigned IdxV = CI->getZExtValue();
253
254  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
255    if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
256  } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
257    if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
258  } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
259    if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
260  } else if (isa<ConstantAggregateZero>(Agg)) {
261    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
262      if (IdxV < STy->getNumElements())
263        return Constant::getNullValue(STy->getElementType(IdxV));
264    } else if (const SequentialType *STy =
265               dyn_cast<SequentialType>(Agg->getType())) {
266      return Constant::getNullValue(STy->getElementType());
267    }
268  } else if (isa<UndefValue>(Agg)) {
269    if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
270      if (IdxV < STy->getNumElements())
271        return UndefValue::get(STy->getElementType(IdxV));
272    } else if (const SequentialType *STy =
273               dyn_cast<SequentialType>(Agg->getType())) {
274      return UndefValue::get(STy->getElementType());
275    }
276  }
277  return 0;
278}
279
280
281/// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
282/// users of the global, cleaning up the obvious ones.  This is largely just a
283/// quick scan over the use list to clean up the easy and obvious cruft.  This
284/// returns true if it made a change.
285static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
286                                       LLVMContext &Context) {
287  bool Changed = false;
288  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
289    User *U = *UI++;
290
291    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
292      if (Init) {
293        // Replace the load with the initializer.
294        LI->replaceAllUsesWith(Init);
295        LI->eraseFromParent();
296        Changed = true;
297      }
298    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
299      // Store must be unreachable or storing Init into the global.
300      SI->eraseFromParent();
301      Changed = true;
302    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
303      if (CE->getOpcode() == Instruction::GetElementPtr) {
304        Constant *SubInit = 0;
305        if (Init)
306          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
307        Changed |= CleanupConstantGlobalUsers(CE, SubInit, Context);
308      } else if (CE->getOpcode() == Instruction::BitCast &&
309                 isa<PointerType>(CE->getType())) {
310        // Pointer cast, delete any stores and memsets to the global.
311        Changed |= CleanupConstantGlobalUsers(CE, 0, Context);
312      }
313
314      if (CE->use_empty()) {
315        CE->destroyConstant();
316        Changed = true;
317      }
318    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
319      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
320      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
321      // and will invalidate our notion of what Init is.
322      Constant *SubInit = 0;
323      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
324        ConstantExpr *CE =
325          dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, Context));
326        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
327          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE, Context);
328      }
329      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, Context);
330
331      if (GEP->use_empty()) {
332        GEP->eraseFromParent();
333        Changed = true;
334      }
335    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
336      if (MI->getRawDest() == V) {
337        MI->eraseFromParent();
338        Changed = true;
339      }
340
341    } else if (Constant *C = dyn_cast<Constant>(U)) {
342      // If we have a chain of dead constantexprs or other things dangling from
343      // us, and if they are all dead, nuke them without remorse.
344      if (SafeToDestroyConstant(C)) {
345        C->destroyConstant();
346        // This could have invalidated UI, start over from scratch.
347        CleanupConstantGlobalUsers(V, Init, Context);
348        return true;
349      }
350    }
351  }
352  return Changed;
353}
354
355/// isSafeSROAElementUse - Return true if the specified instruction is a safe
356/// user of a derived expression from a global that we want to SROA.
357static bool isSafeSROAElementUse(Value *V) {
358  // We might have a dead and dangling constant hanging off of here.
359  if (Constant *C = dyn_cast<Constant>(V))
360    return SafeToDestroyConstant(C);
361
362  Instruction *I = dyn_cast<Instruction>(V);
363  if (!I) return false;
364
365  // Loads are ok.
366  if (isa<LoadInst>(I)) return true;
367
368  // Stores *to* the pointer are ok.
369  if (StoreInst *SI = dyn_cast<StoreInst>(I))
370    return SI->getOperand(0) != V;
371
372  // Otherwise, it must be a GEP.
373  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
374  if (GEPI == 0) return false;
375
376  if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
377      !cast<Constant>(GEPI->getOperand(1))->isNullValue())
378    return false;
379
380  for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
381       I != E; ++I)
382    if (!isSafeSROAElementUse(*I))
383      return false;
384  return true;
385}
386
387
388/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
389/// Look at it and its uses and decide whether it is safe to SROA this global.
390///
391static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
392  // The user of the global must be a GEP Inst or a ConstantExpr GEP.
393  if (!isa<GetElementPtrInst>(U) &&
394      (!isa<ConstantExpr>(U) ||
395       cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
396    return false;
397
398  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
399  // don't like < 3 operand CE's, and we don't like non-constant integer
400  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
401  // value of C.
402  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
403      !cast<Constant>(U->getOperand(1))->isNullValue() ||
404      !isa<ConstantInt>(U->getOperand(2)))
405    return false;
406
407  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
408  ++GEPI;  // Skip over the pointer index.
409
410  // If this is a use of an array allocation, do a bit more checking for sanity.
411  if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
412    uint64_t NumElements = AT->getNumElements();
413    ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
414
415    // Check to make sure that index falls within the array.  If not,
416    // something funny is going on, so we won't do the optimization.
417    //
418    if (Idx->getZExtValue() >= NumElements)
419      return false;
420
421    // We cannot scalar repl this level of the array unless any array
422    // sub-indices are in-range constants.  In particular, consider:
423    // A[0][i].  We cannot know that the user isn't doing invalid things like
424    // allowing i to index an out-of-range subscript that accesses A[1].
425    //
426    // Scalar replacing *just* the outer index of the array is probably not
427    // going to be a win anyway, so just give up.
428    for (++GEPI; // Skip array index.
429         GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
430         ++GEPI) {
431      uint64_t NumElements;
432      if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
433        NumElements = SubArrayTy->getNumElements();
434      else
435        NumElements = cast<VectorType>(*GEPI)->getNumElements();
436
437      ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
438      if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
439        return false;
440    }
441  }
442
443  for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
444    if (!isSafeSROAElementUse(*I))
445      return false;
446  return true;
447}
448
449/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
450/// is safe for us to perform this transformation.
451///
452static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
453  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
454       UI != E; ++UI) {
455    if (!IsUserOfGlobalSafeForSRA(*UI, GV))
456      return false;
457  }
458  return true;
459}
460
461
462/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
463/// variable.  This opens the door for other optimizations by exposing the
464/// behavior of the program in a more fine-grained way.  We have determined that
465/// this transformation is safe already.  We return the first global variable we
466/// insert so that the caller can reprocess it.
467static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD,
468                                 LLVMContext &Context) {
469  // Make sure this global only has simple uses that we can SRA.
470  if (!GlobalUsersSafeToSRA(GV))
471    return 0;
472
473  assert(GV->hasLocalLinkage() && !GV->isConstant());
474  Constant *Init = GV->getInitializer();
475  const Type *Ty = Init->getType();
476
477  std::vector<GlobalVariable*> NewGlobals;
478  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
479
480  // Get the alignment of the global, either explicit or target-specific.
481  unsigned StartAlignment = GV->getAlignment();
482  if (StartAlignment == 0)
483    StartAlignment = TD.getABITypeAlignment(GV->getType());
484
485  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
486    NewGlobals.reserve(STy->getNumElements());
487    const StructLayout &Layout = *TD.getStructLayout(STy);
488    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
489      Constant *In = getAggregateConstantElement(Init,
490                                ConstantInt::get(Type::getInt32Ty(Context), i),
491                                    Context);
492      assert(In && "Couldn't get element of initializer?");
493      GlobalVariable *NGV = new GlobalVariable(Context,
494                                               STy->getElementType(i), false,
495                                               GlobalVariable::InternalLinkage,
496                                               In, GV->getName()+"."+Twine(i),
497                                               GV->isThreadLocal(),
498                                              GV->getType()->getAddressSpace());
499      Globals.insert(GV, NGV);
500      NewGlobals.push_back(NGV);
501
502      // Calculate the known alignment of the field.  If the original aggregate
503      // had 256 byte alignment for example, something might depend on that:
504      // propagate info to each field.
505      uint64_t FieldOffset = Layout.getElementOffset(i);
506      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
507      if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
508        NGV->setAlignment(NewAlign);
509    }
510  } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
511    unsigned NumElements = 0;
512    if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
513      NumElements = ATy->getNumElements();
514    else
515      NumElements = cast<VectorType>(STy)->getNumElements();
516
517    if (NumElements > 16 && GV->hasNUsesOrMore(16))
518      return 0; // It's not worth it.
519    NewGlobals.reserve(NumElements);
520
521    uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
522    unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
523    for (unsigned i = 0, e = NumElements; i != e; ++i) {
524      Constant *In = getAggregateConstantElement(Init,
525                                ConstantInt::get(Type::getInt32Ty(Context), i),
526                                    Context);
527      assert(In && "Couldn't get element of initializer?");
528
529      GlobalVariable *NGV = new GlobalVariable(Context,
530                                               STy->getElementType(), false,
531                                               GlobalVariable::InternalLinkage,
532                                               In, GV->getName()+"."+Twine(i),
533                                               GV->isThreadLocal(),
534                                              GV->getType()->getAddressSpace());
535      Globals.insert(GV, NGV);
536      NewGlobals.push_back(NGV);
537
538      // Calculate the known alignment of the field.  If the original aggregate
539      // had 256 byte alignment for example, something might depend on that:
540      // propagate info to each field.
541      unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
542      if (NewAlign > EltAlign)
543        NGV->setAlignment(NewAlign);
544    }
545  }
546
547  if (NewGlobals.empty())
548    return 0;
549
550  DOUT << "PERFORMING GLOBAL SRA ON: " << *GV;
551
552  Constant *NullInt = Constant::getNullValue(Type::getInt32Ty(Context));
553
554  // Loop over all of the uses of the global, replacing the constantexpr geps,
555  // with smaller constantexpr geps or direct references.
