InlineSimple.cpp revision 009505452b713ed2e3a8e99c5545a6e721c65495
1//===- MethodInlining.cpp - Code to perform method inlining ---------------===//
2//
3// This file implements inlining of methods.
4//
5// Specifically, this:
6//   * Exports functionality to inline any method call
7//   * Inlines methods that consist of a single basic block
8//   * Is able to inline ANY method call
9//   . Has a smart heuristic for when to inline a method
10//
11// Notice that:
12//   * This pass has a habit of introducing duplicated constant pool entries,
13//     and also opens up a lot of opportunities for constant propogation.  It is
14//     a good idea to to run a constant propogation pass, then a DCE pass
15//     sometime after running this pass.
16//
17// TODO: Currently this throws away all of the symbol names in the method being
18//       inlined to try to avoid name clashes.  Use a name if it's not taken
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Module.h"
23#include "llvm/Method.h"
24#include "llvm/BasicBlock.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iOther.h"
27#include "llvm/Opt/AllOpts.h"
28#include <algorithm>
29#include <map>
30
31#include "llvm/Assembly/Writer.h"
32
33// RemapInstruction - Convert the instruction operands from referencing the
34// current values into those specified by ValueMap.
35//
36static inline void RemapInstruction(Instruction *I,
37				    map<const Value *, Value*> &ValueMap) {
38
39  for (unsigned op = 0; const Value *Op = I->getOperand(op); op++) {
40    Value *V = ValueMap[Op];
41    if (!V && Op->getValueType() == Value::MethodVal)
42      continue;  // Methods don't get relocated
43
44    if (!V) {
45      cerr << "Val = " << endl << Op << "Addr = " << (void*)Op << endl;
46      cerr << "Inst = " << I;
47    }
48    assert(V && "Referenced value not in value map!");
49    I->setOperand(op, V);
50  }
51}
52
53// InlineMethod - This function forcibly inlines the called method into the
54// basic block of the caller.  This returns false if it is not possible to
55// inline this call.  The program is still in a well defined state if this
56// occurs though.
57//
58// Note that this only does one level of inlining.  For example, if the
59// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
60// exists in the instruction stream.  Similiarly this will inline a recursive
61// method by one level.
62//
63bool InlineMethod(BasicBlock::InstListType::iterator CIIt) {
64  assert((*CIIt)->getInstType() == Instruction::Call &&
65	 "InlineMethod only works on CallInst nodes!");
66  assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
67  assert((*CIIt)->getParent()->getParent() && "Instruction not in method!");
68
69  CallInst *CI = (CallInst*)*CIIt;
70  const Method *CalledMeth = CI->getCalledMethod();
71  Method *CurrentMeth = CI->getParent()->getParent();
72
73  //cerr << "Inlining " << CalledMeth->getName() << " into "
74  //     << CurrentMeth->getName() << endl;
75
76  BasicBlock *OrigBB = CI->getParent();
77
78  // Call splitBasicBlock - The original basic block now ends at the instruction
79  // immediately before the call.  The original basic block now ends with an
80  // unconditional branch to NewBB, and NewBB starts with the call instruction.
81  //
82  BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
83
84  // Remove (unlink) the CallInst from the start of the new basic block.
85  NewBB->getInstList().remove(CI);
86
87  // If we have a return value generated by this call, convert it into a PHI
88  // node that gets values from each of the old RET instructions in the original
89  // method.
90  //
91  PHINode *PHI = 0;
92  if (CalledMeth->getReturnType() != Type::VoidTy) {
93    PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
94
95    // The PHI node should go at the front of the new basic block to merge all
96    // possible incoming values.
97    //
98    NewBB->getInstList().push_front(PHI);
99
100    // Anything that used the result of the function call should now use the PHI
101    // node as their operand.
102    //
103    CI->replaceAllUsesWith(PHI);
104  }
105
106  // Keep a mapping between the original method's values and the new duplicated
107  // code's values.  This includes all of: Method arguments, instruction values,
108  // constant pool entries, and basic blocks.
109  //
110  map<const Value *, Value*> ValueMap;
111
112  // Add the method arguments to the mapping: (start counting at 1 to skip the
113  // method reference itself)
114  //
115  Method::ArgumentListType::const_iterator PTI =
116    CalledMeth->getArgumentList().begin();
117  for (unsigned a = 1; Value *Operand = CI->getOperand(a); ++a, ++PTI) {
118    ValueMap[*PTI] = Operand;
119  }
120
121
122  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
123
124  // Loop over all of the basic blocks in the method, inlining them as
125  // appropriate.  Keep track of the first basic block of the method...
126  //
127  for (Method::BasicBlocksType::const_iterator BI =
128	 CalledMeth->getBasicBlocks().begin();
129       BI != CalledMeth->getBasicBlocks().end(); BI++) {
130    const BasicBlock *BB = *BI;
131    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
132
133    // Create a new basic block to copy instructions into!
134    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
135
136    ValueMap[*BI] = IBB;                       // Add basic block mapping.
137
138    // Make sure to capture the mapping that a return will use...
139    // TODO: This assumes that the RET is returning a value computed in the same
140    //       basic block as the return was issued from!
141    //
142    const TerminatorInst *TI = BB->getTerminator();
143
144    // Loop over all instructions copying them over...
