InlineSimple.cpp revision 5fdc4c91ae9defb3d511fba103514b8dcc0955e1
1//===- MethodInlining.cpp - Code to perform method inlining ---------------===//
2//
3// This file implements inlining of methods.
4//
5// Specifically, this:
6//   * Exports functionality to inline any method call
7//   * Inlines methods that consist of a single basic block
8//   * Is able to inline ANY method call
9//   . Has a smart heuristic for when to inline a method
10//
11// Notice that:
12//   * This pass has a habit of introducing duplicated constant pool entries,
13//     and also opens up a lot of opportunities for constant propogation.  It is
14//     a good idea to to run a constant propogation pass, then a DCE pass
15//     sometime after running this pass.
16//
17// TODO: Currently this throws away all of the symbol names in the method being
18//       inlined to try to avoid name clashes.  Use a name if it's not taken
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Optimizations/MethodInlining.h"
23#include "llvm/Module.h"
24#include "llvm/Method.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iOther.h"
27#include <algorithm>
28#include <map>
29
30#include "llvm/Assembly/Writer.h"
31
32using namespace opt;
33
34// RemapInstruction - Convert the instruction operands from referencing the
35// current values into those specified by ValueMap.
36//
37static inline void RemapInstruction(Instruction *I,
38				    map<const Value *, Value*> &ValueMap) {
39
40  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
41    const Value *Op = I->getOperand(op);
42    Value *V = ValueMap[Op];
43    if (!V && (isa<Method>(Op) || isa<ConstPoolVal>(Op)))
44      continue;  // Methods and constants don't get relocated
45
46    if (!V) {
47      cerr << "Val = " << endl << Op << "Addr = " << (void*)Op << endl;
48      cerr << "Inst = " << I;
49    }
50    assert(V && "Referenced value not in value map!");
51    I->setOperand(op, V);
52  }
53}
54
55// InlineMethod - This function forcibly inlines the called method into the
56// basic block of the caller.  This returns false if it is not possible to
57// inline this call.  The program is still in a well defined state if this
58// occurs though.
59//
60// Note that this only does one level of inlining.  For example, if the
61// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
62// exists in the instruction stream.  Similiarly this will inline a recursive
63// method by one level.
64//
65bool opt::InlineMethod(BasicBlock::iterator CIIt) {
66  assert(isa<CallInst>(*CIIt) && "InlineMethod only works on CallInst nodes!");
67  assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
68  assert((*CIIt)->getParent()->getParent() && "Instruction not in method!");
69
70  CallInst *CI = cast<CallInst>(*CIIt);
71  const Method *CalledMeth = CI->getCalledMethod();
72  if (CalledMeth == 0 ||   // Can't inline external method or indirect call!
73      CalledMeth->isExternal()) return false;
74  Method *CurrentMeth = CI->getParent()->getParent();
75
76  //cerr << "Inlining " << CalledMeth->getName() << " into "
77  //     << CurrentMeth->getName() << endl;
78
79  BasicBlock *OrigBB = CI->getParent();
80
81  // Call splitBasicBlock - The original basic block now ends at the instruction
82  // immediately before the call.  The original basic block now ends with an
83  // unconditional branch to NewBB, and NewBB starts with the call instruction.
84  //
85  BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
86
87  // Remove (unlink) the CallInst from the start of the new basic block.
88  NewBB->getInstList().remove(CI);
89
90  // If we have a return value generated by this call, convert it into a PHI
91  // node that gets values from each of the old RET instructions in the original
92  // method.
93  //
94  PHINode *PHI = 0;
95  if (CalledMeth->getReturnType() != Type::VoidTy) {
96    PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
97
98    // The PHI node should go at the front of the new basic block to merge all
99    // possible incoming values.
100    //
101    NewBB->getInstList().push_front(PHI);
102
103    // Anything that used the result of the function call should now use the PHI
104    // node as their operand.
105    //
106    CI->replaceAllUsesWith(PHI);
107  }
108
109  // Keep a mapping between the original method's values and the new duplicated
110  // code's values.  This includes all of: Method arguments, instruction values,
111  // constant pool entries, and basic blocks.
112  //
113  map<const Value *, Value*> ValueMap;
114
115  // Add the method arguments to the mapping: (start counting at 1 to skip the
116  // method reference itself)
117  //
118  Method::ArgumentListType::const_iterator PTI =
119    CalledMeth->getArgumentList().begin();
120  for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
121    ValueMap[*PTI] = CI->getOperand(a);
122
123  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
124
125  // Loop over all of the basic blocks in the method, inlining them as
126  // appropriate.  Keep track of the first basic block of the method...