556  while (!GV->use_empty()) {
557    User *GEP = GV->use_back();
558    assert(((isa<ConstantExpr>(GEP) &&
559             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
560            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
561
562    // Ignore the 1th operand, which has to be zero or else the program is quite
563    // broken (undefined).  Get the 2nd operand, which is the structure or array
564    // index.
565    unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
566    if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
567
568    Value *NewPtr = NewGlobals[Val];
569
570    // Form a shorter GEP if needed.
571    if (GEP->getNumOperands() > 3) {
572      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
573        SmallVector<Constant*, 8> Idxs;
574        Idxs.push_back(NullInt);
575        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
576          Idxs.push_back(CE->getOperand(i));
577        NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
578                                                &Idxs[0], Idxs.size());
579      } else {
580        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
581        SmallVector<Value*, 8> Idxs;
582        Idxs.push_back(NullInt);
583        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
584          Idxs.push_back(GEPI->getOperand(i));
585        NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
586                                           GEPI->getName()+"."+Twine(Val),GEPI);
587      }
588    }
589    GEP->replaceAllUsesWith(NewPtr);
590
591    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
592      GEPI->eraseFromParent();
593    else
594      cast<ConstantExpr>(GEP)->destroyConstant();
595  }
596
597  // Delete the old global, now that it is dead.
598  Globals.erase(GV);
599  ++NumSRA;
600
601  // Loop over the new globals array deleting any globals that are obviously
602  // dead.  This can arise due to scalarization of a structure or an array that
603  // has elements that are dead.
604  unsigned FirstGlobal = 0;
605  for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
606    if (NewGlobals[i]->use_empty()) {
607      Globals.erase(NewGlobals[i]);
608      if (FirstGlobal == i) ++FirstGlobal;
609    }
610
611  return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
612}
613
614/// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
615/// value will trap if the value is dynamically null.  PHIs keeps track of any
616/// phi nodes we've seen to avoid reprocessing them.
617static bool AllUsesOfValueWillTrapIfNull(Value *V,
618                                         SmallPtrSet<PHINode*, 8> &PHIs) {
619  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
620    if (isa<LoadInst>(*UI)) {
621      // Will trap.
622    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
623      if (SI->getOperand(0) == V) {
624        //cerr << "NONTRAPPING USE: " << **UI;
625        return false;  // Storing the value.
626      }
627    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
628      if (CI->getOperand(0) != V) {
629        //cerr << "NONTRAPPING USE: " << **UI;
630        return false;  // Not calling the ptr
631      }
632    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
633      if (II->getOperand(0) != V) {
634        //cerr << "NONTRAPPING USE: " << **UI;
635        return false;  // Not calling the ptr
636      }
637    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(*UI)) {
638      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
639    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) {
640      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
641    } else if (PHINode *PN = dyn_cast<PHINode>(*UI)) {
642      // If we've already seen this phi node, ignore it, it has already been
643      // checked.
644      if (PHIs.insert(PN))
645        return AllUsesOfValueWillTrapIfNull(PN, PHIs);
646    } else if (isa<ICmpInst>(*UI) &&
647               isa<ConstantPointerNull>(UI->getOperand(1))) {
648      // Ignore setcc X, null
649    } else {
650      //cerr << "NONTRAPPING USE: " << **UI;
651      return false;
652    }
653  return true;
654}
655
656/// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
657/// from GV will trap if the loaded value is null.  Note that this also permits
658/// comparisons of the loaded value against null, as a special case.
659static bool AllUsesOfLoadedValueWillTrapIfNull(GlobalVariable *GV) {
660  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI!=E; ++UI)
661    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
662      SmallPtrSet<PHINode*, 8> PHIs;
663      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
664        return false;
665    } else if (isa<StoreInst>(*UI)) {
666      // Ignore stores to the global.
667    } else {
668      // We don't know or understand this user, bail out.
669      //cerr << "UNKNOWN USER OF GLOBAL!: " << **UI;
670      return false;
671    }
672
673  return true;
674}
675
676static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV,
677                                           LLVMContext &Context) {
678  bool Changed = false;
679  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
680    Instruction *I = cast<Instruction>(*UI++);
681    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
682      LI->setOperand(0, NewV);
683      Changed = true;
684    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
685      if (SI->getOperand(1) == V) {
686        SI->setOperand(1, NewV);
687        Changed = true;
688      }
689    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
690      if (I->getOperand(0) == V) {
691        // Calling through the pointer!  Turn into a direct call, but be careful
692        // that the pointer is not also being passed as an argument.
693        I->setOperand(0, NewV);
694        Changed = true;
695        bool PassedAsArg = false;
696        for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i)
697          if (I->getOperand(i) == V) {
698            PassedAsArg = true;
699            I->setOperand(i, NewV);
700          }
701
702        if (PassedAsArg) {
703          // Being passed as an argument also.  Be careful to not invalidate UI!
704          UI = V->use_begin();
705        }
706      }
707    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
708      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
709                                ConstantExpr::getCast(CI->getOpcode(),
710                                                NewV, CI->getType()), Context);
711      if (CI->use_empty()) {
712        Changed = true;
713        CI->eraseFromParent();
714      }
715    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
716      // Should handle GEP here.
717      SmallVector<Constant*, 8> Idxs;
718      Idxs.reserve(GEPI->getNumOperands()-1);
719      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
720           i != e; ++i)
721        if (Constant *C = dyn_cast<Constant>(*i))
722          Idxs.push_back(C);
723        else
724          break;
725      if (Idxs.size() == GEPI->getNumOperands()-1)
726        Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
727                          ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
728                                                        Idxs.size()), Context);
729      if (GEPI->use_empty()) {
730        Changed = true;
731        GEPI->eraseFromParent();
732      }
733    }
734  }
735
736  return Changed;
737}
738
739
740/// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
741/// value stored into it.  If there are uses of the loaded value that would trap
742/// if the loaded value is dynamically null, then we know that they cannot be
743/// reachable with a null optimize away the load.
744static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
745                                            LLVMContext &Context) {
746  bool Changed = false;
747
748  // Keep track of whether we are able to remove all the uses of the global
749  // other than the store that defines it.
750  bool AllNonStoreUsesGone = true;
751
752  // Replace all uses of loads with uses of uses of the stored value.
753  for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
754    User *GlobalUser = *GUI++;
755    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
756      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV, Context);
757      // If we were able to delete all uses of the loads
758      if (LI->use_empty()) {
759        LI->eraseFromParent();
760        Changed = true;
761      } else {
762        AllNonStoreUsesGone = false;
763      }
764    } else if (isa<StoreInst>(GlobalUser)) {
765      // Ignore the store that stores "LV" to the global.
766      assert(GlobalUser->getOperand(1) == GV &&
767             "Must be storing *to* the global");
768    } else {
769      AllNonStoreUsesGone = false;
770
771      // If we get here we could have other crazy uses that are transitively
772      // loaded.
773      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
774              isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
775    }
776  }
777
778  if (Changed) {
779    DOUT << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV;
780    ++NumGlobUses;
781  }
782
783  // If we nuked all of the loads, then none of the stores are needed either,
784  // nor is the global.
785  if (AllNonStoreUsesGone) {
786    DOUT << "  *** GLOBAL NOW DEAD!\n";
787    CleanupConstantGlobalUsers(GV, 0, Context);
788    if (GV->use_empty()) {
789      GV->eraseFromParent();
790      ++NumDeleted;
791    }
792    Changed = true;
793  }
794  return Changed;
795}
796
797/// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
798/// instructions that are foldable.
799static void ConstantPropUsersOf(Value *V, LLVMContext &Context) {
800  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
801    if (Instruction *I = dyn_cast<Instruction>(*UI++))
802      if (Constant *NewC = ConstantFoldInstruction(I, Context)) {
803        I->replaceAllUsesWith(NewC);
804
805        // Advance UI to the next non-I use to avoid invalidating it!
806        // Instructions could multiply use V.
807        while (UI != E && *UI == I)
808          ++UI;
809        I->eraseFromParent();
810      }
811}
812
813/// OptimizeGlobalAddressOfMalloc - This function takes the specified global
814/// variable, and transforms the program as if it always contained the result of
815/// the specified malloc.  Because it is always the result of the specified
816/// malloc, there is no reason to actually DO the malloc.  Instead, turn the
817/// malloc into a global, and any loads of GV as uses of the new global.
818static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
819                                                     MallocInst *MI,
820                                                     LLVMContext &Context) {
821  DOUT << "PROMOTING MALLOC GLOBAL: " << *GV << "  MALLOC = " << *MI;
822  ConstantInt *NElements = cast<ConstantInt>(MI->getArraySize());
823
824  if (NElements->getZExtValue() != 1) {
825    // If we have an array allocation, transform it to a single element
826    // allocation to make the code below simpler.
827    Type *NewTy = ArrayType::get(MI->getAllocatedType(),
828                                 NElements->getZExtValue());
829    MallocInst *NewMI =
830      new MallocInst(NewTy, Constant::getNullValue(Type::getInt32Ty(Context)),
831                     MI->getAlignment(), MI->getName(), MI);
832    Value* Indices[2];
833    Indices[0] = Indices[1] = Constant::getNullValue(Type::getInt32Ty(Context));
834    Value *NewGEP = GetElementPtrInst::Create(NewMI, Indices, Indices + 2,
835                                              NewMI->getName()+".el0", MI);
836    MI->replaceAllUsesWith(NewGEP);
837    MI->eraseFromParent();
838    MI = NewMI;
839  }
840
841  // Create the new global variable.  The contents of the malloc'd memory is
842  // undefined, so initialize with an undef value.
843  // FIXME: This new global should have the alignment returned by malloc.  Code
844  // could depend on malloc returning large alignment (on the mac, 16 bytes) but
845  // this would only guarantee some lower alignment.
