InlineSimple.cpp revision 9133fe28954d498fc4de13064c7d65bd811de02c
1//===- InlineSimple.cpp - Code to perform simple function inlining --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements bottom-up inlining of functions into callees.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Inliner.h"
15#include "llvm/CallingConv.h"
16#include "llvm/Instructions.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Function.h"
19#include "llvm/Type.h"
20#include "llvm/Support/CallSite.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Transforms/IPO.h"
23using namespace llvm;
24
25namespace {
26  struct VISIBILITY_HIDDEN ArgInfo {
27    unsigned ConstantWeight;
28    unsigned AllocaWeight;
29
30    ArgInfo(unsigned CWeight, unsigned AWeight)
31      : ConstantWeight(CWeight), AllocaWeight(AWeight) {}
32  };
33
34  // FunctionInfo - For each function, calculate the size of it in blocks and
35  // instructions.
36  struct VISIBILITY_HIDDEN FunctionInfo {
37    // NumInsts, NumBlocks - Keep track of how large each function is, which is
38    // used to estimate the code size cost of inlining it.
39    unsigned NumInsts, NumBlocks;
40
41    // ArgumentWeights - Each formal argument of the function is inspected to
42    // see if it is used in any contexts where making it a constant or alloca
43    // would reduce the code size.  If so, we add some value to the argument
44    // entry here.
45    std::vector<ArgInfo> ArgumentWeights;
46
47    FunctionInfo() : NumInsts(0), NumBlocks(0) {}
48
49    /// analyzeFunction - Fill in the current structure with information gleaned
50    /// from the specified function.
51    void analyzeFunction(Function *F);
52  };
53
54  class VISIBILITY_HIDDEN SimpleInliner : public Inliner {
55    std::map<const Function*, FunctionInfo> CachedFunctionInfo;
56  public:
57    int getInlineCost(CallSite CS);
58  };
59  RegisterPass<SimpleInliner> X("inline", "Function Integration/Inlining");
60}
61
62Pass *llvm::createFunctionInliningPass() { return new SimpleInliner(); }
63
64// CountCodeReductionForConstant - Figure out an approximation for how many
65// instructions will be constant folded if the specified value is constant.
66//
67static unsigned CountCodeReductionForConstant(Value *V) {
68  unsigned Reduction = 0;
69  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
70    if (isa<BranchInst>(*UI))
71      Reduction += 40;          // Eliminating a conditional branch is a big win
72    else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
73      // Eliminating a switch is a big win, proportional to the number of edges
74      // deleted.
75      Reduction += (SI->getNumSuccessors()-1) * 40;
76    else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
77      // Turning an indirect call into a direct call is a BIG win
78      Reduction += CI->getCalledValue() == V ? 500 : 0;
79    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
80      // Turning an indirect call into a direct call is a BIG win
81      Reduction += II->getCalledValue() == V ? 500 : 0;
82    } else {
83      // Figure out if this instruction will be removed due to simple constant
84      // propagation.
85      Instruction &Inst = cast<Instruction>(**UI);
86      bool AllOperandsConstant = true;
87      for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
88        if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
89          AllOperandsConstant = false;
90          break;
91        }
92
93      if (AllOperandsConstant) {
94        // We will get to remove this instruction...
95        Reduction += 7;
96
97        // And any other instructions that use it which become constants
98        // themselves.
99        Reduction += CountCodeReductionForConstant(&Inst);
100      }
101    }
102
103  return Reduction;
104}
105
106// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
107// the function will be if it is inlined into a context where an argument
108// becomes an alloca.
109//
110static unsigned CountCodeReductionForAlloca(Value *V) {
111  if (!isa<PointerType>(V->getType())) return 0;  // Not a pointer
112  unsigned Reduction = 0;
113  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
114    Instruction *I = cast<Instruction>(*UI);
115    if (isa<LoadInst>(I) || isa<StoreInst>(I))
116      Reduction += 10;
117    else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
118      // If the GEP has variable indices, we won't be able to do much with it.
119      for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
120           I != E; ++I)
121        if (!isa<Constant>(*I)) return 0;
122      Reduction += CountCodeReductionForAlloca(GEP)+15;
123    } else {
124      // If there is some other strange instruction, we're not going to be able
125      // to do much if we inline this.
126      return 0;
127    }
128  }
129
130  return Reduction;
131}
132
133/// analyzeFunction - Fill in the current structure with information gleaned
134/// from the specified function.
135void FunctionInfo::analyzeFunction(Function *F) {
136  unsigned NumInsts = 0, NumBlocks = 0;
137
138  // Look at the size of the callee.  Each basic block counts as 20 units, and
139  // each instruction counts as 10.
