InlineSimple.cpp revision 019a7c801b491504868ad105016fc6ebbb09ff5d
1//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
2//
3// This file implements inlining of functions.
4//
5// Specifically, this:
6//   * Exports functionality to inline any function call
7//   * Inlines functions that consist of a single basic block
8//   * Is able to inline ANY function call
9//   . Has a smart heuristic for when to inline a function
10//
11// FIXME: This pass should transform alloca instructions in the called function
12//        into malloc/free pairs!  Or perhaps it should refuse to inline them!
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO.h"
17#include "llvm/Transforms/Utils/Cloning.h"
18#include "llvm/Module.h"
19#include "llvm/Pass.h"
20#include "llvm/iTerminators.h"
21#include "llvm/iPHINode.h"
22#include "llvm/iOther.h"
23#include "llvm/Type.h"
24#include "Support/Statistic.h"
25#include <algorithm>
26
27static Statistic<> NumInlined("inline", "Number of functions inlined");
28using std::cerr;
29
30// InlineFunction - This function forcibly inlines the called function into the
31// basic block of the caller.  This returns false if it is not possible to
32// inline this call.  The program is still in a well defined state if this
33// occurs though.
34//
35// Note that this only does one level of inlining.  For example, if the
36// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
37// exists in the instruction stream.  Similiarly this will inline a recursive
38// function by one level.
39//
40bool InlineFunction(CallInst *CI) {
41  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
42  assert(CI->getParent() && "Instruction not embedded in basic block!");
43  assert(CI->getParent()->getParent() && "Instruction not in function!");
44
45  const Function *CalledFunc = CI->getCalledFunction();
46  if (CalledFunc == 0 ||   // Can't inline external function or indirect call!
47      CalledFunc->isExternal()) return false;
48
49  //cerr << "Inlining " << CalledFunc->getName() << " into "
50  //     << CurrentMeth->getName() << "\n";
51
52  BasicBlock *OrigBB = CI->getParent();
53
54  // Call splitBasicBlock - The original basic block now ends at the instruction
55  // immediately before the call.  The original basic block now ends with an
56  // unconditional branch to NewBB, and NewBB starts with the call instruction.
57  //
58  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
59  NewBB->setName("InlinedFunctionReturnNode");
60
61  // Remove (unlink) the CallInst from the start of the new basic block.
62  NewBB->getInstList().remove(CI);
63
64  // If we have a return value generated by this call, convert it into a PHI
65  // node that gets values from each of the old RET instructions in the original
66  // function.
67  //
68  PHINode *PHI = 0;
69  if (!CI->use_empty()) {
70    // The PHI node should go at the front of the new basic block to merge all
71    // possible incoming values.
72    //
73    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
74                      NewBB->begin());
75
76    // Anything that used the result of the function call should now use the PHI
77    // node as their operand.
78    //
79    CI->replaceAllUsesWith(PHI);
80  }
81
82  // Get a pointer to the last basic block in the function, which will have the
83  // new function inlined after it.
84  //
85  Function::iterator LastBlock = &OrigBB->getParent()->back();
86
87  // Calculate the vector of arguments to pass into the function cloner...
88  std::map<const Value*, Value*> ValueMap;
89  assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
90         CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
91
92  unsigned i = 1;
93  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
94       I != E; ++I, ++i)
95    ValueMap[I] = CI->getOperand(i);
96
97  // Since we are now done with the CallInst, we can delete it.
98  delete CI;
99
100  // Make a vector to capture the return instructions in the cloned function...
101  std::vector<ReturnInst*> Returns;
102
103  // Populate the value map with all of the globals in the program.
104  Module &M = *OrigBB->getParent()->getParent();
105  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
106    ValueMap[I] = I;
107  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
108    ValueMap[I] = I;
109
110  // Do all of the hard part of cloning the callee into the caller...
111  CloneFunctionInto(OrigBB->getParent(), CalledFunc, ValueMap, Returns, ".i");
112
113  // Loop over all of the return instructions, turning them into unconditional
114  // branches to the merge point now...
115  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
116    ReturnInst *RI = Returns[i];
117    BasicBlock *BB = RI->getParent();
118
119    // Add a branch to the merge point where the PHI node would live...
120    new BranchInst(NewBB, RI);
121
122    if (PHI) {   // The PHI node should include this value!
123      assert(RI->getReturnValue() && "Ret should have value!");
124      assert(RI->getReturnValue()->getType() == PHI->getType() &&
125             "Ret value not consistent in function!");
126      PHI->addIncoming(RI->getReturnValue(), BB);
127    }
128
129    // Delete the return instruction now
130    BB->getInstList().erase(RI);
131  }
132
133  // Check to see if the PHI node only has one argument.  This is a common
134  // case resulting from there only being a single return instruction in the
135  // function call.  Because this is so common, eliminate the PHI node.
136  //
137  if (PHI && PHI->getNumIncomingValues() == 1) {
138    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
139    PHI->getParent()->getInstList().erase(PHI);
140  }
141
142  // Change the branch that used to go to NewBB to branch to the first basic
143  // block of the inlined function.
144  //
145  TerminatorInst *Br = OrigBB->getTerminator();
146  assert(Br && Br->getOpcode() == Instruction::Br &&
147	 "splitBasicBlock broken!");
148  Br->setOperand(0, ++LastBlock);
149  return true;
150}
151
152static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
153  assert(CI->getParent() && CI->getParent()->getParent() &&
154	 "Call not embedded into a function!");
155
156  // Don't inline a recursive call.
157  if (CI->getParent()->getParent() == F) return false;
158
159  // Don't inline something too big.  This is a really crappy heuristic
160  if (F->size() > 3) return false;
161
162  // Don't inline into something too big. This is a **really** crappy heuristic
163  if (CI->getParent()->getParent()->size() > 10) return false;
164
165  // Go ahead and try just about anything else.
166  return true;
167}
168
169
170static inline bool DoFunctionInlining(BasicBlock *BB) {
171  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
172    if (CallInst *CI = dyn_cast<CallInst>(&*I)) {
173      // Check to see if we should inline this function
174      Function *F = CI->getCalledFunction();
175      if (F && ShouldInlineFunction(CI, F)) {
176	return InlineFunction(CI);
177      }
178    }
179  }
180  return false;
181}
182
183// doFunctionInlining - Use a heuristic based approach to inline functions that
184// seem to look good.
185//
186static bool doFunctionInlining(Function &F) {
187  bool Changed = false;
188
189  // Loop through now and inline instructions a basic block at a time...
190  for (Function::iterator I = F.begin(); I != F.end(); )
191    if (DoFunctionInlining(I)) {
192      ++NumInlined;
193      Changed = true;
194    } else {
195      ++I;
196    }
197
198  return Changed;
199}
200
201namespace {
202  struct FunctionInlining : public FunctionPass {
203    virtual bool runOnFunction(Function &F) {
204      return doFunctionInlining(F);
205    }
206  };
207  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
208}
209
210Pass *createFunctionInliningPass() { return new FunctionInlining(); }
211