846  Constant *Init = UndefValue::get(MI->getAllocatedType());
847  GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
848                                             MI->getAllocatedType(), false,
849                                             GlobalValue::InternalLinkage, Init,
850                                             GV->getName()+".body",
851                                             GV,
852                                             GV->isThreadLocal());
853
854  // Anything that used the malloc now uses the global directly.
855  MI->replaceAllUsesWith(NewGV);
856
857  Constant *RepValue = NewGV;
858  if (NewGV->getType() != GV->getType()->getElementType())
859    RepValue = ConstantExpr::getBitCast(RepValue,
860                                        GV->getType()->getElementType());
861
862  // If there is a comparison against null, we will insert a global bool to
863  // keep track of whether the global was initialized yet or not.
864  GlobalVariable *InitBool =
865    new GlobalVariable(Context, Type::getInt1Ty(Context), false,
866                       GlobalValue::InternalLinkage,
867                       ConstantInt::getFalse(Context), GV->getName()+".init",
868                       GV->isThreadLocal());
869  bool InitBoolUsed = false;
870
871  // Loop over all uses of GV, processing them in turn.
872  std::vector<StoreInst*> Stores;
873  while (!GV->use_empty())
874    if (LoadInst *LI = dyn_cast<LoadInst>(GV->use_back())) {
875      while (!LI->use_empty()) {
876        Use &LoadUse = LI->use_begin().getUse();
877        if (!isa<ICmpInst>(LoadUse.getUser()))
878          LoadUse = RepValue;
879        else {
880          ICmpInst *CI = cast<ICmpInst>(LoadUse.getUser());
881          // Replace the cmp X, 0 with a use of the bool value.
882          Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", CI);
883          InitBoolUsed = true;
884          switch (CI->getPredicate()) {
885          default: llvm_unreachable("Unknown ICmp Predicate!");
886          case ICmpInst::ICMP_ULT:
887          case ICmpInst::ICMP_SLT:
888            LV = ConstantInt::getFalse(Context);   // X < null -> always false
889            break;
890          case ICmpInst::ICMP_ULE:
891          case ICmpInst::ICMP_SLE:
892          case ICmpInst::ICMP_EQ:
893            LV = BinaryOperator::CreateNot(LV, "notinit", CI);
894            break;
895          case ICmpInst::ICMP_NE:
896          case ICmpInst::ICMP_UGE:
897          case ICmpInst::ICMP_SGE:
898          case ICmpInst::ICMP_UGT:
899          case ICmpInst::ICMP_SGT:
900            break;  // no change.
901          }
902          CI->replaceAllUsesWith(LV);
903          CI->eraseFromParent();
904        }
905      }
906      LI->eraseFromParent();
907    } else {
908      StoreInst *SI = cast<StoreInst>(GV->use_back());
909      // The global is initialized when the store to it occurs.
910      new StoreInst(ConstantInt::getTrue(Context), InitBool, SI);
911      SI->eraseFromParent();
912    }
913
914  // If the initialization boolean was used, insert it, otherwise delete it.
915  if (!InitBoolUsed) {
916    while (!InitBool->use_empty())  // Delete initializations
917      cast<Instruction>(InitBool->use_back())->eraseFromParent();
918    delete InitBool;
919  } else
920    GV->getParent()->getGlobalList().insert(GV, InitBool);
921
922
923  // Now the GV is dead, nuke it and the malloc.
924  GV->eraseFromParent();
925  MI->eraseFromParent();
926
927  // To further other optimizations, loop over all users of NewGV and try to
928  // constant prop them.  This will promote GEP instructions with constant
929  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
930  ConstantPropUsersOf(NewGV, Context);
931  if (RepValue != NewGV)
932    ConstantPropUsersOf(RepValue, Context);
933
934  return NewGV;
935}
936
937/// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
938/// to make sure that there are no complex uses of V.  We permit simple things
939/// like dereferencing the pointer, but not storing through the address, unless
940/// it is to the specified global.
941static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Instruction *V,
942                                                      GlobalVariable *GV,
943                                              SmallPtrSet<PHINode*, 8> &PHIs) {
944  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
945    Instruction *Inst = cast<Instruction>(*UI);
946
947    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
948      continue; // Fine, ignore.
949    }
950
951    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
952      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
953        return false;  // Storing the pointer itself... bad.
954      continue; // Otherwise, storing through it, or storing into GV... fine.
955    }
956
957    if (isa<GetElementPtrInst>(Inst)) {
958      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
959        return false;
960      continue;
961    }
962
963    if (PHINode *PN = dyn_cast<PHINode>(Inst)) {
964      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
965      // cycles.
966      if (PHIs.insert(PN))
967        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
968          return false;
969      continue;
970    }
971
972    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
973      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
974        return false;
975      continue;
976    }
977
978    return false;
979  }
980  return true;
981}
982
983/// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
984/// somewhere.  Transform all uses of the allocation into loads from the
985/// global and uses of the resultant pointer.  Further, delete the store into
986/// GV.  This assumes that these value pass the
987/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
988static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
989                                          GlobalVariable *GV) {
990  while (!Alloc->use_empty()) {
991    Instruction *U = cast<Instruction>(*Alloc->use_begin());
992    Instruction *InsertPt = U;
993    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
994      // If this is the store of the allocation into the global, remove it.
995      if (SI->getOperand(1) == GV) {
996        SI->eraseFromParent();
997        continue;
998      }
999    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1000      // Insert the load in the corresponding predecessor, not right before the
1001      // PHI.
1002      InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
1003    } else if (isa<BitCastInst>(U)) {
1004      // Must be bitcast between the malloc and store to initialize the global.
1005      ReplaceUsesOfMallocWithGlobal(U, GV);
1006      U->eraseFromParent();
1007      continue;
1008    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1009      // If this is a "GEP bitcast" and the user is a store to the global, then
1010      // just process it as a bitcast.
1011      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1012        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
1013          if (SI->getOperand(1) == GV) {
1014            // Must be bitcast GEP between the malloc and store to initialize
1015            // the global.
1016            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1017            GEPI->eraseFromParent();
1018            continue;
1019          }
1020    }
1021
1022    // Insert a load from the global, and use it instead of the malloc.
1023    Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
1024    U->replaceUsesOfWith(Alloc, NL);
1025  }
1026}
1027
1028/// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
1029/// of a load) are simple enough to perform heap SRA on.  This permits GEP's
1030/// that index through the array and struct field, icmps of null, and PHIs.
1031static bool LoadUsesSimpleEnoughForHeapSRA(Value *V,
1032                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIs,
1033                              SmallPtrSet<PHINode*, 32> &LoadUsingPHIsPerLoad) {
1034  // We permit two users of the load: setcc comparing against the null
1035  // pointer, and a getelementptr of a specific form.
1036  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1037    Instruction *User = cast<Instruction>(*UI);
1038
1039    // Comparison against null is ok.
1040    if (ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
1041      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1042        return false;
1043      continue;
1044    }
1045
1046    // getelementptr is also ok, but only a simple form.
1047    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1048      // Must index into the array and into the struct.
1049      if (GEPI->getNumOperands() < 3)
1050        return false;
1051
1052      // Otherwise the GEP is ok.
1053      continue;
1054    }
1055
1056    if (PHINode *PN = dyn_cast<PHINode>(User)) {
1057      if (!LoadUsingPHIsPerLoad.insert(PN))
1058        // This means some phi nodes are dependent on each other.
1059        // Avoid infinite looping!
1060        return false;
1061      if (!LoadUsingPHIs.insert(PN))
1062        // If we have already analyzed this PHI, then it is safe.
1063        continue;
1064
1065      // Make sure all uses of the PHI are simple enough to transform.
1066      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1067                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1068        return false;
1069
1070      continue;
1071    }
1072
1073    // Otherwise we don't know what this is, not ok.
1074    return false;
1075  }
1076
1077  return true;
1078}
1079
1080
1081/// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
1082/// GV are simple enough to perform HeapSRA, return true.
1083static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(GlobalVariable *GV,
1084                                                    MallocInst *MI) {
1085  SmallPtrSet<PHINode*, 32> LoadUsingPHIs;
1086  SmallPtrSet<PHINode*, 32> LoadUsingPHIsPerLoad;
1087  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;
1088       ++UI)
1089    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1090      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1091                                          LoadUsingPHIsPerLoad))
1092        return false;
1093      LoadUsingPHIsPerLoad.clear();
1094    }
1095
1096  // If we reach here, we know that all uses of the loads and transitive uses
1097  // (through PHI nodes) are simple enough to transform.  However, we don't know
1098  // that all inputs the to the PHI nodes are in the same equivalence sets.
1099  // Check to verify that all operands of the PHIs are either PHIS that can be
1100  // transformed, loads from GV, or MI itself.
1101  for (SmallPtrSet<PHINode*, 32>::iterator I = LoadUsingPHIs.begin(),
1102       E = LoadUsingPHIs.end(); I != E; ++I) {
1103    PHINode *PN = *I;
1104    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1105      Value *InVal = PN->getIncomingValue(op);
1106
1107      // PHI of the stored value itself is ok.
1108      if (InVal == MI) continue;
1109
1110      if (PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1111        // One of the PHIs in our set is (optimistically) ok.
1112        if (LoadUsingPHIs.count(InPN))
1113          continue;
1114        return false;
1115      }
1116
1117      // Load from GV is ok.
1118      if (LoadInst *LI = dyn_cast<LoadInst>(InVal))
1119        if (LI->getOperand(0) == GV)
1120          continue;
1121
1122      // UNDEF? NULL?
1123
1124      // Anything else is rejected.
1125      return false;
1126    }
1127  }
1128
1129  return true;
1130}
1131
1132static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1133               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1134                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1135                   LLVMContext &Context) {
1136  std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
1137
1138  if (FieldNo >= FieldVals.size())
1139    FieldVals.resize(FieldNo+1);
1140
1141  // If we already have this value, just reuse the previously scalarized
1142  // version.