145    Instruction *NewInst;
146    for (BasicBlock::InstListType::const_iterator II = BB->getInstList().begin();
147	 II != (BB->getInstList().end()-1); II++) {
148      IBB->getInstList().push_back((NewInst = (*II)->clone()));
149      ValueMap[*II] = NewInst;                  // Add instruction map to value.
150    }
151
152    // Copy over the terminator now...
153    switch (TI->getInstType()) {
154    case Instruction::Ret: {
155      const ReturnInst *RI = (const ReturnInst*)TI;
156
157      if (PHI) {   // The PHI node should include this value!
158	assert(RI->getReturnValue() && "Ret should have value!");
159	assert(RI->getReturnValue()->getType() == PHI->getType() &&
160	       "Ret value not consistent in method!");
161	PHI->addIncoming((Value*)RI->getReturnValue());
162      }
163
164      // Add a branch to the code that was after the original Call.
165      IBB->getInstList().push_back(new BranchInst(NewBB));
166      break;
167    }
168    case Instruction::Br:
169      IBB->getInstList().push_back(TI->clone());
170      break;
171
172    default:
173      cerr << "MethodInlining: Don't know how to handle terminator: " << TI;
174      abort();
175    }
176  }
177
178
179  // Copy over the constant pool...
180  //
181  const ConstantPool &CP = CalledMeth->getConstantPool();
182  ConstantPool    &NewCP = CurrentMeth->getConstantPool();
183  for (ConstantPool::plane_const_iterator PI = CP.begin(); PI != CP.end(); ++PI){
184    ConstantPool::PlaneType &Plane = **PI;
185    for (ConstantPool::PlaneType::const_iterator I = Plane.begin();
186	 I != Plane.end(); ++I) {
187      ConstPoolVal *NewVal = (*I)->clone(); // Copy existing constant
188      NewCP.insert(NewVal);         // Insert the new copy into local const pool
189      ValueMap[*I] = NewVal;        // Keep track of constant value mappings
190    }
191  }
192
193  // Loop over all of the instructions in the method, fixing up operand
194  // references as we go.  This uses ValueMap to do all the hard work.
195  //
196  for (Method::BasicBlocksType::const_iterator BI =
197	 CalledMeth->getBasicBlocks().begin();
198       BI != CalledMeth->getBasicBlocks().end(); BI++) {
199    const BasicBlock *BB = *BI;
200    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
201
202    // Loop over all instructions, fixing each one as we find it...
203    //
204    for (BasicBlock::InstListType::iterator II = NBB->getInstList().begin();
205	 II != NBB->getInstList().end(); II++)
206      RemapInstruction(*II, ValueMap);
207  }
208
209  if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
210
211  // Change the branch that used to go to NewBB to branch to the first basic
212  // block of the inlined method.
213  //
214  TerminatorInst *Br = OrigBB->getTerminator();
215  assert(Br && Br->getInstType() == Instruction::Br &&
216	 "splitBasicBlock broken!");
217  Br->setOperand(0, ValueMap[CalledMeth->getBasicBlocks().front()]);
218
219  // Since we are now done with the CallInst, we can finally delete it.
220  delete CI;
221  return true;
222}
223
224bool InlineMethod(CallInst *CI) {
225  assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
226  BasicBlock *PBB = CI->getParent();
227
228  BasicBlock::InstListType::iterator CallIt = find(PBB->getInstList().begin(),
229						   PBB->getInstList().end(),
230						   CI);
231  assert(CallIt != PBB->getInstList().end() &&
232	 "CallInst has parent that doesn't contain CallInst?!?");
233  return InlineMethod(CallIt);
234}
235
236static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) {
237  assert(CI->getParent() && CI->getParent()->getParent() &&
238	 "Call not embedded into a method!");
239
240  // Don't inline a recursive call.
241  if (CI->getParent()->getParent() == M) return false;
242
243  // Don't inline something too big.  This is a really crappy heuristic
244  if (M->getBasicBlocks().size() > 3) return false;
245
246  // Don't inline into something too big. This is a **really** crappy heuristic
247  if (CI->getParent()->getParent()->getBasicBlocks().size() > 10) return false;
248
249  // Go ahead and try just about anything else.
250  return true;
251}
252
253
254static inline bool DoMethodInlining(BasicBlock *BB) {
255  for (BasicBlock::InstListType::iterator I = BB->getInstList().begin();
256       I != BB->getInstList().end(); I++) {
257    if ((*I)->getInstType() == Instruction::Call) {
258      // Check to see if we should inline this method
259      CallInst *CI = (CallInst*)*I;
260      Method *M = CI->getCalledMethod();
261      if (ShouldInlineMethod(CI, M))
262	return InlineMethod(I);
263    }
264  }
265  return false;
266}
267
268bool DoMethodInlining(Method *M) {
269  Method::BasicBlocksType &BBs = M->getBasicBlocks();
270  bool Changed = false;
271
272  // Loop through now and inline instructions a basic block at a time...
273  for (Method::BasicBlocksType::iterator I = BBs.begin(); I != BBs.end(); )
274    if (DoMethodInlining(*I)) {
275      Changed = true;
276      // Iterator is now invalidated by new basic blocks inserted
277      I = BBs.begin();
278    } else {
279      ++I;
280    }
281
282  return Changed;
283}
284