InlineSimple.cpp revision d18015599cbe09dd327b5f73501581a865bf27da
1//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
2//
3// This file implements inlining of functions.
4//
5// Specifically, this:
6//   * Exports functionality to inline any function call
7//   * Inlines functions that consist of a single basic block
8//   * Is able to inline ANY function call
9//   . Has a smart heuristic for when to inline a function
10//
11// Notice that:
12//   * This pass opens up a lot of opportunities for constant propogation.  It
13//     is a good idea to to run a constant propogation pass, then a DCE pass
14//     sometime after running this pass.
15//
16// FIXME: This pass should transform alloca instructions in the called function
17//        into malloc/free pairs!
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/Transforms/IPO.h"
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/iTerminators.h"
26#include "llvm/iPHINode.h"
27#include "llvm/iOther.h"
28#include "llvm/Type.h"
29#include "Support/Statistic.h"
30#include <algorithm>
31
32static Statistic<> NumInlined("inline", "Number of functions inlined");
33using std::cerr;
34
35// InlineFunction - This function forcibly inlines the called function into the
36// basic block of the caller.  This returns false if it is not possible to
37// inline this call.  The program is still in a well defined state if this
38// occurs though.
39//
40// Note that this only does one level of inlining.  For example, if the
41// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
42// exists in the instruction stream.  Similiarly this will inline a recursive
43// function by one level.
44//
45bool InlineFunction(CallInst *CI) {
46  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
47  assert(CI->getParent() && "Instruction not embedded in basic block!");
48  assert(CI->getParent()->getParent() && "Instruction not in function!");
49
50  const Function *CalledFunc = CI->getCalledFunction();
51  if (CalledFunc == 0 ||   // Can't inline external function or indirect call!
52      CalledFunc->isExternal()) return false;
53
54  //cerr << "Inlining " << CalledFunc->getName() << " into "
55  //     << CurrentMeth->getName() << "\n";
56
57  BasicBlock *OrigBB = CI->getParent();
58
59  // Call splitBasicBlock - The original basic block now ends at the instruction
60  // immediately before the call.  The original basic block now ends with an
61  // unconditional branch to NewBB, and NewBB starts with the call instruction.
62  //
63  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
64  NewBB->setName("InlinedFunctionReturnNode");
65
66  // Remove (unlink) the CallInst from the start of the new basic block.
67  NewBB->getInstList().remove(CI);
68
69  // If we have a return value generated by this call, convert it into a PHI
70  // node that gets values from each of the old RET instructions in the original
71  // function.
72  //
73  PHINode *PHI = 0;
74  if (!CI->use_empty()) {
75    // The PHI node should go at the front of the new basic block to merge all
76    // possible incoming values.
77    //
78    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
79                      NewBB->begin());
80
81    // Anything that used the result of the function call should now use the PHI
82    // node as their operand.
83    //
84    CI->replaceAllUsesWith(PHI);
85  }
86
87  // Get a pointer to the last basic block in the function, which will have the
88  // new function inlined after it.
89  //
90  Function::iterator LastBlock = &OrigBB->getParent()->back();
91
92  // Calculate the vector of arguments to pass into the function cloner...
93  std::map<const Value*, Value*> ValueMap;
94  assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) ==
95         CI->getNumOperands()-1 && "No varargs calls can be inlined yet!");
96
97  unsigned i = 1;
98  for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend();
99       I != E; ++I, ++i)
100    ValueMap[I] = CI->getOperand(i);
101
102  // Since we are now done with the CallInst, we can delete it.
103  delete CI;
104
105  // Make a vector to capture the return instructions in the cloned function...
106  std::vector<ReturnInst*> Returns;
107
108  // Do all of the hard part of cloning the callee into the caller...
109  CloneFunctionInto(OrigBB->getParent(), CalledFunc, ValueMap, Returns, ".i");
110
111  // Loop over all of the return instructions, turning them into unconditional
112  // branches to the merge point now...
113  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
114    ReturnInst *RI = Returns[i];
115    BasicBlock *BB = RI->getParent();
116
117    // Add a branch to the merge point where the PHI node would live...
118    new BranchInst(NewBB, RI);
119
120    if (PHI) {   // The PHI node should include this value!
121      assert(RI->getReturnValue() && "Ret should have value!");
122      assert(RI->getReturnValue()->getType() == PHI->getType() &&
123             "Ret value not consistent in function!");
124      PHI->addIncoming(RI->getReturnValue(), BB);
125    }
126
127    // Delete the return instruction now
128    BB->getInstList().erase(RI);
129  }
130
131  // Check to see if the PHI node only has one argument.  This is a common
132  // case resulting from there only being a single return instruction in the
133  // function call.  Because this is so common, eliminate the PHI node.
134  //
135  if (PHI && PHI->getNumIncomingValues() == 1) {
136    PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
137    PHI->getParent()->getInstList().erase(PHI);
138  }
139
140  // Change the branch that used to go to NewBB to branch to the first basic
141  // block of the inlined function.
142  //
143  TerminatorInst *Br = OrigBB->getTerminator();
144  assert(Br && Br->getOpcode() == Instruction::Br &&
145	 "splitBasicBlock broken!");
146  Br->setOperand(0, ++LastBlock);
147  return true;
148}
149
150static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
151  assert(CI->getParent() && CI->getParent()->getParent() &&
152	 "Call not embedded into a function!");
153
154  // Don't inline a recursive call.
155  if (CI->getParent()->getParent() == F) return false;
156
157  // Don't inline something too big.  This is a really crappy heuristic
158  if (F->size() > 3) return false;
159
160  // Don't inline into something too big. This is a **really** crappy heuristic
161  if (CI->getParent()->getParent()->size() > 10) return false;
162
163  // Go ahead and try just about anything else.
164  return true;
165}
166
167
168static inline bool DoFunctionInlining(BasicBlock *BB) {
169  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
170    if (CallInst *CI = dyn_cast<CallInst>(&*I)) {
171      // Check to see if we should inline this function
172      Function *F = CI->getCalledFunction();
173      if (F && ShouldInlineFunction(CI, F)) {
174	return InlineFunction(CI);
175      }
176    }
177  }
178  return false;
179}
180
181// doFunctionInlining - Use a heuristic based approach to inline functions that
182// seem to look good.
183//
184static bool doFunctionInlining(Function &F) {
185  bool Changed = false;
186
187  // Loop through now and inline instructions a basic block at a time...
188  for (Function::iterator I = F.begin(); I != F.end(); )
189    if (DoFunctionInlining(I)) {
190      ++NumInlined;
191      Changed = true;
192    } else {
193      ++I;
194    }
195
196  return Changed;
197}
198
199namespace {
200  struct FunctionInlining : public FunctionPass {
201    virtual bool runOnFunction(Function &F) {
202      return doFunctionInlining(F);
203    }
204  };
205  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
206}
207
208Pass *createFunctionInliningPass() { return new FunctionInlining(); }
209