1143  if (Value *FieldVal = FieldVals[FieldNo])
1144    return FieldVal;
1145
1146  // Depending on what instruction this is, we have several cases.
1147  Value *Result;
1148  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1149    // This is a scalarized version of the load from the global.  Just create
1150    // a new Load of the scalarized global.
1151    Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
1152                                           InsertedScalarizedValues,
1153                                           PHIsToRewrite, Context),
1154                          LI->getName()+".f"+Twine(FieldNo), LI);
1155  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1156    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1157    // field.
1158    const StructType *ST =
1159      cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
1160
1161    Result =
1162     PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
1163                     PN->getName()+".f"+Twine(FieldNo), PN);
1164    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1165  } else {
1166    llvm_unreachable("Unknown usable value");
1167    Result = 0;
1168  }
1169
1170  return FieldVals[FieldNo] = Result;
1171}
1172
1173/// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
1174/// the load, rewrite the derived value to use the HeapSRoA'd load.
1175static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1176             DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1177                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1178                   LLVMContext &Context) {
1179  // If this is a comparison against null, handle it.
1180  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1181    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1182    // If we have a setcc of the loaded pointer, we can use a setcc of any
1183    // field.
1184    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1185                                   InsertedScalarizedValues, PHIsToRewrite,
1186                                   Context);
1187
1188    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1189                              Constant::getNullValue(NPtr->getType()),
1190                              SCI->getName());
1191    SCI->replaceAllUsesWith(New);
1192    SCI->eraseFromParent();
1193    return;
1194  }
1195
1196  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1197  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1198    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1199           && "Unexpected GEPI!");
1200
1201    // Load the pointer for this field.
1202    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1203    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1204                                     InsertedScalarizedValues, PHIsToRewrite,
1205                                     Context);
1206
1207    // Create the new GEP idx vector.
1208    SmallVector<Value*, 8> GEPIdx;
1209    GEPIdx.push_back(GEPI->getOperand(1));
1210    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1211
1212    Value *NGEPI = GetElementPtrInst::Create(NewPtr,
1213                                             GEPIdx.begin(), GEPIdx.end(),
1214                                             GEPI->getName(), GEPI);
1215    GEPI->replaceAllUsesWith(NGEPI);
1216    GEPI->eraseFromParent();
1217    return;
1218  }
1219
1220  // Recursively transform the users of PHI nodes.  This will lazily create the
1221  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1222  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1223  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1224  // already been seen first by another load, so its uses have already been
1225  // processed.
1226  PHINode *PN = cast<PHINode>(LoadUser);
1227  bool Inserted;
1228  DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
1229  tie(InsertPos, Inserted) =
1230    InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
1231  if (!Inserted) return;
1232
1233  // If this is the first time we've seen this PHI, recursively process all
1234  // users.
1235  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
1236    Instruction *User = cast<Instruction>(*UI++);
1237    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1238                            Context);
1239  }
1240}
1241
1242/// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
1243/// is a value loaded from the global.  Eliminate all uses of Ptr, making them
1244/// use FieldGlobals instead.  All uses of loaded values satisfy
1245/// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1246static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1247               DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
1248                   std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite,
1249                   LLVMContext &Context) {
1250  for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
1251       UI != E; ) {
1252    Instruction *User = cast<Instruction>(*UI++);
1253    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite,
1254                            Context);
1255  }
1256
1257  if (Load->use_empty()) {
1258    Load->eraseFromParent();
1259    InsertedScalarizedValues.erase(Load);
1260  }
1261}
1262
1263/// PerformHeapAllocSRoA - MI is an allocation of an array of structures.  Break
1264/// it up into multiple allocations of arrays of the fields.
1265static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, MallocInst *MI,
1266                                            LLVMContext &Context){
1267  DOUT << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *MI;
1268  const StructType *STy = cast<StructType>(MI->getAllocatedType());
1269
1270  // There is guaranteed to be at least one use of the malloc (storing
1271  // it into GV).  If there are other uses, change them to be uses of
1272  // the global to simplify later code.  This also deletes the store
1273  // into GV.
1274  ReplaceUsesOfMallocWithGlobal(MI, GV);
1275
1276  // Okay, at this point, there are no users of the malloc.  Insert N
1277  // new mallocs at the same place as MI, and N globals.
1278  std::vector<Value*> FieldGlobals;
1279  std::vector<MallocInst*> FieldMallocs;
1280
1281  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1282    const Type *FieldTy = STy->getElementType(FieldNo);
1283    const Type *PFieldTy = PointerType::getUnqual(FieldTy);
1284
1285    GlobalVariable *NGV =
1286      new GlobalVariable(*GV->getParent(),
1287                         PFieldTy, false, GlobalValue::InternalLinkage,
1288                         Constant::getNullValue(PFieldTy),
1289                         GV->getName() + ".f" + Twine(FieldNo), GV,
1290                         GV->isThreadLocal());
1291    FieldGlobals.push_back(NGV);
1292
1293    MallocInst *NMI = new MallocInst(FieldTy, MI->getArraySize(),
1294                                     MI->getName() + ".f" + Twine(FieldNo), MI);
1295    FieldMallocs.push_back(NMI);
1296    new StoreInst(NMI, NGV, MI);
1297  }
1298
1299  // The tricky aspect of this transformation is handling the case when malloc
1300  // fails.  In the original code, malloc failing would set the result pointer
1301  // of malloc to null.  In this case, some mallocs could succeed and others
1302  // could fail.  As such, we emit code that looks like this:
1303  //    F0 = malloc(field0)
1304  //    F1 = malloc(field1)
1305  //    F2 = malloc(field2)
1306  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1307  //      if (F0) { free(F0); F0 = 0; }
1308  //      if (F1) { free(F1); F1 = 0; }
1309  //      if (F2) { free(F2); F2 = 0; }
1310  //    }
1311  Value *RunningOr = 0;
1312  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1313    Value *Cond = new ICmpInst(MI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1314                              Constant::getNullValue(FieldMallocs[i]->getType()),
1315                                  "isnull");
1316    if (!RunningOr)
1317      RunningOr = Cond;   // First seteq
1318    else
1319      RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", MI);
1320  }
1321
1322  // Split the basic block at the old malloc.
1323  BasicBlock *OrigBB = MI->getParent();
1324  BasicBlock *ContBB = OrigBB->splitBasicBlock(MI, "malloc_cont");
1325
1326  // Create the block to check the first condition.  Put all these blocks at the
1327  // end of the function as they are unlikely to be executed.
1328  BasicBlock *NullPtrBlock = BasicBlock::Create(Context, "malloc_ret_null",
1329                                                OrigBB->getParent());
1330
1331  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1332  // branch on RunningOr.
1333  OrigBB->getTerminator()->eraseFromParent();
1334  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1335
1336  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1337  // pointer, because some may be null while others are not.
1338  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1339    Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
1340    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1341                              Constant::getNullValue(GVVal->getType()),
1342                              "tmp");
1343    BasicBlock *FreeBlock = BasicBlock::Create(Context, "free_it",
1344                                               OrigBB->getParent());
1345    BasicBlock *NextBlock = BasicBlock::Create(Context, "next",
1346                                               OrigBB->getParent());
1347    BranchInst::Create(FreeBlock, NextBlock, Cmp, NullPtrBlock);
1348
1349    // Fill in FreeBlock.
1350    new FreeInst(GVVal, FreeBlock);
1351    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1352                  FreeBlock);
1353    BranchInst::Create(NextBlock, FreeBlock);
1354
1355    NullPtrBlock = NextBlock;
1356  }
1357
1358  BranchInst::Create(ContBB, NullPtrBlock);
1359
1360  // MI is no longer needed, remove it.
1361  MI->eraseFromParent();
1362
1363  /// InsertedScalarizedLoads - As we process loads, if we can't immediately
1364  /// update all uses of the load, keep track of what scalarized loads are
1365  /// inserted for a given load.
1366  DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
1367  InsertedScalarizedValues[GV] = FieldGlobals;
1368
1369  std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
1370
1371  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1372  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1373  // of the per-field globals instead.
1374  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
1375    Instruction *User = cast<Instruction>(*UI++);
1376
1377    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1378      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite,
1379                                   Context);
1380      continue;
1381    }
1382
1383    // Must be a store of null.
1384    StoreInst *SI = cast<StoreInst>(User);
1385    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1386           "Unexpected heap-sra user!");
1387
1388    // Insert a store of null into each global.
1389    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1390      const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
1391      Constant *Null = Constant::getNullValue(PT->getElementType());
1392      new StoreInst(Null, FieldGlobals[i], SI);
1393    }
1394    // Erase the original store.
1395    SI->eraseFromParent();
1396  }
1397
1398  // While we have PHIs that are interesting to rewrite, do it.
1399  while (!PHIsToRewrite.empty()) {
1400    PHINode *PN = PHIsToRewrite.back().first;
1401    unsigned FieldNo = PHIsToRewrite.back().second;
1402    PHIsToRewrite.pop_back();
1403    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1404    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1405
1406    // Add all the incoming values.  This can materialize more phis.
1407    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1408      Value *InVal = PN->getIncomingValue(i);
1409      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1410                               PHIsToRewrite, Context);
1411      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1412    }
1413  }
1414
1415  // Drop all inter-phi links and any loads that made it this far.
1416  for (DenseMap<Value*, std::vector<Value*> >::iterator
1417       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1418       I != E; ++I) {
1419    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1420      PN->dropAllReferences();
1421    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1422      LI->dropAllReferences();
1423  }
1424
1425  // Delete all the phis and loads now that inter-references are dead.
1426  for (DenseMap<Value*, std::vector<Value*> >::iterator
1427       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1428       I != E; ++I) {
1429    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1430      PN->eraseFromParent();
1431    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1432      LI->eraseFromParent();
1433  }
1434
1435  // The old global is now dead, remove it.
