InlineSimple.cpp revision c8b25d40cbec063b1ca99cc1adf794399c6d05c0
1//===- MethodInlining.cpp - Code to perform method inlining ---------------===//
2//
3// This file implements inlining of methods.
4//
5// Specifically, this:
6//   * Exports functionality to inline any method call
7//   * Inlines methods that consist of a single basic block
8//   * Is able to inline ANY method call
9//   . Has a smart heuristic for when to inline a method
10//
11// Notice that:
12//   * This pass has a habit of introducing duplicated constant pool entries,
13//     and also opens up a lot of opportunities for constant propogation.  It is
14//     a good idea to to run a constant propogation pass, then a DCE pass
15//     sometime after running this pass.
16//
17// TODO: Currently this throws away all of the symbol names in the method being
18//       inlined to try to avoid name clashes.  Use a name if it's not taken
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Optimizations/MethodInlining.h"
23#include "llvm/Module.h"
24#include "llvm/Method.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iOther.h"
27#include <algorithm>
28#include <map>
29
30#include "llvm/Assembly/Writer.h"
31
32using namespace opt;
33
34// RemapInstruction - Convert the instruction operands from referencing the
35// current values into those specified by ValueMap.
36//
37static inline void RemapInstruction(Instruction *I,
38				    map<const Value *, Value*> &ValueMap) {
39
40  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
41    const Value *Op = I->getOperand(op);
42    Value *V = ValueMap[Op];
43    if (!V && Op->isMethod())
44      continue;  // Methods don't get relocated
45
46    if (!V) {
47      cerr << "Val = " << endl << Op << "Addr = " << (void*)Op << endl;
48      cerr << "Inst = " << I;
49    }
50    assert(V && "Referenced value not in value map!");
51    I->setOperand(op, V);
52  }
53}
54
55// InlineMethod - This function forcibly inlines the called method into the
56// basic block of the caller.  This returns false if it is not possible to
57// inline this call.  The program is still in a well defined state if this
58// occurs though.
59//
60// Note that this only does one level of inlining.  For example, if the
61// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
62// exists in the instruction stream.  Similiarly this will inline a recursive
63// method by one level.
64//
65bool opt::InlineMethod(BasicBlock::iterator CIIt) {
66  assert((*CIIt)->getInstType() == Instruction::Call &&
67	 "InlineMethod only works on CallInst nodes!");
68  assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
69  assert((*CIIt)->getParent()->getParent() && "Instruction not in method!");
70
71  CallInst *CI = (CallInst*)*CIIt;
72  const Method *CalledMeth = CI->getCalledMethod();
73  Method *CurrentMeth = CI->getParent()->getParent();
74
75  //cerr << "Inlining " << CalledMeth->getName() << " into "
76  //     << CurrentMeth->getName() << endl;
77
78  BasicBlock *OrigBB = CI->getParent();
79
80  // Call splitBasicBlock - The original basic block now ends at the instruction
81  // immediately before the call.  The original basic block now ends with an
82  // unconditional branch to NewBB, and NewBB starts with the call instruction.
83  //
84  BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
85
86  // Remove (unlink) the CallInst from the start of the new basic block.
87  NewBB->getInstList().remove(CI);
88
89  // If we have a return value generated by this call, convert it into a PHI
90  // node that gets values from each of the old RET instructions in the original
91  // method.
92  //
93  PHINode *PHI = 0;
94  if (CalledMeth->getReturnType() != Type::VoidTy) {
95    PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
96
97    // The PHI node should go at the front of the new basic block to merge all
98    // possible incoming values.
99    //
100    NewBB->getInstList().push_front(PHI);
101
102    // Anything that used the result of the function call should now use the PHI
103    // node as their operand.
104    //
105    CI->replaceAllUsesWith(PHI);
106  }
107
108  // Keep a mapping between the original method's values and the new duplicated
109  // code's values.  This includes all of: Method arguments, instruction values,
110  // constant pool entries, and basic blocks.
111  //
112  map<const Value *, Value*> ValueMap;
113
114  // Add the method arguments to the mapping: (start counting at 1 to skip the
115  // method reference itself)
116  //
117  Method::ArgumentListType::const_iterator PTI =
118    CalledMeth->getArgumentList().begin();
119  for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
120    ValueMap[*PTI] = CI->getOperand(a);
121
122  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
123
124  // Loop over all of the basic blocks in the method, inlining them as
125  // appropriate.  Keep track of the first basic block of the method...
126  //
127  for (Method::const_iterator BI = CalledMeth->begin();
128       BI != CalledMeth->end(); ++BI) {
129    const BasicBlock *BB = *BI;
130    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
131
132    // Create a new basic block to copy instructions into!
133    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
134
135    ValueMap[*BI] = IBB;                       // Add basic block mapping.
136
137    // Make sure to capture the mapping that a return will use...