140  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
141    for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
142         II != E; ++II) {
143      if (isa<DbgInfoIntrinsic>(II)) continue;  // Debug intrinsics don't count.
144
145      // Noop casts, including ptr <-> int,  don't count.
146      if (const CastInst *CI = dyn_cast<CastInst>(II)) {
147        if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
148            isa<PtrToIntInst>(CI))
149          continue;
150      } else if (const GetElementPtrInst *GEPI =
151                         dyn_cast<GetElementPtrInst>(II)) {
152        // If a GEP has all constant indices, it will probably be folded with
153        // a load/store.
154        bool AllConstant = true;
155        for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
156          if (!isa<ConstantInt>(GEPI->getOperand(i))) {
157            AllConstant = false;
158            break;
159          }
160        if (AllConstant) continue;
161      }
162
163      ++NumInsts;
164    }
165
166    ++NumBlocks;
167  }
168
169  this->NumBlocks = NumBlocks;
170  this->NumInsts  = NumInsts;
171
172  // Check out all of the arguments to the function, figuring out how much
173  // code can be eliminated if one of the arguments is a constant.
174  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
175    ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
176                                      CountCodeReductionForAlloca(I)));
177}
178
179
180// getInlineCost - The heuristic used to determine if we should inline the
181// function call or not.
182//
183int SimpleInliner::getInlineCost(CallSite CS) {
184  Instruction *TheCall = CS.getInstruction();
185  Function *Callee = CS.getCalledFunction();
186  const Function *Caller = TheCall->getParent()->getParent();
187
188  // Don't inline a directly recursive call.
189  if (Caller == Callee) return 2000000000;
190
191  // InlineCost - This value measures how good of an inline candidate this call
192  // site is to inline.  A lower inline cost make is more likely for the call to
193  // be inlined.  This value may go negative.
194  //
195  int InlineCost = 0;
196
197  // If there is only one call of the function, and it has internal linkage,
198  // make it almost guaranteed to be inlined.
199  //
200  if (Callee->hasInternalLinkage() && Callee->hasOneUse())
201    InlineCost -= 30000;
202
203  // If this function uses the coldcc calling convention, prefer not to inline
204  // it.
205  if (Callee->getCallingConv() == CallingConv::Cold)
206    InlineCost += 2000;
207
208  // If the instruction after the call, or if the normal destination of the
209  // invoke is an unreachable instruction, the function is noreturn.  As such,
210  // there is little point in inlining this.
211  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
212    if (isa<UnreachableInst>(II->getNormalDest()->begin()))
213      InlineCost += 10000;
214  } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
215    InlineCost += 10000;
216
217  // Get information about the callee...
218  FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
219
220  // If we haven't calculated this information yet, do so now.
221  if (CalleeFI.NumBlocks == 0)
222    CalleeFI.analyzeFunction(Callee);
223
224  // Add to the inline quality for properties that make the call valuable to
225  // inline.  This includes factors that indicate that the result of inlining
226  // the function will be optimizable.  Currently this just looks at arguments
227  // passed into the function.
228  //
229  unsigned ArgNo = 0;
230  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
231       I != E; ++I, ++ArgNo) {
232    // Each argument passed in has a cost at both the caller and the callee
233    // sides.  This favors functions that take many arguments over functions
234    // that take few arguments.
235    InlineCost -= 20;
236
237    // If this is a function being passed in, it is very likely that we will be
238    // able to turn an indirect function call into a direct function call.
239    if (isa<Function>(I))
240      InlineCost -= 100;
241
242    // If an alloca is passed in, inlining this function is likely to allow
243    // significant future optimization possibilities (like scalar promotion, and
244    // scalarization), so encourage the inlining of the function.
245    //
246    else if (isa<AllocaInst>(I)) {
247      if (ArgNo < CalleeFI.ArgumentWeights.size())
248        InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
249
250    // If this is a constant being passed into the function, use the argument
251    // weights calculated for the callee to determine how much will be folded
252    // away with this information.
253    } else if (isa<Constant>(I)) {
254      if (ArgNo < CalleeFI.ArgumentWeights.size())
255        InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
256    }
257  }
258
259  // Now that we have considered all of the factors that make the call site more
260  // likely to be inlined, look at factors that make us not want to inline it.
261
262  // Don't inline into something too big, which would make it bigger.  Here, we
263  // count each basic block as a single unit.
264  //
265  InlineCost += Caller->size()/20;
266
267
268  // Look at the size of the callee.  Each basic block counts as 20 units, and
269  // each instruction counts as 5.
270  InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
271  return InlineCost;
272}
273
274