1436  GV->eraseFromParent();
1437
1438  ++NumHeapSRA;
1439  return cast<GlobalVariable>(FieldGlobals[0]);
1440}
1441
1442/// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
1443/// pointer global variable with a single value stored it that is a malloc or
1444/// cast of malloc.
1445static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
1446                                               MallocInst *MI,
1447                                               Module::global_iterator &GVI,
1448                                               TargetData *TD,
1449                                               LLVMContext &Context) {
1450  // If this is a malloc of an abstract type, don't touch it.
1451  if (!MI->getAllocatedType()->isSized())
1452    return false;
1453
1454  // We can't optimize this global unless all uses of it are *known* to be
1455  // of the malloc value, not of the null initializer value (consider a use
1456  // that compares the global's value against zero to see if the malloc has
1457  // been reached).  To do this, we check to see if all uses of the global
1458  // would trap if the global were null: this proves that they must all
1459  // happen after the malloc.
1460  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1461    return false;
1462
1463  // We can't optimize this if the malloc itself is used in a complex way,
1464  // for example, being stored into multiple globals.  This allows the
1465  // malloc to be stored into the specified global, loaded setcc'd, and
1466  // GEP'd.  These are all things we could transform to using the global
1467  // for.
1468  {
1469    SmallPtrSet<PHINode*, 8> PHIs;
1470    if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(MI, GV, PHIs))
1471      return false;
1472  }
1473
1474
1475  // If we have a global that is only initialized with a fixed size malloc,
1476  // transform the program to use global memory instead of malloc'd memory.
1477  // This eliminates dynamic allocation, avoids an indirection accessing the
1478  // data, and exposes the resultant global to further GlobalOpt.
1479  if (ConstantInt *NElements = dyn_cast<ConstantInt>(MI->getArraySize())) {
1480    // Restrict this transformation to only working on small allocations
1481    // (2048 bytes currently), as we don't want to introduce a 16M global or
1482    // something.
1483    if (TD &&
1484        NElements->getZExtValue()*
1485        TD->getTypeAllocSize(MI->getAllocatedType()) < 2048) {
1486      GVI = OptimizeGlobalAddressOfMalloc(GV, MI, Context);
1487      return true;
1488    }
1489  }
1490
1491  // If the allocation is an array of structures, consider transforming this
1492  // into multiple malloc'd arrays, one for each field.  This is basically
1493  // SRoA for malloc'd memory.
1494  const Type *AllocTy = MI->getAllocatedType();
1495
1496  // If this is an allocation of a fixed size array of structs, analyze as a
1497  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1498  if (!MI->isArrayAllocation())
1499    if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1500      AllocTy = AT->getElementType();
1501
1502  if (const StructType *AllocSTy = dyn_cast<StructType>(AllocTy)) {
1503    // This the structure has an unreasonable number of fields, leave it
1504    // alone.
1505    if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1506        AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, MI)) {
1507
1508      // If this is a fixed size array, transform the Malloc to be an alloc of
1509      // structs.  malloc [100 x struct],1 -> malloc struct, 100
1510      if (const ArrayType *AT = dyn_cast<ArrayType>(MI->getAllocatedType())) {
1511        MallocInst *NewMI =
1512          new MallocInst(AllocSTy,
1513                  ConstantInt::get(Type::getInt32Ty(Context),
1514                  AT->getNumElements()),
1515                         "", MI);
1516        NewMI->takeName(MI);
1517        Value *Cast = new BitCastInst(NewMI, MI->getType(), "tmp", MI);
1518        MI->replaceAllUsesWith(Cast);
1519        MI->eraseFromParent();
1520        MI = NewMI;
1521      }
1522
1523      GVI = PerformHeapAllocSRoA(GV, MI, Context);
1524      return true;
1525    }
1526  }
1527
1528  return false;
1529}
1530
1531// OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
1532// that only one value (besides its initializer) is ever stored to the global.
1533static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1534                                     Module::global_iterator &GVI,
1535                                     TargetData *TD, LLVMContext &Context) {
1536  // Ignore no-op GEPs and bitcasts.
1537  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1538
1539  // If we are dealing with a pointer global that is initialized to null and
1540  // only has one (non-null) value stored into it, then we can optimize any
1541  // users of the loaded value (often calls and loads) that would trap if the
1542  // value was null.
1543  if (isa<PointerType>(GV->getInitializer()->getType()) &&
1544      GV->getInitializer()->isNullValue()) {
1545    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1546      if (GV->getInitializer()->getType() != SOVC->getType())
1547        SOVC =
1548         ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1549
1550      // Optimize away any trapping uses of the loaded value.
1551      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, Context))
1552        return true;
1553    } else if (MallocInst *MI = dyn_cast<MallocInst>(StoredOnceVal)) {
1554      if (TryToOptimizeStoreOfMallocToGlobal(GV, MI, GVI, TD, Context))
1555        return true;
1556    }
1557  }
1558
1559  return false;
1560}
1561
1562/// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
1563/// two values ever stored into GV are its initializer and OtherVal.  See if we
1564/// can shrink the global into a boolean and select between the two values
1565/// whenever it is used.  This exposes the values to other scalar optimizations.
1566static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal,
1567                                       LLVMContext &Context) {
1568  const Type *GVElType = GV->getType()->getElementType();
1569
1570  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1571  // an FP value, pointer or vector, don't do this optimization because a select
1572  // between them is very expensive and unlikely to lead to later
1573  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1574  // where v1 and v2 both require constant pool loads, a big loss.
1575  if (GVElType == Type::getInt1Ty(Context) || GVElType->isFloatingPoint() ||
1576      isa<PointerType>(GVElType) || isa<VectorType>(GVElType))
1577    return false;
1578
1579  // Walk the use list of the global seeing if all the uses are load or store.
1580  // If there is anything else, bail out.
1581  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I)
1582    if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
1583      return false;
1584
1585  DOUT << "   *** SHRINKING TO BOOL: " << *GV;
1586
1587  // Create the new global, initializing it to false.
1588  GlobalVariable *NewGV = new GlobalVariable(Context,
1589                                             Type::getInt1Ty(Context), false,
1590         GlobalValue::InternalLinkage, ConstantInt::getFalse(Context),
1591                                             GV->getName()+".b",
1592                                             GV->isThreadLocal());
1593  GV->getParent()->getGlobalList().insert(GV, NewGV);
1594
1595  Constant *InitVal = GV->getInitializer();
1596  assert(InitVal->getType() != Type::getInt1Ty(Context) &&
1597         "No reason to shrink to bool!");
1598
1599  // If initialized to zero and storing one into the global, we can use a cast
1600  // instead of a select to synthesize the desired value.
1601  bool IsOneZero = false;
1602  if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
1603    IsOneZero = InitVal->isNullValue() && CI->isOne();
1604
1605  while (!GV->use_empty()) {
1606    Instruction *UI = cast<Instruction>(GV->use_back());
1607    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1608      // Change the store into a boolean store.
1609      bool StoringOther = SI->getOperand(0) == OtherVal;
1610      // Only do this if we weren't storing a loaded value.
1611      Value *StoreVal;
1612      if (StoringOther || SI->getOperand(0) == InitVal)
1613        StoreVal = ConstantInt::get(Type::getInt1Ty(Context), StoringOther);
1614      else {
1615        // Otherwise, we are storing a previously loaded copy.  To do this,
1616        // change the copy from copying the original value to just copying the
1617        // bool.
1618        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1619
1620        // If we're already replaced the input, StoredVal will be a cast or
1621        // select instruction.  If not, it will be a load of the original
1622        // global.
1623        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1624          assert(LI->getOperand(0) == GV && "Not a copy!");
1625          // Insert a new load, to preserve the saved value.
1626          StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
1627        } else {
1628          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1629                 "This is not a form that we understand!");
1630          StoreVal = StoredVal->getOperand(0);
1631          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1632        }
1633      }
1634      new StoreInst(StoreVal, NewGV, SI);
1635    } else {
1636      // Change the load into a load of bool then a select.
1637      LoadInst *LI = cast<LoadInst>(UI);
1638      LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
1639      Value *NSI;
1640      if (IsOneZero)
1641        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1642      else
1643        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1644      NSI->takeName(LI);
1645      LI->replaceAllUsesWith(NSI);
1646    }
1647    UI->eraseFromParent();
1648  }
1649
1650  GV->eraseFromParent();
1651  return true;
1652}
1653
1654
1655/// ProcessInternalGlobal - Analyze the specified global variable and optimize
1656/// it if possible.  If we make a change, return true.
1657bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
1658                                      Module::global_iterator &GVI) {
1659  SmallPtrSet<PHINode*, 16> PHIUsers;
1660  GlobalStatus GS;
1661  GV->removeDeadConstantUsers();
1662
1663  if (GV->use_empty()) {
1664    DOUT << "GLOBAL DEAD: " << *GV;
1665    GV->eraseFromParent();
1666    ++NumDeleted;
1667    return true;
1668  }
1669
1670  if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
1671#if 0
1672    cerr << "Global: " << *GV;
1673    cerr << "  isLoaded = " << GS.isLoaded << "\n";
1674    cerr << "  StoredType = ";
1675    switch (GS.StoredType) {
1676    case GlobalStatus::NotStored: cerr << "NEVER STORED\n"; break;
1677    case GlobalStatus::isInitializerStored: cerr << "INIT STORED\n"; break;
1678    case GlobalStatus::isStoredOnce: cerr << "STORED ONCE\n"; break;
1679    case GlobalStatus::isStored: cerr << "stored\n"; break;
1680    }
1681    if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
1682      cerr << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n";
1683    if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
1684      cerr << "  AccessingFunction = " << GS.AccessingFunction->getName()
1685                << "\n";
1686    cerr << "  HasMultipleAccessingFunctions =  "
1687              << GS.HasMultipleAccessingFunctions << "\n";
1688    cerr << "  HasNonInstructionUser = " << GS.HasNonInstructionUser<<"\n";
1689    cerr << "\n";
1690#endif
1691
1692    // If this is a first class global and has only one accessing function
1693    // and this function is main (which we know is not recursive we can make
1694    // this global a local variable) we replace the global with a local alloca
1695    // in this function.