127  //
128  for (Method::const_iterator BI = CalledMeth->begin();
129       BI != CalledMeth->end(); ++BI) {
130    const BasicBlock *BB = *BI;
131    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
132
133    // Create a new basic block to copy instructions into!
134    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
135
136    ValueMap[BB] = IBB;                       // Add basic block mapping.
137
138    // Make sure to capture the mapping that a return will use...
139    // TODO: This assumes that the RET is returning a value computed in the same
140    //       basic block as the return was issued from!
141    //
142    const TerminatorInst *TI = BB->getTerminator();
143
144    // Loop over all instructions copying them over...
145    Instruction *NewInst;
146    for (BasicBlock::const_iterator II = BB->begin();
147	 II != (BB->end()-1); ++II) {
148      IBB->getInstList().push_back((NewInst = (*II)->clone()));
149      ValueMap[*II] = NewInst;                  // Add instruction map to value.
150    }
151
152    // Copy over the terminator now...
153    switch (TI->getOpcode()) {
154    case Instruction::Ret: {
155      const ReturnInst *RI = cast<const ReturnInst>(TI);
156
157      if (PHI) {   // The PHI node should include this value!
158	assert(RI->getReturnValue() && "Ret should have value!");
159	assert(RI->getReturnValue()->getType() == PHI->getType() &&
160	       "Ret value not consistent in method!");
161	PHI->addIncoming((Value*)RI->getReturnValue(), cast<BasicBlock>(BB));
162      }
163
164      // Add a branch to the code that was after the original Call.
165      IBB->getInstList().push_back(new BranchInst(NewBB));
166      break;
167    }
168    case Instruction::Br:
169      IBB->getInstList().push_back(TI->clone());
170      break;
171
172    default:
173      cerr << "MethodInlining: Don't know how to handle terminator: " << TI;
174      abort();
175    }
176  }
177
178
179  // Loop over all of the instructions in the method, fixing up operand
180  // references as we go.  This uses ValueMap to do all the hard work.
181  //
182  for (Method::const_iterator BI = CalledMeth->begin();
183       BI != CalledMeth->end(); ++BI) {
184    const BasicBlock *BB = *BI;
185    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
186
187    // Loop over all instructions, fixing each one as we find it...
188    //
189    for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++)
190      RemapInstruction(*II, ValueMap);
191  }
192
193  if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
194
195  // Change the branch that used to go to NewBB to branch to the first basic
196  // block of the inlined method.
197  //
198  TerminatorInst *Br = OrigBB->getTerminator();
199  assert(Br && Br->getOpcode() == Instruction::Br &&
200	 "splitBasicBlock broken!");
201  Br->setOperand(0, ValueMap[CalledMeth->front()]);
202
203  // Since we are now done with the CallInst, we can finally delete it.
204  delete CI;
205  return true;
206}
207
208bool opt::InlineMethod(CallInst *CI) {
209  assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
210  BasicBlock *PBB = CI->getParent();
211
212  BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI);
213
214  assert(CallIt != PBB->end() &&
215	 "CallInst has parent that doesn't contain CallInst?!?");
216  return InlineMethod(CallIt);
217}
218
219static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) {
220  assert(CI->getParent() && CI->getParent()->getParent() &&
221	 "Call not embedded into a method!");
222
223  // Don't inline a recursive call.
224  if (CI->getParent()->getParent() == M) return false;
225
226  // Don't inline something too big.  This is a really crappy heuristic
227  if (M->size() > 3) return false;
228
229  // Don't inline into something too big. This is a **really** crappy heuristic
230  if (CI->getParent()->getParent()->size() > 10) return false;
231
232  // Go ahead and try just about anything else.
233  return true;
234}
235
236
237static inline bool DoMethodInlining(BasicBlock *BB) {
238  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
239    if (CallInst *CI = dyn_cast<CallInst>(*I)) {
240      // Check to see if we should inline this method
241      Method *M = CI->getCalledMethod();
242      if (M && ShouldInlineMethod(CI, M))
243	return InlineMethod(I);
244    }
245  }
246  return false;
247}
248
249bool opt::DoMethodInlining(Method *M) {
250  bool Changed = false;
251
252  // Loop through now and inline instructions a basic block at a time...
253  for (Method::iterator I = M->begin(); I != M->end(); )
254    if (DoMethodInlining(*I)) {
255      Changed = true;
256      // Iterator is now invalidated by new basic blocks inserted
257      I = M->begin();
258    } else {
259      ++I;
260    }
261
262  return Changed;
263}
264