InlineSimple.cpp revision 237e6d10f24863cf48821b601b4164794e89d847
1//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
2//
3// This file implements inlining of functions.
4//
5// Specifically, this:
6//   * Exports functionality to inline any function call
7//   * Inlines functions that consist of a single basic block
8//   * Is able to inline ANY function call
9//   . Has a smart heuristic for when to inline a function
10//
11// Notice that:
12//   * This pass opens up a lot of opportunities for constant propogation.  It
13//     is a good idea to to run a constant propogation pass, then a DCE pass
14//     sometime after running this pass.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/MethodInlining.h"
19#include "llvm/Module.h"
20#include "llvm/Function.h"
21#include "llvm/Pass.h"
22#include "llvm/iTerminators.h"
23#include "llvm/iPHINode.h"
24#include "llvm/iOther.h"
25#include "llvm/Type.h"
26#include <algorithm>
27#include <map>
28#include <iostream>
29using std::cerr;
30
31// RemapInstruction - Convert the instruction operands from referencing the
32// current values into those specified by ValueMap.
33//
34static inline void RemapInstruction(Instruction *I,
35				    std::map<const Value *, Value*> &ValueMap) {
36
37  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
38    const Value *Op = I->getOperand(op);
39    Value *V = ValueMap[Op];
40    if (!V && (isa<GlobalValue>(Op) || isa<Constant>(Op)))
41      continue;  // Globals and constants don't get relocated
42
43    if (!V) {
44      cerr << "Val = \n" << Op << "Addr = " << (void*)Op;
45      cerr << "\nInst = " << I;
46    }
47    assert(V && "Referenced value not in value map!");
48    I->setOperand(op, V);
49  }
50}
51
52// InlineMethod - This function forcibly inlines the called function into the
53// basic block of the caller.  This returns false if it is not possible to
54// inline this call.  The program is still in a well defined state if this
55// occurs though.
56//
57// Note that this only does one level of inlining.  For example, if the
58// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
59// exists in the instruction stream.  Similiarly this will inline a recursive
60// function by one level.
61//
62bool InlineMethod(BasicBlock::iterator CIIt) {
63  assert(isa<CallInst>(*CIIt) && "InlineMethod only works on CallInst nodes!");
64  assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
65  assert((*CIIt)->getParent()->getParent() && "Instruction not in function!");
66
67  CallInst *CI = cast<CallInst>(*CIIt);
68  const Function *CalledMeth = CI->getCalledFunction();
69  if (CalledMeth == 0 ||   // Can't inline external function or indirect call!
70      CalledMeth->isExternal()) return false;
71
72  //cerr << "Inlining " << CalledMeth->getName() << " into "
73  //     << CurrentMeth->getName() << "\n";
74
75  BasicBlock *OrigBB = CI->getParent();
76
77  // Call splitBasicBlock - The original basic block now ends at the instruction
78  // immediately before the call.  The original basic block now ends with an
79  // unconditional branch to NewBB, and NewBB starts with the call instruction.
80  //
81  BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
82  NewBB->setName("InlinedFunctionReturnNode");
83
84  // Remove (unlink) the CallInst from the start of the new basic block.
85  NewBB->getInstList().remove(CI);
86
87  // If we have a return value generated by this call, convert it into a PHI
88  // node that gets values from each of the old RET instructions in the original
89  // function.
90  //
91  PHINode *PHI = 0;
92  if (CalledMeth->getReturnType() != Type::VoidTy) {
93    PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
94
95    // The PHI node should go at the front of the new basic block to merge all
96    // possible incoming values.
97    //
98    NewBB->getInstList().push_front(PHI);
99
100    // Anything that used the result of the function call should now use the PHI
101    // node as their operand.
102    //
103    CI->replaceAllUsesWith(PHI);
104  }
105
106  // Keep a mapping between the original function's values and the new
107  // duplicated code's values.  This includes all of: Function arguments,
108  // instruction values, constant pool entries, and basic blocks.
109  //
110  std::map<const Value *, Value*> ValueMap;
111
112  // Add the function arguments to the mapping: (start counting at 1 to skip the
113  // function reference itself)
114  //
115  Function::ArgumentListType::const_iterator PTI =
116    CalledMeth->getArgumentList().begin();
117  for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
118    ValueMap[*PTI] = CI->getOperand(a);
119
120  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
121
122  // Loop over all of the basic blocks in the function, inlining them as
123  // appropriate.  Keep track of the first basic block of the function...
124  //
125  for (Function::const_iterator BI = CalledMeth->begin();
126       BI != CalledMeth->end(); ++BI) {
127    const BasicBlock *BB = *BI;
128    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
129
130    // Create a new basic block to copy instructions into!