1696    //
1697    // NOTE: It doesn't make sense to promote non single-value types since we
1698    // are just replacing static memory to stack memory.
1699    //
1700    // If the global is in different address space, don't bring it to stack.
1701    if (!GS.HasMultipleAccessingFunctions &&
1702        GS.AccessingFunction && !GS.HasNonInstructionUser &&
1703        GV->getType()->getElementType()->isSingleValueType() &&
1704        GS.AccessingFunction->getName() == "main" &&
1705        GS.AccessingFunction->hasExternalLinkage() &&
1706        GV->getType()->getAddressSpace() == 0) {
1707      DOUT << "LOCALIZING GLOBAL: " << *GV;
1708      Instruction* FirstI = GS.AccessingFunction->getEntryBlock().begin();
1709      const Type* ElemTy = GV->getType()->getElementType();
1710      // FIXME: Pass Global's alignment when globals have alignment
1711      AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), FirstI);
1712      if (!isa<UndefValue>(GV->getInitializer()))
1713        new StoreInst(GV->getInitializer(), Alloca, FirstI);
1714
1715      GV->replaceAllUsesWith(Alloca);
1716      GV->eraseFromParent();
1717      ++NumLocalized;
1718      return true;
1719    }
1720
1721    // If the global is never loaded (but may be stored to), it is dead.
1722    // Delete it now.
1723    if (!GS.isLoaded) {
1724      DOUT << "GLOBAL NEVER LOADED: " << *GV;
1725
1726      // Delete any stores we can find to the global.  We may not be able to
1727      // make it completely dead though.
1728      bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1729                                                GV->getContext());
1730
1731      // If the global is dead now, delete it.
1732      if (GV->use_empty()) {
1733        GV->eraseFromParent();
1734        ++NumDeleted;
1735        Changed = true;
1736      }
1737      return Changed;
1738
1739    } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
1740      DOUT << "MARKING CONSTANT: " << *GV;
1741      GV->setConstant(true);
1742
1743      // Clean up any obviously simplifiable users now.
1744      CleanupConstantGlobalUsers(GV, GV->getInitializer(), GV->getContext());
1745
1746      // If the global is dead now, just nuke it.
1747      if (GV->use_empty()) {
1748        DOUT << "   *** Marking constant allowed us to simplify "
1749             << "all users and delete global!\n";
1750        GV->eraseFromParent();
1751        ++NumDeleted;
1752      }
1753
1754      ++NumMarked;
1755      return true;
1756    } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
1757      if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
1758        if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD,
1759                                                   GV->getContext())) {
1760          GVI = FirstNewGV;  // Don't skip the newly produced globals!
1761          return true;
1762        }
1763    } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
1764      // If the initial value for the global was an undef value, and if only
1765      // one other value was stored into it, we can just change the
1766      // initializer to be the stored value, then delete all stores to the
1767      // global.  This allows us to mark it constant.
1768      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1769        if (isa<UndefValue>(GV->getInitializer())) {
1770          // Change the initial value here.
1771          GV->setInitializer(SOVConstant);
1772
1773          // Clean up any obviously simplifiable users now.
1774          CleanupConstantGlobalUsers(GV, GV->getInitializer(),
1775                                     GV->getContext());
1776
1777          if (GV->use_empty()) {
1778            DOUT << "   *** Substituting initializer allowed us to "
1779                 << "simplify all users and delete global!\n";
1780            GV->eraseFromParent();
1781            ++NumDeleted;
1782          } else {
1783            GVI = GV;
1784          }
1785          ++NumSubstitute;
1786          return true;
1787        }
1788
1789      // Try to optimize globals based on the knowledge that only one value
1790      // (besides its initializer) is ever stored to the global.
1791      if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
1792                                   getAnalysisIfAvailable<TargetData>(),
1793                                   GV->getContext()))
1794        return true;
1795
1796      // Otherwise, if the global was not a boolean, we can shrink it to be a
1797      // boolean.
1798      if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1799        if (TryToShrinkGlobalToBoolean(GV, SOVConstant, GV->getContext())) {
1800          ++NumShrunkToBool;
1801          return true;
1802        }
1803    }
1804  }
1805  return false;
1806}
1807
1808/// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
1809/// function, changing them to FastCC.
1810static void ChangeCalleesToFastCall(Function *F) {
1811  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1812    CallSite User(cast<Instruction>(*UI));
1813    User.setCallingConv(CallingConv::Fast);
1814  }
1815}
1816
1817static AttrListPtr StripNest(const AttrListPtr &Attrs) {
1818  for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1819    if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
1820      continue;
1821
1822    // There can be only one.
1823    return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
1824  }
1825
1826  return Attrs;
1827}
1828
1829static void RemoveNestAttribute(Function *F) {
1830  F->setAttributes(StripNest(F->getAttributes()));
1831  for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
1832    CallSite User(cast<Instruction>(*UI));
1833    User.setAttributes(StripNest(User.getAttributes()));
1834  }
1835}
1836
1837bool GlobalOpt::OptimizeFunctions(Module &M) {
1838  bool Changed = false;
1839  // Optimize functions.
1840  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1841    Function *F = FI++;
1842    // Functions without names cannot be referenced outside this module.
1843    if (!F->hasName() && !F->isDeclaration())
1844      F->setLinkage(GlobalValue::InternalLinkage);
1845    F->removeDeadConstantUsers();
1846    if (F->use_empty() && (F->hasLocalLinkage() ||
1847                           F->hasLinkOnceLinkage())) {
1848      M.getFunctionList().erase(F);
1849      Changed = true;
1850      ++NumFnDeleted;
1851    } else if (F->hasLocalLinkage()) {
1852      if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
1853          !F->hasAddressTaken()) {
1854        // If this function has C calling conventions, is not a varargs
1855        // function, and is only called directly, promote it to use the Fast
1856        // calling convention.
1857        F->setCallingConv(CallingConv::Fast);
1858        ChangeCalleesToFastCall(F);
1859        ++NumFastCallFns;
1860        Changed = true;
1861      }
1862
1863      if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
1864          !F->hasAddressTaken()) {
1865        // The function is not used by a trampoline intrinsic, so it is safe
1866        // to remove the 'nest' attribute.
1867        RemoveNestAttribute(F);
1868        ++NumNestRemoved;
1869        Changed = true;
1870      }
1871    }
1872  }
1873  return Changed;
1874}
1875
1876bool GlobalOpt::OptimizeGlobalVars(Module &M) {
1877  bool Changed = false;
1878  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
1879       GVI != E; ) {
1880    GlobalVariable *GV = GVI++;
1881    // Global variables without names cannot be referenced outside this module.
1882    if (!GV->hasName() && !GV->isDeclaration())
1883      GV->setLinkage(GlobalValue::InternalLinkage);
1884    if (!GV->isConstant() && GV->hasLocalLinkage() &&
1885        GV->hasInitializer())
1886      Changed |= ProcessInternalGlobal(GV, GVI);
1887  }
1888  return Changed;
1889}
1890
1891/// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
1892/// initializers have an init priority of 65535.
1893GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
1894  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1895       I != E; ++I)
1896    if (I->getName() == "llvm.global_ctors") {
1897      // Found it, verify it's an array of { int, void()* }.
1898      const ArrayType *ATy =dyn_cast<ArrayType>(I->getType()->getElementType());
1899      if (!ATy) return 0;
1900      const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
1901      if (!STy || STy->getNumElements() != 2 ||
1902          STy->getElementType(0) != Type::getInt32Ty(M.getContext())) return 0;
1903      const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
1904      if (!PFTy) return 0;
1905      const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
1906      if (!FTy || FTy->getReturnType() != Type::getVoidTy(M.getContext()) ||
1907          FTy->isVarArg() || FTy->getNumParams() != 0)
1908        return 0;
1909
1910      // Verify that the initializer is simple enough for us to handle.
1911      if (!I->hasInitializer()) return 0;
1912      ConstantArray *CA = dyn_cast<ConstantArray>(I->getInitializer());
1913      if (!CA) return 0;
1914      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
1915        if (ConstantStruct *CS = dyn_cast<ConstantStruct>(*i)) {
1916          if (isa<ConstantPointerNull>(CS->getOperand(1)))
1917            continue;
1918
1919          // Must have a function or null ptr.
1920          if (!isa<Function>(CS->getOperand(1)))
1921            return 0;
1922
1923          // Init priority must be standard.
1924          ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
1925          if (!CI || CI->getZExtValue() != 65535)
1926            return 0;
1927        } else {
1928          return 0;
1929        }
1930
1931      return I;
1932    }
1933  return 0;
1934}
1935
1936/// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
1937/// return a list of the functions and null terminator as a vector.
1938static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
1939  ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1940  std::vector<Function*> Result;
1941  Result.reserve(CA->getNumOperands());
1942  for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
1943    ConstantStruct *CS = cast<ConstantStruct>(*i);
1944    Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
1945  }
1946  return Result;
1947}
1948
1949/// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
1950/// specified array, returning the new global to use.
1951static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
1952                                          const std::vector<Function*> &Ctors,
1953                                          LLVMContext &Context) {
1954  // If we made a change, reassemble the initializer list.
1955  std::vector<Constant*> CSVals;
1956  CSVals.push_back(ConstantInt::get(Type::getInt32Ty(Context), 65535));
1957  CSVals.push_back(0);
1958
1959  // Create the new init list.