138    // TODO: This assumes that the RET is returning a value computed in the same
139    //       basic block as the return was issued from!
140    //
141    const TerminatorInst *TI = BB->getTerminator();
142
143    // Loop over all instructions copying them over...
144    Instruction *NewInst;
145    for (BasicBlock::const_iterator II = BB->begin();
146	 II != (BB->end()-1); ++II) {
147      IBB->getInstList().push_back((NewInst = (*II)->clone()));
148      ValueMap[*II] = NewInst;                  // Add instruction map to value.
149    }
150
151    // Copy over the terminator now...
152    switch (TI->getInstType()) {
153    case Instruction::Ret: {
154      const ReturnInst *RI = (const ReturnInst*)TI;
155
156      if (PHI) {   // The PHI node should include this value!
157	assert(RI->getReturnValue() && "Ret should have value!");
158	assert(RI->getReturnValue()->getType() == PHI->getType() &&
159	       "Ret value not consistent in method!");
160	PHI->addIncoming((Value*)RI->getReturnValue(), (BasicBlock*)BB);
161      }
162
163      // Add a branch to the code that was after the original Call.
164      IBB->getInstList().push_back(new BranchInst(NewBB));
165      break;
166    }
167    case Instruction::Br:
168      IBB->getInstList().push_back(TI->clone());
169      break;
170
171    default:
172      cerr << "MethodInlining: Don't know how to handle terminator: " << TI;
173      abort();
174    }
175  }
176
177
178  // Copy over the constant pool...
179  //
180  const ConstantPool &CP = CalledMeth->getConstantPool();
181  ConstantPool    &NewCP = CurrentMeth->getConstantPool();
182  for (ConstantPool::plane_const_iterator PI = CP.begin(); PI != CP.end(); ++PI){
183    ConstantPool::PlaneType &Plane = **PI;
184    for (ConstantPool::PlaneType::const_iterator I = Plane.begin();
185	 I != Plane.end(); ++I) {
186      ConstPoolVal *NewVal = (*I)->clone(); // Copy existing constant
187      NewCP.insert(NewVal);         // Insert the new copy into local const pool
188      ValueMap[*I] = NewVal;        // Keep track of constant value mappings
189    }
190  }
191
192  // Loop over all of the instructions in the method, fixing up operand
193  // references as we go.  This uses ValueMap to do all the hard work.
194  //
195  for (Method::const_iterator BI = CalledMeth->begin();
196       BI != CalledMeth->end(); ++BI) {
197    const BasicBlock *BB = *BI;
198    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
199
200    // Loop over all instructions, fixing each one as we find it...
201    //
202    for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++)
203      RemapInstruction(*II, ValueMap);
204  }
205
206  if (PHI) RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
207
208  // Change the branch that used to go to NewBB to branch to the first basic
209  // block of the inlined method.
210  //
211  TerminatorInst *Br = OrigBB->getTerminator();
212  assert(Br && Br->getInstType() == Instruction::Br &&
213	 "splitBasicBlock broken!");
214  Br->setOperand(0, ValueMap[CalledMeth->front()]);
215
216  // Since we are now done with the CallInst, we can finally delete it.
217  delete CI;
218  return true;
219}
220
221bool opt::InlineMethod(CallInst *CI) {
222  assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
223  BasicBlock *PBB = CI->getParent();
224
225  BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI);
226
227  assert(CallIt != PBB->end() &&
228	 "CallInst has parent that doesn't contain CallInst?!?");
229  return InlineMethod(CallIt);
230}
231
232static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) {
233  assert(CI->getParent() && CI->getParent()->getParent() &&
234	 "Call not embedded into a method!");
235
236  // Don't inline a recursive call.
237  if (CI->getParent()->getParent() == M) return false;
238
239  // Don't inline something too big.  This is a really crappy heuristic
240  if (M->size() > 3) return false;
241
242  // Don't inline into something too big. This is a **really** crappy heuristic
243  if (CI->getParent()->getParent()->size() > 10) return false;
244
245  // Go ahead and try just about anything else.
246  return true;
247}
248
249
250static inline bool DoMethodInlining(BasicBlock *BB) {
251  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
252    if ((*I)->getInstType() == Instruction::Call) {
253      // Check to see if we should inline this method
254      CallInst *CI = (CallInst*)*I;
255      Method *M = CI->getCalledMethod();
256      if (ShouldInlineMethod(CI, M))
257	return InlineMethod(I);
258    }
259  }
260  return false;
261}
262
263bool opt::DoMethodInlining(Method *M) {
264  bool Changed = false;
265
266  // Loop through now and inline instructions a basic block at a time...
267  for (Method::iterator I = M->begin(); I != M->end(); )
268    if (DoMethodInlining(*I)) {
269      Changed = true;
270      // Iterator is now invalidated by new basic blocks inserted
271      I = M->begin();
272    } else {
273      ++I;
274    }
275
276  return Changed;
277}
278