InlineSimple.cpp revision 1b27cb7159bcd0130cd1a98332b8952f4751867f
1//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
2//
3// This file implements inlining of functions.
4//
5// Specifically, this:
6//   * Exports functionality to inline any function call
7//   * Inlines functions that consist of a single basic block
8//   * Is able to inline ANY function call
9//   . Has a smart heuristic for when to inline a function
10//
11// FIXME: This pass should transform alloca instructions in the called function
12//        into malloc/free pairs!  Or perhaps it should refuse to inline them!
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO.h"
17#include "llvm/Transforms/Utils/Cloning.h"
18#include "llvm/Module.h"
19#include "llvm/Pass.h"
20#include "llvm/iTerminators.h"
21#include "llvm/iPHINode.h"
22#include "llvm/iOther.h"
23#include "llvm/Type.h"
24#include "Support/Statistic.h"
25#include <algorithm>
26
27static Statistic<> NumInlined("inline", "Number of functions inlined");
28
29// InlineFunction - This function forcibly inlines the called function into the
30// basic block of the caller.  This returns false if it is not possible to
31// inline this call.  The program is still in a well defined state if this
32// occurs though.
33//
34// Note that this only does one level of inlining.  For example, if the
35// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
36// exists in the instruction stream.  Similiarly this will inline a recursive
37// function by one level.
38//
39bool InlineFunction(CallInst *CI) {
40  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
41  assert(CI->getParent() && "Instruction not embedded in basic block!");
42  assert(CI->getParent()->getParent() && "Instruction not in function!");
43
44  const Function *CalledFunc = CI->getCalledFunction();
45  if (CalledFunc == 0 ||   // Can't inline external function or indirect call!
46      CalledFunc->isExternal()) return false;
47
48  //std::cerr << "Inlining " << CalledFunc->getName() << " into "
49  //     << CurrentMeth->getName() << "\n";
50
51  BasicBlock *OrigBB = CI->getParent();
52
53  // Call splitBasicBlock - The original basic block now ends at the instruction
54  // immediately before the call.  The original basic block now ends with an
55  // unconditional branch to NewBB, and NewBB starts with the call instruction.
56  //
57  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
58  NewBB->setName("InlinedFunctionReturnNode");
59
60  // Remove (unlink) the CallInst from the start of the new basic block.
61  NewBB->getInstList().remove(CI);
62
63  // If we have a return value generated by this call, convert it into a PHI
64  // node that gets values from each of the old RET instructions in the original
65  // function.
66  //
67  PHINode *PHI = 0;
68  if (!CI->use_empty()) {
69    // The PHI node should go at the front of the new basic block to merge all
70    // possible incoming values.
71    //
72    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
73                      NewBB->begin());
74
75    // Anything that used the result of the function call should now use the PHI
76    // node as their operand.
77    //
78    CI->replaceAllUsesWith(PHI);
79  }
80
81  // Get a pointer to the last basic block in the function, which will have the
82  // new function inlined after it.
83  //
84  Function::iterator LastBlock = &OrigBB->getParent()->back();
85
86  // Calculate the vector of arguments to pass into the function cloner...
87  std::map<const Value*, Value*> ValueMap;
88  assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
89         CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
90
91  unsigned i = 1;
92  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
93       I != E; ++I, ++i)
94    ValueMap[I] = CI->getOperand(i);
95
96  // Since we are now done with the CallInst, we can delete it.
97  delete CI;
98
99  // Make a vector to capture the return instructions in the cloned function...
100  std::vector<ReturnInst*> Returns;
101
102  // Populate the value map with all of the globals in the program.
103  Module &M = *OrigBB->getParent()->getParent();
104  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
105    ValueMap[I] = I;
106  for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
107    ValueMap[I] = I;
108
109  // Do all of the hard part of cloning the callee into the caller...
110  CloneFunctionInto(OrigBB->getParent(), CalledFunc, ValueMap, Returns, ".i");
111
112  // Loop over all of the return instructions, turning them into unconditional
113  // branches to the merge point now...
114  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
115    ReturnInst *RI = Returns[i];
116    BasicBlock *BB = RI->getParent();
117
118    // Add a branch to the merge point where the PHI node would live...
119    new BranchInst(NewBB, RI);
120
121    if (PHI) {   // The PHI node should include this value!
122      assert(RI->getReturnValue() && "Ret should have value!");
123      assert(RI->getReturnValue()->getType() == PHI->getType() &&
124             "Ret value not consistent in function!");
125      PHI->addIncoming(RI->getReturnValue(), BB);
126    }
127
128    // Delete the return instruction now
129    BB->getInstList().erase(RI);
130  }
131
132  // Check to see if the PHI node only has one argument.  This is a common
133  // case resulting from there only being a single return instruction in the
134  // function call.  Because this is so common, eliminate the PHI node.
135  //
136  if (PHI && PHI->getNumIncomingValues() == 1) {
137    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
138    PHI->getParent()->getInstList().erase(PHI);
139  }
140
141  // Change the branch that used to go to NewBB to branch to the first basic
142  // block of the inlined function.
143  //
144  TerminatorInst *Br = OrigBB->getTerminator();
145  assert(Br && Br->getOpcode() == Instruction::Br &&
146	 "splitBasicBlock broken!");
147  Br->setOperand(0, ++LastBlock);
148  return true;
149}
150
151static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
152  assert(CI->getParent() && CI->getParent()->getParent() &&
153	 "Call not embedded into a function!");
154
155  // Don't inline a recursive call.
156  if (CI->getParent()->getParent() == F) return false;
157
158  // Don't inline something too big.  This is a really crappy heuristic
159  if (F->size() > 3) return false;
160
161  // Don't inline into something too big. This is a **really** crappy heuristic
162  if (CI->getParent()->getParent()->size() > 10) return false;
163
164  // Go ahead and try just about anything else.
165  return true;
166}
167
168
169static inline bool DoFunctionInlining(BasicBlock *BB) {
170  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
171    if (CallInst *CI = dyn_cast<CallInst>(I)) {
172      // Check to see if we should inline this function
173      Function *F = CI->getCalledFunction();
174      if (F && ShouldInlineFunction(CI, F)) {
175	return InlineFunction(CI);
176      }
177    }
178  }
179  return false;
180}
181
182// doFunctionInlining - Use a heuristic based approach to inline functions that
183// seem to look good.
184//
185static bool doFunctionInlining(Function &F) {
186  bool Changed = false;
187
188  // Loop through now and inline instructions a basic block at a time...
189  for (Function::iterator I = F.begin(); I != F.end(); )
190    if (DoFunctionInlining(I)) {
191      ++NumInlined;
192      Changed = true;
193    } else {
194      ++I;
195    }
196
197  return Changed;
198}
199
200namespace {
201  struct FunctionInlining : public FunctionPass {
202    virtual bool runOnFunction(Function &F) {
203      return doFunctionInlining(F);
204    }
205  };
206  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
207}
208
209Pass *createFunctionInliningPass() { return new FunctionInlining(); }
210