1960  std::vector<Constant*> CAList;
1961  for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
1962    if (Ctors[i]) {
1963      CSVals[1] = Ctors[i];
1964    } else {
1965      const Type *FTy = FunctionType::get(Type::getVoidTy(Context), false);
1966      const PointerType *PFTy = PointerType::getUnqual(FTy);
1967      CSVals[1] = Constant::getNullValue(PFTy);
1968      CSVals[0] = ConstantInt::get(Type::getInt32Ty(Context), 2147483647);
1969    }
1970    CAList.push_back(ConstantStruct::get(Context, CSVals));
1971  }
1972
1973  // Create the array initializer.
1974  const Type *StructTy =
1975    cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
1976  Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
1977                                           CAList.size()), CAList);
1978
1979  // If we didn't change the number of elements, don't create a new GV.
1980  if (CA->getType() == GCL->getInitializer()->getType()) {
1981    GCL->setInitializer(CA);
1982    return GCL;
1983  }
1984
1985  // Create the new global and insert it next to the existing list.
1986  GlobalVariable *NGV = new GlobalVariable(Context, CA->getType(),
1987                                           GCL->isConstant(),
1988                                           GCL->getLinkage(), CA, "",
1989                                           GCL->isThreadLocal());
1990  GCL->getParent()->getGlobalList().insert(GCL, NGV);
1991  NGV->takeName(GCL);
1992
1993  // Nuke the old list, replacing any uses with the new one.
1994  if (!GCL->use_empty()) {
1995    Constant *V = NGV;
1996    if (V->getType() != GCL->getType())
1997      V = ConstantExpr::getBitCast(V, GCL->getType());
1998    GCL->replaceAllUsesWith(V);
1999  }
2000  GCL->eraseFromParent();
2001
2002  if (Ctors.size())
2003    return NGV;
2004  else
2005    return 0;
2006}
2007
2008
2009static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues,
2010                        Value *V) {
2011  if (Constant *CV = dyn_cast<Constant>(V)) return CV;
2012  Constant *R = ComputedValues[V];
2013  assert(R && "Reference to an uncomputed value!");
2014  return R;
2015}
2016
2017/// isSimpleEnoughPointerToCommit - Return true if this constant is simple
2018/// enough for us to understand.  In particular, if it is a cast of something,
2019/// we punt.  We basically just support direct accesses to globals and GEP's of
2020/// globals.  This should be kept up to date with CommitValueTo.
2021static bool isSimpleEnoughPointerToCommit(Constant *C, LLVMContext &Context) {
2022  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
2023    if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2024      return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2025    return !GV->isDeclaration();  // reject external globals.
2026  }
2027  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2028    // Handle a constantexpr gep.
2029    if (CE->getOpcode() == Instruction::GetElementPtr &&
2030        isa<GlobalVariable>(CE->getOperand(0))) {
2031      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2032      if (!GV->hasExternalLinkage() && !GV->hasLocalLinkage())
2033        return false;  // do not allow weak/linkonce/dllimport/dllexport linkage.
2034      return GV->hasInitializer() &&
2035             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2036                                                    Context);
2037    }
2038  return false;
2039}
2040
2041/// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
2042/// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
2043/// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
2044static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2045                                   ConstantExpr *Addr, unsigned OpNo,
2046                                   LLVMContext &Context) {
2047  // Base case of the recursion.
2048  if (OpNo == Addr->getNumOperands()) {
2049    assert(Val->getType() == Init->getType() && "Type mismatch!");
2050    return Val;
2051  }
2052
2053  if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2054    std::vector<Constant*> Elts;
2055
2056    // Break up the constant into its elements.
2057    if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2058      for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
2059        Elts.push_back(cast<Constant>(*i));
2060    } else if (isa<ConstantAggregateZero>(Init)) {
2061      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2062        Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
2063    } else if (isa<UndefValue>(Init)) {
2064      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2065        Elts.push_back(UndefValue::get(STy->getElementType(i)));
2066    } else {
2067      llvm_unreachable("This code is out of sync with "
2068             " ConstantFoldLoadThroughGEPConstantExpr");
2069    }
2070
2071    // Replace the element that we are supposed to.
2072    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2073    unsigned Idx = CU->getZExtValue();
2074    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2075    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1, Context);
2076
2077    // Return the modified struct.
2078    return ConstantStruct::get(Context, &Elts[0], Elts.size(), STy->isPacked());
2079  } else {
2080    ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2081    const ArrayType *ATy = cast<ArrayType>(Init->getType());
2082
2083    // Break up the array into elements.
2084    std::vector<Constant*> Elts;
2085    if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2086      for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
2087        Elts.push_back(cast<Constant>(*i));
2088    } else if (isa<ConstantAggregateZero>(Init)) {
2089      Constant *Elt = Constant::getNullValue(ATy->getElementType());
2090      Elts.assign(ATy->getNumElements(), Elt);
2091    } else if (isa<UndefValue>(Init)) {
2092      Constant *Elt = UndefValue::get(ATy->getElementType());
2093      Elts.assign(ATy->getNumElements(), Elt);
2094    } else {
2095      llvm_unreachable("This code is out of sync with "
2096             " ConstantFoldLoadThroughGEPConstantExpr");
2097    }
2098
2099    assert(CI->getZExtValue() < ATy->getNumElements());
2100    Elts[CI->getZExtValue()] =
2101      EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1, Context);
2102    return ConstantArray::get(ATy, Elts);
2103  }
2104}
2105
2106/// CommitValueTo - We have decided that Addr (which satisfies the predicate
2107/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2108static void CommitValueTo(Constant *Val, Constant *Addr,
2109                          LLVMContext &Context) {
2110  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2111    assert(GV->hasInitializer());
2112    GV->setInitializer(Val);
2113    return;
2114  }
2115
2116  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2117  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2118
2119  Constant *Init = GV->getInitializer();
2120  Init = EvaluateStoreInto(Init, Val, CE, 2, Context);
2121  GV->setInitializer(Init);
2122}
2123
2124/// ComputeLoadResult - Return the value that would be computed by a load from
2125/// P after the stores reflected by 'memory' have been performed.  If we can't
2126/// decide, return null.
2127static Constant *ComputeLoadResult(Constant *P,
2128                                const DenseMap<Constant*, Constant*> &Memory,
2129                                LLVMContext &Context) {
2130  // If this memory location has been recently stored, use the stored value: it
2131  // is the most up-to-date.
2132  DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
2133  if (I != Memory.end()) return I->second;
2134
2135  // Access it.
2136  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
2137    if (GV->hasInitializer())
2138      return GV->getInitializer();
2139    return 0;
2140  }
2141
2142  // Handle a constantexpr getelementptr.
2143  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
2144    if (CE->getOpcode() == Instruction::GetElementPtr &&
2145        isa<GlobalVariable>(CE->getOperand(0))) {
2146      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2147      if (GV->hasInitializer())
2148        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
2149                                                      Context);
2150    }
2151
2152  return 0;  // don't know how to evaluate.
2153}
2154
2155/// EvaluateFunction - Evaluate a call to function F, returning true if
2156/// successful, false if we can't evaluate it.  ActualArgs contains the formal
2157/// arguments for the function.
2158static bool EvaluateFunction(Function *F, Constant *&RetVal,
2159                             const SmallVectorImpl<Constant*> &ActualArgs,
2160                             std::vector<Function*> &CallStack,
2161                             DenseMap<Constant*, Constant*> &MutatedMemory,
2162                             std::vector<GlobalVariable*> &AllocaTmps) {
2163  // Check to see if this function is already executing (recursion).  If so,
2164  // bail out.  TODO: we might want to accept limited recursion.
2165  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
2166    return false;
2167
2168  LLVMContext &Context = F->getContext();
2169
2170  CallStack.push_back(F);
2171
2172  /// Values - As we compute SSA register values, we store their contents here.
2173  DenseMap<Value*, Constant*> Values;
2174
2175  // Initialize arguments to the incoming values specified.
2176  unsigned ArgNo = 0;
2177  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
2178       ++AI, ++ArgNo)
2179    Values[AI] = ActualArgs[ArgNo];
2180
2181  /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
2182  /// we can only evaluate any one basic block at most once.  This set keeps
2183  /// track of what we have executed so we can detect recursive cases etc.
2184  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
2185
2186  // CurInst - The current instruction we're evaluating.
2187  BasicBlock::iterator CurInst = F->begin()->begin();
2188
2189  // This is the main evaluation loop.
2190  while (1) {
2191    Constant *InstResult = 0;
2192
2193    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
2194      if (SI->isVolatile()) return false;  // no volatile accesses.
2195      Constant *Ptr = getVal(Values, SI->getOperand(1));
2196      if (!isSimpleEnoughPointerToCommit(Ptr, Context))
2197        // If this is too complex for us to commit, reject it.
2198        return false;
2199      Constant *Val = getVal(Values, SI->getOperand(0));
2200      MutatedMemory[Ptr] = Val;
2201    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
2202      InstResult = ConstantExpr::get(BO->getOpcode(),
2203                                     getVal(Values, BO->getOperand(0)),
2204                                     getVal(Values, BO->getOperand(1)));
2205    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
2206      InstResult = ConstantExpr::getCompare(CI->getPredicate(),
2207                                            getVal(Values, CI->getOperand(0)),
2208                                            getVal(Values, CI->getOperand(1)));
2209    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
2210      InstResult = ConstantExpr::getCast(CI->getOpcode(),
2211                                         getVal(Values, CI->getOperand(0)),
2212                                         CI->getType());
2213    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
2214      InstResult =
2215            ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
2216                                           getVal(Values, SI->getOperand(1)),
2217                                           getVal(Values, SI->getOperand(2)));
2218    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
2219      Constant *P = getVal(Values, GEP->getOperand(0));
2220      SmallVector<Constant*, 8> GEPOps;
2221      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
2222           i != e; ++i)
2223        GEPOps.push_back(getVal(Values, *i));
2224      InstResult =
2225            ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
2226    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
2227      if (LI->isVolatile()) return false;  // no volatile accesses.
2228      InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
2229                                     MutatedMemory, Context);
2230      if (InstResult == 0) return false; // Could not evaluate load.