131    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
132    if (BB->hasName()) IBB->setName(BB->getName()+".i");  // .i = inlined once
133
134    ValueMap[BB] = IBB;                       // Add basic block mapping.
135
136    // Make sure to capture the mapping that a return will use...
137    // TODO: This assumes that the RET is returning a value computed in the same
138    //       basic block as the return was issued from!
139    //
140    const TerminatorInst *TI = BB->getTerminator();
141
142    // Loop over all instructions copying them over...
143    Instruction *NewInst;
144    for (BasicBlock::const_iterator II = BB->begin();
145	 II != (BB->end()-1); ++II) {
146      IBB->getInstList().push_back((NewInst = (*II)->clone()));
147      ValueMap[*II] = NewInst;                  // Add instruction map to value.
148      if ((*II)->hasName())
149        NewInst->setName((*II)->getName()+".i");  // .i = inlined once
150    }
151
152    // Copy over the terminator now...
153    switch (TI->getOpcode()) {
154    case Instruction::Ret: {
155      const ReturnInst *RI = cast<const ReturnInst>(TI);
156
157      if (PHI) {   // The PHI node should include this value!
158	assert(RI->getReturnValue() && "Ret should have value!");
159	assert(RI->getReturnValue()->getType() == PHI->getType() &&
160	       "Ret value not consistent in function!");
161	PHI->addIncoming((Value*)RI->getReturnValue(), cast<BasicBlock>(BB));
162      }
163
164      // Add a branch to the code that was after the original Call.
165      IBB->getInstList().push_back(new BranchInst(NewBB));
166      break;
167    }
168    case Instruction::Br:
169      IBB->getInstList().push_back(TI->clone());
170      break;
171
172    default:
173      cerr << "FunctionInlining: Don't know how to handle terminator: " << TI;
174      abort();
175    }
176  }
177
178
179  // Loop over all of the instructions in the function, fixing up operand
180  // references as we go.  This uses ValueMap to do all the hard work.
181  //
182  for (Function::const_iterator BI = CalledMeth->begin();
183       BI != CalledMeth->end(); ++BI) {
184    const BasicBlock *BB = *BI;
185    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
186
187    // Loop over all instructions, fixing each one as we find it...
188    //
189    for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++)
190      RemapInstruction(*II, ValueMap);
191  }
192
193  if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
194
195  // Change the branch that used to go to NewBB to branch to the first basic
196  // block of the inlined function.
197  //
198  TerminatorInst *Br = OrigBB->getTerminator();
199  assert(Br && Br->getOpcode() == Instruction::Br &&
200	 "splitBasicBlock broken!");
201  Br->setOperand(0, ValueMap[CalledMeth->front()]);
202
203  // Since we are now done with the CallInst, we can finally delete it.
204  delete CI;
205  return true;
206}
207
208bool InlineMethod(CallInst *CI) {
209  assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
210  BasicBlock *PBB = CI->getParent();
211
212  BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI);
213
214  assert(CallIt != PBB->end() &&
215	 "CallInst has parent that doesn't contain CallInst?!?");
216  return InlineMethod(CallIt);
217}
218
219static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
220  assert(CI->getParent() && CI->getParent()->getParent() &&
221	 "Call not embedded into a method!");
222
223  // Don't inline a recursive call.
224  if (CI->getParent()->getParent() == F) return false;
225
226  // Don't inline something too big.  This is a really crappy heuristic
227  if (F->size() > 3) return false;
228
229  // Don't inline into something too big. This is a **really** crappy heuristic
230  if (CI->getParent()->getParent()->size() > 10) return false;
231
232  // Go ahead and try just about anything else.
233  return true;
234}
235
236
237static inline bool DoFunctionInlining(BasicBlock *BB) {
238  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
239    if (CallInst *CI = dyn_cast<CallInst>(*I)) {
240      // Check to see if we should inline this function
241      Function *F = CI->getCalledFunction();
242      if (F && ShouldInlineFunction(CI, F))
243	return InlineMethod(I);
244    }
245  }
246  return false;
247}
248
249// doFunctionInlining - Use a heuristic based approach to inline functions that
250// seem to look good.
251//
252static bool doFunctionInlining(Function *F) {
253  bool Changed = false;
254
255  // Loop through now and inline instructions a basic block at a time...
256  for (Function::iterator I = F->begin(); I != F->end(); )
257    if (DoFunctionInlining(*I)) {
258      Changed = true;
259      // Iterator is now invalidated by new basic blocks inserted
260      I = F->begin();
261    } else {
262      ++I;
263    }
264
265  return Changed;
266}
267
268namespace {
269  struct FunctionInlining : public MethodPass {
270    virtual bool runOnMethod(Function *F) {
271      return doFunctionInlining(F);
272    }
273  };
274}
275
276Pass *createMethodInliningPass() { return new FunctionInlining(); }
277