InlineSimple.cpp revision 6d1db01284b08a88db975f1a97ad7f95bdd9f6e6
1//===- InlineSimple.cpp - Code to perform simple function inlining --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements bottom-up inlining of functions into callees.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Inliner.h"
15#include "llvm/Instructions.h"
16#include "llvm/Function.h"
17#include "llvm/Support/CallSite.h"
18#include "llvm/Transforms/IPO.h"
19using namespace llvm;
20
21namespace {
22  // FunctionInfo - For each function, calculate the size of it in blocks and
23  // instructions.
24  struct FunctionInfo {
25    // NumInsts, NumBlocks - Keep track of how large each function is, which is
26    // used to estimate the code size cost of inlining it.
27    unsigned NumInsts, NumBlocks;
28
29    // ConstantArgumentWeights - Each formal argument of the function is
30    // inspected to see if it is used in any contexts where making it a constant
31    // would reduce the code size.  If so, we add some value to the argument
32    // entry here.
33    std::vector<unsigned> ConstantArgumentWeights;
34
35    FunctionInfo() : NumInsts(0), NumBlocks(0) {}
36  };
37
38  class SimpleInliner : public Inliner {
39    std::map<const Function*, FunctionInfo> CachedFunctionInfo;
40  public:
41    int getInlineCost(CallSite CS);
42  };
43  RegisterOpt<SimpleInliner> X("inline", "Function Integration/Inlining");
44}
45
46Pass *llvm::createFunctionInliningPass() { return new SimpleInliner(); }
47
48// CountCodeReductionForConstant - Figure out an approximation for how many
49// instructions will be constant folded if the specified value is constant.
50//
51static unsigned CountCodeReductionForConstant(Value *V) {
52  unsigned Reduction = 0;
53  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
54    if (isa<BranchInst>(*UI))
55      Reduction += 40;          // Eliminating a conditional branch is a big win
56    else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
57      // Eliminating a switch is a big win, proportional to the number of edges
58      // deleted.
59      Reduction += (SI->getNumSuccessors()-1) * 40;
60    else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
61      // Turning an indirect call into a direct call is a BIG win
62      Reduction += CI->getCalledValue() == V ? 500 : 0;
63    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
64      // Turning an indirect call into a direct call is a BIG win
65      Reduction += II->getCalledValue() == V ? 500 : 0;
66    } else {
67      // Figure out if this instruction will be removed due to simple constant
68      // propagation.
69      Instruction &Inst = cast<Instruction>(**UI);
70      bool AllOperandsConstant = true;
71      for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
72        if (!isa<Constant>(Inst.getOperand(i)) &&
73            !isa<GlobalValue>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
74          AllOperandsConstant = false;
75          break;
76        }
77
78      if (AllOperandsConstant) {
79        // We will get to remove this instruction...
80        Reduction += 7;
81
82        // And any other instructions that use it which become constants
83        // themselves.
84        Reduction += CountCodeReductionForConstant(&Inst);
85      }
86    }
87
88  return Reduction;
89}
90
91// getInlineCost - The heuristic used to determine if we should inline the
92// function call or not.
93//
94int SimpleInliner::getInlineCost(CallSite CS) {
95  Instruction *TheCall = CS.getInstruction();
96  Function *Callee = CS.getCalledFunction();
97  const Function *Caller = TheCall->getParent()->getParent();
98
99  // Don't inline a directly recursive call.
100  if (Caller == Callee) return 2000000000;
101
102  // InlineCost - This value measures how good of an inline candidate this call
103  // site is to inline.  A lower inline cost make is more likely for the call to
104  // be inlined.  This value may go negative.
105  //
106  int InlineCost = 0;
107
108  // If there is only one call of the function, and it has internal linkage,
109  // make it almost guaranteed to be inlined.
110  //
111  if (Callee->hasInternalLinkage() && Callee->hasOneUse())
112    InlineCost -= 30000;
113
114  // Get information about the callee...
115  FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
116
117  // If we haven't calculated this information yet...
118  if (CalleeFI.NumBlocks == 0) {
119    unsigned NumInsts = 0, NumBlocks = 0;
120
121    // Look at the size of the callee.  Each basic block counts as 20 units, and
122    // each instruction counts as 10.
123    for (Function::const_iterator BB = Callee->begin(), E = Callee->end();
124         BB != E; ++BB) {
125      NumInsts += BB->size();
126      NumBlocks++;
127    }
128
129    CalleeFI.NumBlocks = NumBlocks;
130    CalleeFI.NumInsts  = NumInsts;
131
132    // Check out all of the arguments to the function, figuring out how much
133    // code can be eliminated if one of the arguments is a constant.
134    std::vector<unsigned> &ArgWeights = CalleeFI.ConstantArgumentWeights;
135
136    for (Function::aiterator I = Callee->abegin(), E = Callee->aend();
137         I != E; ++I)
138      ArgWeights.push_back(CountCodeReductionForConstant(I));
139  }
140
141
142  // Add to the inline quality for properties that make the call valuable to
143  // inline.  This includes factors that indicate that the result of inlining
144  // the function will be optimizable.  Currently this just looks at arguments
145  // passed into the function.
146  //
147  unsigned ArgNo = 0;
148  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
149       I != E; ++I, ++ArgNo) {
150    // Each argument passed in has a cost at both the caller and the callee
151    // sides.  This favors functions that take many arguments over functions
152    // that take few arguments.
153    InlineCost -= 20;
154
155    // If this is a function being passed in, it is very likely that we will be
156    // able to turn an indirect function call into a direct function call.
157    if (isa<Function>(I))
158      InlineCost -= 100;
159
160    // If an alloca is passed in, inlining this function is likely to allow
161    // significant future optimization possibilities (like scalar promotion, and
162    // scalarization), so encourage the inlining of the function.
163    //
164    else if (isa<AllocaInst>(I))
165      InlineCost -= 60;
166
167    // If this is a constant being passed into the function, use the argument
168    // weights calculated for the callee to determine how much will be folded
169    // away with this information.
170    else if (isa<Constant>(I) || isa<GlobalVariable>(I)) {
171      if (ArgNo < CalleeFI.ConstantArgumentWeights.size())
172        InlineCost -= CalleeFI.ConstantArgumentWeights[ArgNo];
173    }
174  }
175
176  // Now that we have considered all of the factors that make the call site more
177  // likely to be inlined, look at factors that make us not want to inline it.
178
179  // Don't inline into something too big, which would make it bigger.  Here, we
180  // count each basic block as a single unit.
181  InlineCost += Caller->size()*2;
182
183
184  // Look at the size of the callee.  Each basic block counts as 20 units, and
185  // each instruction counts as 5.
186  InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
187  return InlineCost;
188}
189
190