2231    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
2232      if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
2233      const Type *Ty = AI->getType()->getElementType();
2234      AllocaTmps.push_back(new GlobalVariable(Context, Ty, false,
2235                                              GlobalValue::InternalLinkage,
2236                                              UndefValue::get(Ty),
2237                                              AI->getName()));
2238      InstResult = AllocaTmps.back();
2239    } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
2240
2241      // Debug info can safely be ignored here.
2242      if (isa<DbgInfoIntrinsic>(CI)) {
2243        ++CurInst;
2244        continue;
2245      }
2246
2247      // Cannot handle inline asm.
2248      if (isa<InlineAsm>(CI->getOperand(0))) return false;
2249
2250      // Resolve function pointers.
2251      Function *Callee = dyn_cast<Function>(getVal(Values, CI->getOperand(0)));
2252      if (!Callee) return false;  // Cannot resolve.
2253
2254      SmallVector<Constant*, 8> Formals;
2255      for (User::op_iterator i = CI->op_begin() + 1, e = CI->op_end();
2256           i != e; ++i)
2257        Formals.push_back(getVal(Values, *i));
2258
2259      if (Callee->isDeclaration()) {
2260        // If this is a function we can constant fold, do it.
2261        if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
2262                                           Formals.size())) {
2263          InstResult = C;
2264        } else {
2265          return false;
2266        }
2267      } else {
2268        if (Callee->getFunctionType()->isVarArg())
2269          return false;
2270
2271        Constant *RetVal;
2272        // Execute the call, if successful, use the return value.
2273        if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
2274                              MutatedMemory, AllocaTmps))
2275          return false;
2276        InstResult = RetVal;
2277      }
2278    } else if (isa<TerminatorInst>(CurInst)) {
2279      BasicBlock *NewBB = 0;
2280      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
2281        if (BI->isUnconditional()) {
2282          NewBB = BI->getSuccessor(0);
2283        } else {
2284          ConstantInt *Cond =
2285            dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
2286          if (!Cond) return false;  // Cannot determine.
2287
2288          NewBB = BI->getSuccessor(!Cond->getZExtValue());
2289        }
2290      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
2291        ConstantInt *Val =
2292          dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
2293        if (!Val) return false;  // Cannot determine.
2294        NewBB = SI->getSuccessor(SI->findCaseValue(Val));
2295      } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
2296        if (RI->getNumOperands())
2297          RetVal = getVal(Values, RI->getOperand(0));
2298
2299        CallStack.pop_back();  // return from fn.
2300        return true;  // We succeeded at evaluating this ctor!
2301      } else {
2302        // invoke, unwind, unreachable.
2303        return false;  // Cannot handle this terminator.
2304      }
2305
2306      // Okay, we succeeded in evaluating this control flow.  See if we have
2307      // executed the new block before.  If so, we have a looping function,
2308      // which we cannot evaluate in reasonable time.
2309      if (!ExecutedBlocks.insert(NewBB))
2310        return false;  // looped!
2311
2312      // Okay, we have never been in this block before.  Check to see if there
2313      // are any PHI nodes.  If so, evaluate them with information about where
2314      // we came from.
2315      BasicBlock *OldBB = CurInst->getParent();
2316      CurInst = NewBB->begin();
2317      PHINode *PN;
2318      for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
2319        Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
2320
2321      // Do NOT increment CurInst.  We know that the terminator had no value.
2322      continue;
2323    } else {
2324      // Did not know how to evaluate this!
2325      return false;
2326    }
2327
2328    if (!CurInst->use_empty())
2329      Values[CurInst] = InstResult;
2330
2331    // Advance program counter.
2332    ++CurInst;
2333  }
2334}
2335
2336/// EvaluateStaticConstructor - Evaluate static constructors in the function, if
2337/// we can.  Return true if we can, false otherwise.
2338static bool EvaluateStaticConstructor(Function *F) {
2339  /// MutatedMemory - For each store we execute, we update this map.  Loads
2340  /// check this to get the most up-to-date value.  If evaluation is successful,
2341  /// this state is committed to the process.
2342  DenseMap<Constant*, Constant*> MutatedMemory;
2343
2344  /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
2345  /// to represent its body.  This vector is needed so we can delete the
2346  /// temporary globals when we are done.
2347  std::vector<GlobalVariable*> AllocaTmps;
2348
2349  /// CallStack - This is used to detect recursion.  In pathological situations
2350  /// we could hit exponential behavior, but at least there is nothing
2351  /// unbounded.
2352  std::vector<Function*> CallStack;
2353
2354  // Call the function.
2355  Constant *RetValDummy;
2356  bool EvalSuccess = EvaluateFunction(F, RetValDummy,
2357                                      SmallVector<Constant*, 0>(), CallStack,
2358                                      MutatedMemory, AllocaTmps);
2359  if (EvalSuccess) {
2360    // We succeeded at evaluation: commit the result.
2361    DEBUG(errs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2362          << F->getName() << "' to " << MutatedMemory.size()
2363          << " stores.\n");
2364    for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
2365         E = MutatedMemory.end(); I != E; ++I)
2366      CommitValueTo(I->second, I->first, F->getContext());
2367  }
2368
2369  // At this point, we are done interpreting.  If we created any 'alloca'
2370  // temporaries, release them now.
2371  while (!AllocaTmps.empty()) {
2372    GlobalVariable *Tmp = AllocaTmps.back();
2373    AllocaTmps.pop_back();
2374
2375    // If there are still users of the alloca, the program is doing something
2376    // silly, e.g. storing the address of the alloca somewhere and using it
2377    // later.  Since this is undefined, we'll just make it be null.
2378    if (!Tmp->use_empty())
2379      Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
2380    delete Tmp;
2381  }
2382
2383  return EvalSuccess;
2384}
2385
2386
2387
2388/// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
2389/// Return true if anything changed.
2390bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
2391  std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
2392  bool MadeChange = false;
2393  if (Ctors.empty()) return false;
2394
2395  // Loop over global ctors, optimizing them when we can.
2396  for (unsigned i = 0; i != Ctors.size(); ++i) {
2397    Function *F = Ctors[i];
2398    // Found a null terminator in the middle of the list, prune off the rest of
2399    // the list.
2400    if (F == 0) {
2401      if (i != Ctors.size()-1) {
2402        Ctors.resize(i+1);
2403        MadeChange = true;
2404      }
2405      break;
2406    }
2407
2408    // We cannot simplify external ctor functions.
2409    if (F->empty()) continue;
2410
2411    // If we can evaluate the ctor at compile time, do.
2412    if (EvaluateStaticConstructor(F)) {
2413      Ctors.erase(Ctors.begin()+i);
2414      MadeChange = true;
2415      --i;
2416      ++NumCtorsEvaluated;
2417      continue;
2418    }
2419  }
2420
2421  if (!MadeChange) return false;
2422
2423  GCL = InstallGlobalCtors(GCL, Ctors, GCL->getContext());
2424  return true;
2425}
2426
2427bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
2428  bool Changed = false;
2429
2430  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2431       I != E;) {
2432    Module::alias_iterator J = I++;
2433    // Aliases without names cannot be referenced outside this module.
2434    if (!J->hasName() && !J->isDeclaration())
2435      J->setLinkage(GlobalValue::InternalLinkage);
2436    // If the aliasee may change at link time, nothing can be done - bail out.
2437    if (J->mayBeOverridden())
2438      continue;
2439
2440    Constant *Aliasee = J->getAliasee();
2441    GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2442    Target->removeDeadConstantUsers();
2443    bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
2444
2445    // Make all users of the alias use the aliasee instead.
2446    if (!J->use_empty()) {
2447      J->replaceAllUsesWith(Aliasee);
2448      ++NumAliasesResolved;
2449      Changed = true;
2450    }
2451
2452    // If the aliasee has internal linkage, give it the name and linkage
2453    // of the alias, and delete the alias.  This turns:
2454    //   define internal ... @f(...)
2455    //   @a = alias ... @f
2456    // into:
2457    //   define ... @a(...)
2458    if (!Target->hasLocalLinkage())
2459      continue;
2460
2461    // The transform is only useful if the alias does not have internal linkage.
2462    if (J->hasLocalLinkage())
2463      continue;
2464
2465    // Do not perform the transform if multiple aliases potentially target the
2466    // aliasee.  This check also ensures that it is safe to replace the section
2467    // and other attributes of the aliasee with those of the alias.
2468    if (!hasOneUse)
2469      continue;
2470
2471    // Give the aliasee the name, linkage and other attributes of the alias.
2472    Target->takeName(J);
2473    Target->setLinkage(J->getLinkage());
2474    Target->GlobalValue::copyAttributesFrom(J);
2475
2476    // Delete the alias.
2477    M.getAliasList().erase(J);
2478    ++NumAliasesRemoved;
2479    Changed = true;
2480  }
2481
2482  return Changed;
2483}
2484
2485bool GlobalOpt::runOnModule(Module &M) {
2486  bool Changed = false;
2487
2488  // Try to find the llvm.globalctors list.
2489  GlobalVariable *GlobalCtors = FindGlobalCtors(M);
2490
2491  bool LocalChange = true;
2492  while (LocalChange) {
2493    LocalChange = false;
2494
2495    // Delete functions that are trivially dead, ccc -> fastcc
2496    LocalChange |= OptimizeFunctions(M);
2497
2498    // Optimize global_ctors list.
2499    if (GlobalCtors)
2500      LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
2501
2502    // Optimize non-address-taken globals.
2503    LocalChange |= OptimizeGlobalVars(M);
2504
2505    // Resolve aliases, when possible.
2506    LocalChange |= OptimizeGlobalAliases(M);
2507    Changed |= LocalChange;
2508  }
2509
2510  // TODO: Move all global ctors functions to the end of the module for code
2511  // layout.
2512
2513  return Changed;
2514}
2515